Skip to main content
Erschienen in: Wireless Personal Communications 3/2022

10.11.2021

Gait Adaptive Duty Cycle: Optimize the QoS of WBSN-HAR

verfasst von: Vidhyotma Gandhi, Jaiteg Singh

Erschienen in: Wireless Personal Communications | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To proliferate the traditional healthcare industry, the deep research is going on Wireless Body Sensor Network (WBSN). Many healthcare deployment models are designed for continuous and uninterrupted remote health monitoring system. But the Quality of Standard like energy, reliability and accuracy are to be pinned more. The Gait Adaptive Duty Cycle-Human Activity Recognition (GADC-HAR) is proposed with better performance in terms of energy, reliability and accuracy. To enhance the performance of model the two techniques were adopted: (i) design Energy Efficient and Reliable algorithm for the network coding (ii) optimization of sleep/wake timer to synchronise Controller Node with relay node. The performance validation is done with the real time implementation of GADC-HAR. The forty subjects (young and adult with same gender ratio) are examined with a 360 s activity pattern, a strategic process of self-optimization is adopted for gait cycle synchronization. At the end model is evaluated as 48.5% more energy efficient and packet loss ratio is reduced by 7.92%. Based on the gait cycle, population categories are sub-categorised in normal young/adult and fast young/adult subjects. GADC-HAR young normal 10.45%, young fast 11.28%, adult normal 25% and adult fast 25.13% were more accurate than WBSN-HAR generic model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat World Health Statistics 2 0 1 0. 2010. World Health Statistics 2 0 1 0. 2010.
2.
Zurück zum Zitat Ullah, S., & Kwak, K. S. (2011). Body area network for ubiquitous healthcare applications: Theory and implementation. Journal of Medical Systems, 35(5), 1243–1244.CrossRef Ullah, S., & Kwak, K. S. (2011). Body area network for ubiquitous healthcare applications: Theory and implementation. Journal of Medical Systems, 35(5), 1243–1244.CrossRef
3.
Zurück zum Zitat Custodio, V., Herrera, F. J., López, G., & Moreno, J. I. (2012). A review on architectures and communications technologies for wearable health-monitoring systems. Sensors (Switzerland), 12(10), 13907–13946.CrossRef Custodio, V., Herrera, F. J., López, G., & Moreno, J. I. (2012). A review on architectures and communications technologies for wearable health-monitoring systems. Sensors (Switzerland), 12(10), 13907–13946.CrossRef
4.
Zurück zum Zitat Puspitaningayu, P., et al. (2018). “The Development of Wireless Body Area Network for Motion Sensing Application. IOP Conf. Ser. Mater. Sci. Eng., 336, 012014.CrossRef Puspitaningayu, P., et al. (2018). “The Development of Wireless Body Area Network for Motion Sensing Application. IOP Conf. Ser. Mater. Sci. Eng., 336, 012014.CrossRef
5.
Zurück zum Zitat C. Liolios, C. Doukas, G. Fourlas, and I. Maglogiannis (2010) “An overview of body sensor networks in enabling pervasive healthcare and assistive environments,” in Proceedings of the 3rd International Conference on PErvasive Technologies Related to Assistive Environments - PETRA ’10, p. 1. C. Liolios, C. Doukas, G. Fourlas, and I. Maglogiannis (2010) “An overview of body sensor networks in enabling pervasive healthcare and assistive environments,” in Proceedings of the 3rd International Conference on PErvasive Technologies Related to Assistive Environments - PETRA ’10, p. 1.
6.
Zurück zum Zitat V. M, K. SPR, ukuri SPR, and R. A,. (2015). Node level energy efficiency protocol for internet of things. J. Theor. Comput. Sci., 03(01), 1–5. V. M, K. SPR, ukuri SPR, and R. A,. (2015). Node level energy efficiency protocol for internet of things. J. Theor. Comput. Sci., 03(01), 1–5.
7.
Zurück zum Zitat Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Comput. Networks, 67(March), 104–122.CrossRef Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Comput. Networks, 67(March), 104–122.CrossRef
8.
Zurück zum Zitat Premkumar, K., Padmapriya, S., Priyadharshani, R., & Priyanka, K. (2018). A SURVEY ON HEALTHCARE MONITORING SYSTEM USING WIRELESS SENSOR NETWORKS (WSN). Int. J. Pure Appl. Math., 118(14), 485–492. Premkumar, K., Padmapriya, S., Priyadharshani, R., & Priyanka, K. (2018). A SURVEY ON HEALTHCARE MONITORING SYSTEM USING WIRELESS SENSOR NETWORKS (WSN). Int. J. Pure Appl. Math., 118(14), 485–492.
9.
Zurück zum Zitat Camilo Correa-Chica, J., Felipe Botero-Vega, J., & Gaviria-Gómez, N. (2017). Cross-layer designs for energy efficient wireless body area networks: a review. Rev. Téc. Ing. Univ. Zulia, 40, 98–120. Camilo Correa-Chica, J., Felipe Botero-Vega, J., & Gaviria-Gómez, N. (2017). Cross-layer designs for energy efficient wireless body area networks: a review. Rev. Téc. Ing. Univ. Zulia, 40, 98–120.
