Skip to main content
Erschienen in: Continuum Mechanics and Thermodynamics 6/2019

16.08.2019 | Original Article

Fully coupled thermomechanical modeling of shape memory alloys under multiaxial loadings and implementation by finite element method

verfasst von: Y. Mohammad Hashemi, M. Kadkhodaei, M. Salehan

Erschienen in: Continuum Mechanics and Thermodynamics | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Different constitutive models along with various numerical implementation approaches have been proposed for shape memory alloys (SMAs) in the last decades. Since 1-D models are only suitable for particular geometries and loading types, due to the broad variety of SMA components in smart structures, 3-D rate-dependent modeling of SMAs is a necessity. In the present research, a fully coupled rate-dependent model to study thermomechanical response of shape memory alloys under multiaxial loadings is presented. The model is implemented into ABAQUS commercial finite element package by developing a user-defined material subroutine. Most of the available works are limited to just mechanical loadings and/or simple geometries, but the current model is able to simulate both shape memory effect and pseudoelasticity. Furthermore, it is capable of being applied to any geometry undergoing thermal/mechanical cycling under a wide range of strain rates spanning quasi-static to high-rate conditions. The obtained numerical results by the model are validated by experimental, analytical, and numerical findings of available three-dimensional case studies in the literature. The predicted results by the current model are shown to be in good agreement with the findings of previous investigations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jani, J.M., Leary, M., Subic, A., Gibson, M.A.: A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014)CrossRef Jani, J.M., Leary, M., Subic, A., Gibson, M.A.: A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014)CrossRef
2.
Zurück zum Zitat Alessandroni, S., Andreaus, U., dell’Isola, F., Porfiri, M.: Piezo-electromechanical (pem) Kirchhoff-Love plates. Eur. J. Mech. A Solids 23(4), 689–702 (2004)MATHCrossRef Alessandroni, S., Andreaus, U., dell’Isola, F., Porfiri, M.: Piezo-electromechanical (pem) Kirchhoff-Love plates. Eur. J. Mech. A Solids 23(4), 689–702 (2004)MATHCrossRef
3.
Zurück zum Zitat Rosi, G., Pouget, J., dell’Isola, F.: Control of sound radiation and transmission by a piezoelectric plate with an optimized resistive electrode. Eur. J. Mech. A Solids 29(5), 859–870 (2010)ADSMathSciNetCrossRef Rosi, G., Pouget, J., dell’Isola, F.: Control of sound radiation and transmission by a piezoelectric plate with an optimized resistive electrode. Eur. J. Mech. A Solids 29(5), 859–870 (2010)ADSMathSciNetCrossRef
4.
Zurück zum Zitat Giorgio, I., Culla, A., Del Vescovo, D.: Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network. Arch. Appl. Mech. 79(9), 859 (2009)ADSMATHCrossRef Giorgio, I., Culla, A., Del Vescovo, D.: Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network. Arch. Appl. Mech. 79(9), 859 (2009)ADSMATHCrossRef
5.
Zurück zum Zitat Alessandroni, S., Dell’Isola, F., Frezza, F.: Optimal piezo-electro-mechanical coupling to control plate vibrations. Int. J. Appl. Electromagn. Mech. 13(1–4), 113–120 (2001) Alessandroni, S., Dell’Isola, F., Frezza, F.: Optimal piezo-electro-mechanical coupling to control plate vibrations. Int. J. Appl. Electromagn. Mech. 13(1–4), 113–120 (2001)
6.
Zurück zum Zitat Alipour, A., Kadkhodaei, M., Safaei, M.: Design, analysis, and manufacture of a tension-compression self-centering damper based on energy dissipation of pre-stretched superelastic shape memory alloy wires. J. Intell. Mater. Syst. Struct. 28(15), 2129–2139 (2017)CrossRef Alipour, A., Kadkhodaei, M., Safaei, M.: Design, analysis, and manufacture of a tension-compression self-centering damper based on energy dissipation of pre-stretched superelastic shape memory alloy wires. J. Intell. Mater. Syst. Struct. 28(15), 2129–2139 (2017)CrossRef
7.
Zurück zum Zitat Cohades, A., Hostettler, N., Pauchard, M., Plummer, C.J., Michaud, V.: Stitched shape memory alloy wires enhance damage recovery in self-healing fibre-reinforced polymer composites. Compos. Sci. Technol. 161, 22–31 (2018)CrossRef Cohades, A., Hostettler, N., Pauchard, M., Plummer, C.J., Michaud, V.: Stitched shape memory alloy wires enhance damage recovery in self-healing fibre-reinforced polymer composites. Compos. Sci. Technol. 161, 22–31 (2018)CrossRef
8.
Zurück zum Zitat Barchiesi, E., Spagnuolo, M., Placidi, L.: Mechanical metamaterials: a state of the art. Math. Mech. Solids 24(1), 212–234 (2019)MathSciNetMATHCrossRef Barchiesi, E., Spagnuolo, M., Placidi, L.: Mechanical metamaterials: a state of the art. Math. Mech. Solids 24(1), 212–234 (2019)MathSciNetMATHCrossRef
9.
Zurück zum Zitat Dell’Isola, F., Seppecher, P., Alibert, J.J., Lekszycki, T., Grygoruk, R., Pawlikowski, M., Steigmann, D., et al.: Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Continuum Mech. Thermodyn. 31(4), 851–884 (2019)ADSMathSciNetCrossRef Dell’Isola, F., Seppecher, P., Alibert, J.J., Lekszycki, T., Grygoruk, R., Pawlikowski, M., Steigmann, D., et al.: Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Continuum Mech. Thermodyn. 31(4), 851–884 (2019)ADSMathSciNetCrossRef
10.
Zurück zum Zitat Taheri Andani, M., Haberland, C., Walker, J.M., Karamooz, M., et al.: Achieving biocompatible stiffness in NiTi through additive manufacturing. J. Intell. Mater. Syst. Struct. 27(19), 2661–2671 (2016)CrossRef Taheri Andani, M., Haberland, C., Walker, J.M., Karamooz, M., et al.: Achieving biocompatible stiffness in NiTi through additive manufacturing. J. Intell. Mater. Syst. Struct. 27(19), 2661–2671 (2016)CrossRef
11.
Zurück zum Zitat Vaiana, N., Sessa, S., Marmo, F., Rosati, L.: A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials. Nonlinear Dyn. 93, 1647–1669 (2018)CrossRef Vaiana, N., Sessa, S., Marmo, F., Rosati, L.: A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials. Nonlinear Dyn. 93, 1647–1669 (2018)CrossRef
12.
Zurück zum Zitat Cuomo, M.: Forms of the dissipation function for a class of viscoplastic models. Math. Mech. Complex Syst. 5(3), 217–237 (2017)MathSciNetMATHCrossRef Cuomo, M.: Forms of the dissipation function for a class of viscoplastic models. Math. Mech. Complex Syst. 5(3), 217–237 (2017)MathSciNetMATHCrossRef
13.
Zurück zum Zitat Giorgio, I., Scerrato, D.: Multi-scale concrete model with rate-dependent internal friction. Eur. J. Environ. Civ. Eng. 21(7–8), 821–839 (2017)CrossRef Giorgio, I., Scerrato, D.: Multi-scale concrete model with rate-dependent internal friction. Eur. J. Environ. Civ. Eng. 21(7–8), 821–839 (2017)CrossRef
14.
Zurück zum Zitat Eremeyev, V.A., Pietraszkiewicz, W.: The nonlinear theory of elastic shells with phase transitions. J. Elast. 74(1), 67–86 (2004)MathSciNetMATHCrossRef Eremeyev, V.A., Pietraszkiewicz, W.: The nonlinear theory of elastic shells with phase transitions. J. Elast. 74(1), 67–86 (2004)MathSciNetMATHCrossRef
15.
Zurück zum Zitat Pietraszkiewicz, W., Eremeyev, V., Konopińska, V.: Extended non-linear relations of elastic shells undergoing phase transitions. ZAMM-J. Appl. Math. Mechanics Zeitschrift für Angewandte Mathematik und Mechanik 87(2), 150–159 (2007)ADSMathSciNetMATHCrossRef Pietraszkiewicz, W., Eremeyev, V., Konopińska, V.: Extended non-linear relations of elastic shells undergoing phase transitions. ZAMM-J. Appl. Math. Mechanics Zeitschrift für Angewandte Mathematik und Mechanik 87(2), 150–159 (2007)ADSMathSciNetMATHCrossRef
16.