10.
Zurück zum Zitat Sodhro, A. H., Chen, L., Sekhari, A., Ouzrout, Y., & Wu, W. (2018). Energy efficiency comparison between data rate control and transmission power control algorithms for wireless body sensor networks. Int. J. Distrib. Sens. Networks, 14(1), 155014771775003.CrossRef Sodhro, A. H., Chen, L., Sekhari, A., Ouzrout, Y., & Wu, W. (2018). Energy efficiency comparison between data rate control and transmission power control algorithms for wireless body sensor networks. Int. J. Distrib. Sens. Networks, 14(1), 155014771775003.CrossRef
11.
Zurück zum Zitat Gravina, R., Alinia, P., Ghasemzadeh, H., Fortino, G., Raffaele Gravina, G. F., Alinia, P., & Ghasemzadeh, H. (2017). Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges. Inf. Fusion, 35, 1339–1351.CrossRef Gravina, R., Alinia, P., Ghasemzadeh, H., Fortino, G., Raffaele Gravina, G. F., Alinia, P., & Ghasemzadeh, H. (2017). Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges. Inf. Fusion, 35, 1339–1351.CrossRef
12.
Zurück zum Zitat Marinkovic, S., & Popovici, E. (2012). Ultra low power signal oriented approach for wireless health monitoring. Sensors, 12(12), 7917–7937.CrossRef Marinkovic, S., & Popovici, E. (2012). Ultra low power signal oriented approach for wireless health monitoring. Sensors, 12(12), 7917–7937.CrossRef
13.
Zurück zum Zitat Gravina, R., Alinia, P., Ghasemzadeh, H., & Fortino, G. (2017). Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges. Inf. Fusion, 35, 1339–1351.CrossRef Gravina, R., Alinia, P., Ghasemzadeh, H., & Fortino, G. (2017). Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges. Inf. Fusion, 35, 1339–1351.CrossRef
14.
Zurück zum Zitat Giancarlo Fortino, W. L., Galzarano, S., & Gravina, R. (2015). A framework for collaborative computing and multi-sensor data fusion in body sensor networks. Inf. Fusion, 22, 50–70.CrossRef Giancarlo Fortino, W. L., Galzarano, S., & Gravina, R. (2015). A framework for collaborative computing and multi-sensor data fusion in body sensor networks. Inf. Fusion, 22, 50–70.CrossRef
15.
Zurück zum Zitat J. M. Tjensvold, (2007) “Comparison of the IEEE 802.11, 802.15.1, 802.15.4 and 802.15.6 wireless standards. J. M. Tjensvold, (2007) “Comparison of the IEEE 802.11, 802.15.1, 802.15.4 and 802.15.6 wireless standards.
16.
Zurück zum Zitat Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.CrossRef Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.CrossRef
17.
Zurück zum Zitat H. Alshaheen and H. T. Rizk, (2017) “Improving the energy efficiency for a WBSN based on a coordinate duty cycle and network coding,” in 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1215–1220. H. Alshaheen and H. T. Rizk, (2017) “Improving the energy efficiency for a WBSN based on a coordinate duty cycle and network coding,” in 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1215–1220.
18.
Zurück zum Zitat B. P. L. Lo, S. Thiemjarus, R. King, and G. Yang (2005) “Body Sensor Network - A Wireless Sensor Platform for Pervasive Healthcare Monitoring,” Adjun. Proc. 3rd Int. Conf. Pervasive Comput. (PERVASIVE’05, pp. 77–80. B. P. L. Lo, S. Thiemjarus, R. King, and G. Yang (2005) “Body Sensor Network - A Wireless Sensor Platform for Pervasive Healthcare Monitoring,” Adjun. Proc. 3rd Int. Conf. Pervasive Comput. (PERVASIVE’05, pp. 77–80.
19.
Zurück zum Zitat Jovanov, E., & Milenkovic, A. (2011). Body area networks for ubiquitous healthcare applications: Opportunities and challenges. Journal of Medical Systems, 35(5), 1245–1254.CrossRef Jovanov, E., & Milenkovic, A. (2011). Body area networks for ubiquitous healthcare applications: Opportunities and challenges. Journal of Medical Systems, 35(5), 1245–1254.CrossRef
20.
Zurück zum Zitat Adame, T., Bel, A., Carreras, A., Melia-Segui, J., Oliver, M., & Pous, R. (2018). CUIDATS: An RFID–WSN hybrid monitoring system for smart health care environments. Future Generation Computer Systems, 78, 602–615.CrossRef Adame, T., Bel, A., Carreras, A., Melia-Segui, J., Oliver, M., & Pous, R. (2018). CUIDATS: An RFID–WSN hybrid monitoring system for smart health care environments. Future Generation Computer Systems, 78, 602–615.CrossRef
21.