Zurück zum Zitat Eremeyev, V.A., Pietraszkiewicz, W.: Thermomechanics of shells undergoing phase transition. J. Mech. Phys. Solids 59(7), 1395–1412 (2011)ADSMathSciNetMATHCrossRef Eremeyev, V.A., Pietraszkiewicz, W.: Thermomechanics of shells undergoing phase transition. J. Mech. Phys. Solids 59(7), 1395–1412 (2011)ADSMathSciNetMATHCrossRef
17.
Zurück zum Zitat Eremeyev, V.A., Pietraszkiewicz, W.: Phase transitions in thermoelastic and thermoviscoelastic shells. Arch. Mech. 61(1), 41–67 (2009)MathSciNetMATH Eremeyev, V.A., Pietraszkiewicz, W.: Phase transitions in thermoelastic and thermoviscoelastic shells. Arch. Mech. 61(1), 41–67 (2009)MathSciNetMATH
19.
Zurück zum Zitat Boyd, J.G., Lagoudas, D.C.: A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy. Int. J. Plast. 12(6), 805–842 (1996)MATHCrossRef Boyd, J.G., Lagoudas, D.C.: A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy. Int. J. Plast. 12(6), 805–842 (1996)MATHCrossRef
20.
Zurück zum Zitat Lim, T.J., McDowell, D.L.: Mechanical behavior of an Ni-Ti shape memory alloy under axial-torsional proportional and nonproportional loading. J. Eng. Mater. Technol. 121(1), 9–18 (1999)CrossRef Lim, T.J., McDowell, D.L.: Mechanical behavior of an Ni-Ti shape memory alloy under axial-torsional proportional and nonproportional loading. J. Eng. Mater. Technol. 121(1), 9–18 (1999)CrossRef
21.
Zurück zum Zitat Peng, X., Yang, Y., Huang, S.: A comprehensive description for shape memory alloys with a two-phase constitutive model. Int. J. Solids Struct. 38(38–39), 6925–6940 (2001)MATHCrossRef Peng, X., Yang, Y., Huang, S.: A comprehensive description for shape memory alloys with a two-phase constitutive model. Int. J. Solids Struct. 38(38–39), 6925–6940 (2001)MATHCrossRef
22.
Zurück zum Zitat Bouvet, C., Calloch, S., Lexcellent, C.: A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings. Eur. J. Mech. A Solids 23(1), 37–61 (2004)MathSciNetMATHCrossRef Bouvet, C., Calloch, S., Lexcellent, C.: A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings. Eur. J. Mech. A Solids 23(1), 37–61 (2004)MathSciNetMATHCrossRef
23.
Zurück zum Zitat Panico, M., Brinson, L.C.: A three-dimensional phenomenological model for martensite reorientation in shape memory alloys. J. Mech. Phys. Solids 55(11), 2491–2511 (2007)ADSMathSciNetMATHCrossRef Panico, M., Brinson, L.C.: A three-dimensional phenomenological model for martensite reorientation in shape memory alloys. J. Mech. Phys. Solids 55(11), 2491–2511 (2007)ADSMathSciNetMATHCrossRef
24.
Zurück zum Zitat Arghavani, J., Auricchio, F., Naghdabadi, R., Reali, A., Sohrabpour, S.: A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings. Int. J. Plast. 26(7), 976–991 (2010)MATHCrossRef Arghavani, J., Auricchio, F., Naghdabadi, R., Reali, A., Sohrabpour, S.: A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings. Int. J. Plast. 26(7), 976–991 (2010)MATHCrossRef
25.
Zurück zum Zitat Kadkhodaei, M., Salimi, M., Rajapakse, R.K.N.D., Mahzoon, M.: Microplane modelling of shape memory alloys. Phys. Scr. 2007(T129), 329–334 (2007)CrossRef Kadkhodaei, M., Salimi, M., Rajapakse, R.K.N.D., Mahzoon, M.: Microplane modelling of shape memory alloys. Phys. Scr. 2007(T129), 329–334 (2007)CrossRef
26.
Zurück zum Zitat Ravari, M.K., Kadkhodaei, M., Ghaei, A.: A microplane constitutive model for shape memory alloys considering tension-compression asymmetry. Smart Mater. Struct. 24(7), 075016 (2015)ADSCrossRef Ravari, M.K., Kadkhodaei, M., Ghaei, A.: A microplane constitutive model for shape memory alloys considering tension-compression asymmetry. Smart Mater. Struct. 24(7), 075016 (2015)ADSCrossRef
27.
Zurück zum Zitat Shirani, M., Mehrabi, R., Andani, M.T., Kadkhodaei, M., Elahinia, M., Andani, M.T.: A modified microplane model using transformation surfaces to consider loading history on phase transition in shape memory alloys. In: ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, pp. V001T01A001-V001T01A001, Newport, Rhode Island, USA (2014) Shirani, M., Mehrabi, R., Andani, M.T., Kadkhodaei, M., Elahinia, M., Andani, M.T.: A modified microplane model using transformation surfaces to consider loading history on phase transition in shape memory alloys. In: ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, pp. V001T01A001-V001T01A001, Newport, Rhode Island, USA (2014)
28.
Zurück zum Zitat Mehrabi, R., Kadkhodaei, M., Ghaei, A.: Numerical implementation of a thermomechanical constitutive model for shape memory alloys using return mapping algorithm and microplane theory. In: Advanced Materials Research, vol. 516, pp. 351-354, Switzerland (2012) Mehrabi, R., Kadkhodaei, M., Ghaei, A.: Numerical implementation of a thermomechanical constitutive model for shape memory alloys using return mapping algorithm and microplane theory. In: Advanced Materials Research, vol. 516, pp. 351-354, Switzerland (2012)
29.
Zurück zum Zitat Zhou, T., Yu, C., Kang, G., Kan, Q.: A new microplane model for non-proportionally multiaxial deformation of shape memory alloys addressing both the martensite transformation and reorientation. Int. J. Mech. Sci. 152, 63–80 (2019)CrossRef Zhou, T., Yu, C., Kang, G., Kan, Q.: A new microplane model for non-proportionally multiaxial deformation of shape memory alloys addressing both the martensite transformation and reorientation. Int. J. Mech. Sci. 152, 63–80 (2019)CrossRef
30.
Zurück zum Zitat Xue, L., Mu, H., Feng, J.: Thermal mechanical behavior of a functionally graded shape memory alloy cylinder subject to pressure and graded temperature loads. J. Mater. Res. 33(12), 1806–1813 (2018)ADSCrossRef Xue, L., Mu, H., Feng, J.: Thermal mechanical behavior of a functionally graded shape memory alloy cylinder subject to pressure and graded temperature loads. J. Mater. Res. 33(12), 1806–1813 (2018)ADSCrossRef
31.
Zurück zum Zitat Auricchio, F., Sacco, E.: Thermo-mechanical modelling of a superelastic shape-memory wire under cyclic stretching-bending loadings. Int. J. Solids Struct. 38, 6123–6145 (2001)MATHCrossRef Auricchio, F., Sacco, E.: Thermo-mechanical modelling of a superelastic shape-memory wire under cyclic stretching-bending loadings. Int. J. Solids Struct. 38, 6123–6145 (2001)MATHCrossRef
32.
Zurück zum Zitat Vitiello, A., Giorleo, G., Morace, R.E.: Analysis of thermomechanical behaviour of Nitinol wires with high strain rates. Smart Mater. Struct. 14, 215–221 (2005)ADSCrossRef Vitiello, A., Giorleo, G., Morace, R.E.: Analysis of thermomechanical behaviour of Nitinol wires with high strain rates. Smart Mater. Struct. 14, 215–221 (2005)ADSCrossRef
33.
Zurück zum Zitat Kadkhodaei, M., Rajapakse, R.K.N.D., Mahzoon, M., Salimi, M.: Modeling of the cyclic thermomechanical response of SMA wires at different strain rates. Smart Mater. Struct. 16(6), 2091–2101 (2007)ADSCrossRef Kadkhodaei, M., Rajapakse, R.K.N.D., Mahzoon, M., Salimi, M.: Modeling of the cyclic thermomechanical response of SMA wires at different strain rates. Smart Mater. Struct. 16(6), 2091–2101 (2007)ADSCrossRef
34.
Zurück zum Zitat Morin, C., Moumni, Z., Zaki, W.: Thermomechanical coupling in shape memory alloys under cyclic loadings: experimental analysis and constitutive modeling. Int. J. Plast. 27(12), 1959–1980 (2011)MATHCrossRef Morin, C., Moumni, Z., Zaki, W.: Thermomechanical coupling in shape memory alloys under cyclic loadings: experimental analysis and constitutive modeling. Int. J. Plast. 27(12), 1959–1980 (2011)MATHCrossRef
35.
Zurück zum Zitat Alipour, A., Kadkhodaei, M., Ghaei, A.: Finite element simulation of shape memory alloy wires using a user material subroutine: parametric study on heating rate, conductivity, and heat convection. J. Intell. Mater. Sys. Struct. 26(5), 554–572 (2014)CrossRef Alipour, A., Kadkhodaei, M., Ghaei, A.: Finite element simulation of shape memory alloy wires using a user material subroutine: parametric study on heating rate, conductivity, and heat convection. J. Intell. Mater. Sys. Struct. 26(5), 554–572 (2014)CrossRef
36.
Zurück zum Zitat Morin, C., Moumni, Z., Zaki, W.: A constitutive model for shape memory alloys accounting for thermomechanical coupling. Int. J. Plast. 27(5), 748–767 (2011)MATHCrossRef Morin, C., Moumni, Z., Zaki, W.: A constitutive model for shape memory alloys accounting for thermomechanical coupling. Int. J. Plast. 27(5), 748–767 (2011)MATHCrossRef
37.
Zurück zum Zitat Mirzaeifar, R., DesRoches, R., Yavari, A.: Analysis of the rate-dependent coupled thermo-mechanical response of shape memory alloy bars and wires in tension. Continuum Mech. Thermodyn. 23(4), 363–385 (2011)ADSMathSciNetMATHCrossRef Mirzaeifar, R., DesRoches, R., Yavari, A.: Analysis of the rate-dependent coupled thermo-mechanical response of shape memory alloy bars and wires in tension. Continuum Mech. Thermodyn. 23(4), 363–385 (2011)ADSMathSciNetMATHCrossRef
38.
Zurück zum Zitat Mirzaeifar, R., DesRoches, R., Yavari, A., Gall, K.: Coupled thermo-mechanical analysis of shape memory alloy circular bars in pure torsion. Int. J. Non-Linear Mech. 47(3), 118–128 (2012)ADSCrossRef Mirzaeifar, R., DesRoches, R., Yavari, A., Gall, K.: Coupled thermo-mechanical analysis of shape memory alloy circular bars in pure torsion. Int. J. Non-Linear Mech. 47(3), 118–128 (2012)ADSCrossRef
39.
Zurück zum Zitat Andani, M.T., Alipour, A., Elahinia, M.: Coupled rate-dependent superelastic behavior of shape memory alloy bars induced by combined axial-torsional loading: a semi-analytic modeling. J. Intell. Mater. Syst. Struct. 24(16), 1995–2007 (2013)CrossRef Andani, M.T., Alipour, A., Elahinia, M.: Coupled rate-dependent superelastic behavior of shape memory alloy bars induced by combined axial-torsional loading: a semi-analytic modeling. J. Intell. Mater. Syst. Struct. 24(16), 1995–2007 (2013)CrossRef
40.
Zurück zum Zitat Andani, M.T., Elahinia, M.: A rate dependent tension-torsion constitutive model for superelastic nitinol under non-proportional loading; a departure from von Mises equivalency. Smart Mater. Struct. 23(1), 015012 (2014)ADSCrossRef Andani, M.T., Elahinia, M.: A rate dependent tension-torsion constitutive model for superelastic nitinol under non-proportional loading; a departure from von Mises equivalency. Smart Mater. Struct. 23(1), 015012 (2014)ADSCrossRef
41.
Zurück zum Zitat Brinson, L.C.: One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J. Intell. Mater. Syst. Struct. 4(2), 229–242 (1993)CrossRef Brinson, L.C.: One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J. Intell. Mater. Syst. Struct. 4(2), 229–242 (1993)CrossRef
42.
Zurück zum Zitat Chung, J.H., Heo, J.S., Lee, J.J.: Implementation strategy for the dual transformation region in the Brinson SMA constitutive model. Smart Mater. Struct. 16(1), N1 (2007)CrossRef Chung, J.H., Heo, J.S., Lee, J.J.: Implementation strategy for the dual transformation region in the Brinson SMA constitutive model. Smart Mater. Struct. 16(1), N1 (2007)CrossRef
43.
Zurück zum Zitat Dassault Systems: Abaqus 6.11-1 Analysis User’s Manual. Providence, RI: Dassault Systems (2011) Dassault Systems: Abaqus 6.11-1 Analysis User’s Manual. Providence, RI: Dassault Systems (2011)
44.
Zurück zum Zitat Mehrabi, R., Andani, M.T., Elahinia, M., Kadkhodaei, M.: Anisotropic behavior of superelastic NiTi shape memory alloys; an experimental investigation and constitutive modeling. Mech. Mater. 77, 110–124 (2014)CrossRef Mehrabi, R., Andani, M.T., Elahinia, M., Kadkhodaei, M.: Anisotropic behavior of superelastic NiTi shape memory alloys; an experimental investigation and constitutive modeling. Mech. Mater. 77, 110–124 (2014)CrossRef
45.
Zurück zum Zitat Mehrabi, R., Kadkhodaei, M., Elahinia, M.: Constitutive modeling of tension-torsion coupling and tension-compression asymmetry in NiTi shape memory alloys. Smart Mater. Struct. 23(7), 075021 (2014)ADSCrossRef Mehrabi, R., Kadkhodaei, M., Elahinia, M.: Constitutive modeling of tension-torsion coupling and tension-compression asymmetry in NiTi shape memory alloys. Smart Mater. Struct. 23(7), 075021 (2014)ADSCrossRef
46.
Zurück zum Zitat Mehrabi, R., Andani, M.T., Kadkhodaei, M., Elahinia, M.: Experimental study of NiTi thin-walled tubes under uniaxial tension, torsion, proportional and non-proportional loadings. Exp. Mech. 55(6), 1151–1164 (2015)CrossRef Mehrabi, R., Andani, M.T., Kadkhodaei, M., Elahinia, M.: Experimental study of NiTi thin-walled tubes under uniaxial tension, torsion, proportional and non-proportional loadings. Exp. Mech. 55(6), 1151–1164 (2015)CrossRef
47.
Zurück zum Zitat Enemark, S., Santos, I.F., Savi, M.A.: Modelling, characterisation and uncertainties of stabilised pseudoelastic shape memory alloy helical springs. J. Intell. Mater. Syst. Struct. 27(20), 2721–2743 (2016)CrossRef Enemark, S., Santos, I.F., Savi, M.A.: Modelling, characterisation and uncertainties of stabilised pseudoelastic shape memory alloy helical springs. J. Intell. Mater. Syst. Struct. 27(20), 2721–2743 (2016)CrossRef
48.
Zurück zum Zitat Savi, M.A., Pacheco, P.M.C., Garcia, M.S., Aguiar, R.A., De Souza, L.F.G., Da Hora, R.B.: Nonlinear geometric influence on the mechanical behavior of shape memory alloy helical springs. Smart Mater. Struct. 24(3), 035012 (2015)ADSCrossRef Savi, M.A., Pacheco, P.M.C., Garcia, M.S., Aguiar, R.A., De Souza, L.F.G., Da Hora, R.B.: Nonlinear geometric influence on the mechanical behavior of shape memory alloy helical springs. Smart Mater. Struct. 24(3), 035012 (2015)ADSCrossRef
49.
Zurück zum Zitat Shu, S.G., Lagoudas, D.C., Hughes, D., Wen, J.T.: Modeling of a flexible beam actuated by shape memory alloy wires. Smart Mater. Struct. 6(3), 265–277 (1997)ADSCrossRef Shu, S.G., Lagoudas, D.C., Hughes, D., Wen, J.T.: Modeling of a flexible beam actuated by shape memory alloy wires. Smart Mater. Struct. 6(3), 265–277 (1997)ADSCrossRef
50.
Zurück zum Zitat Tušek, J., Engelbrecht, K., Eriksen, D., Dall’Olio, S., Tušek, J., Pryds, N.: A regenerative elastocaloric heat pump. Nat. Energy 1(10), 16134 (2016)ADSCrossRef Tušek, J., Engelbrecht, K., Eriksen, D., Dall’Olio, S., Tušek, J., Pryds, N.: A regenerative elastocaloric heat pump. Nat. Energy 1(10), 16134 (2016)ADSCrossRef
Metadaten
Titel
Fully coupled thermomechanical modeling of shape memory alloys under multiaxial loadings and implementation by finite element method
verfasst von
Y. Mohammad Hashemi
M. Kadkhodaei
M. Salehan
Publikationsdatum
16.08.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Continuum Mechanics and Thermodynamics / Ausgabe 6/2019
Print ISSN: 0935-1175
Elektronische ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-019-00818-7

Weitere Artikel der Ausgabe 6/2019

Continuum Mechanics and Thermodynamics 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.