Zurück zum Zitat Janidarmian, M., Roshan Fekr, A., Radecka, K., & Zilic, Z. (2017). A comprehensive analysis on wearable acceleration sensors in human activity recognition. Sensors, 17(3), 529.CrossRef Janidarmian, M., Roshan Fekr, A., Radecka, K., & Zilic, Z. (2017). A comprehensive analysis on wearable acceleration sensors in human activity recognition. Sensors, 17(3), 529.CrossRef
22.
Zurück zum Zitat Devapriya, M., & Sudha, R. (2012). A survey on wireless body sensor networks for health care monitoring. International Journal of Science and Research ISSN, 3(9), 2319–7064. Devapriya, M., & Sudha, R. (2012). A survey on wireless body sensor networks for health care monitoring. International Journal of Science and Research ISSN, 3(9), 2319–7064.
23.
Zurück zum Zitat Ghamari, M., Janko, B., Sherratt, R. S., Harwin, W., Piechockic, R., & Soltanpur, C. (2016). A survey on wireless body area networks for ehealthcare systems in residential environments. Sensors (Switzerland), 16(6), 1–33.CrossRef Ghamari, M., Janko, B., Sherratt, R. S., Harwin, W., Piechockic, R., & Soltanpur, C. (2016). A survey on wireless body area networks for ehealthcare systems in residential environments. Sensors (Switzerland), 16(6), 1–33.CrossRef
24.
Zurück zum Zitat Boudargham, N., Abdo, J. B., Demerjian, J., Guyeux, C., & Makhoul, A. (2018). “Collaborative body sensor networks: Taxonomy and open challenges”, in. IEEE Middle East and North Africa Communications Conference (MENACOMM), 2018, 1–6. Boudargham, N., Abdo, J. B., Demerjian, J., Guyeux, C., & Makhoul, A. (2018). “Collaborative body sensor networks: Taxonomy and open challenges”, in. IEEE Middle East and North Africa Communications Conference (MENACOMM), 2018, 1–6.
25.
Zurück zum Zitat Otto, C., Milenković, A., Sanders, C., & Jovanov, E. (2006). System architecture of a wireless body area sensor network for ubiquitous health monitoring. Journal of Mobile Multimedia, 1(4), 307–326. Otto, C., Milenković, A., Sanders, C., & Jovanov, E. (2006). System architecture of a wireless body area sensor network for ubiquitous health monitoring. Journal of Mobile Multimedia, 1(4), 307–326.
26.
Zurück zum Zitat Milenković, A., Otto, C., & Jovanov, E. (2006). Wireless sensor networks for personal health monitoring: Issues and an implementation. Computer Communications, 29(13–14), 2521–2533.CrossRef Milenković, A., Otto, C., & Jovanov, E. (2006). Wireless sensor networks for personal health monitoring: Issues and an implementation. Computer Communications, 29(13–14), 2521–2533.CrossRef
27.
Zurück zum Zitat Zang, W., & Li, Y. (2018). Gait-cycle-driven transmission power control scheme for a wireless body area network. IEEE Journal of Biomedical and Health Informatics, 22(3), 697–706.CrossRef Zang, W., & Li, Y. (2018). Gait-cycle-driven transmission power control scheme for a wireless body area network. IEEE Journal of Biomedical and Health Informatics, 22(3), 697–706.CrossRef
28.
Zurück zum Zitat Bovi, G., Rabuffetti, M., Mazzoleni, P., & Ferrarin, M. (2011). A multiple-task gait analysis approach: Kinematic, kinetic and EMG reference data for healthy young and adult subjects. Gait & Posture, 33(1), 6–13.CrossRef Bovi, G., Rabuffetti, M., Mazzoleni, P., & Ferrarin, M. (2011). A multiple-task gait analysis approach: Kinematic, kinetic and EMG reference data for healthy young and adult subjects. Gait & Posture, 33(1), 6–13.CrossRef
29.
Zurück zum Zitat Khandelwal, S., & Wickström, N. (2017). Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database. Gait & Posture, 51, 84–90.CrossRef Khandelwal, S., & Wickström, N. (2017). Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database. Gait & Posture, 51, 84–90.CrossRef
30.
Zurück zum Zitat Martinez-Hernandez, U., & Dehghani-Sanij, A. A. (2018). Adaptive Bayesian inference system for recognition of walking activities and prediction of gait events using wearable sensors. Neural Networks, 102, 107–119.CrossRef Martinez-Hernandez, U., & Dehghani-Sanij, A. A. (2018). Adaptive Bayesian inference system for recognition of walking activities and prediction of gait events using wearable sensors. Neural Networks, 102, 107–119.CrossRef
31.
Zurück zum Zitat Park, S.-H., Cho, S., & Lee, J.-R. (2014). Energy-efficient probabilistic routing algorithm for internet of things. Journal of Applied Mathematics, 2014, 1–7. Park, S.-H., Cho, S., & Lee, J.-R. (2014). Energy-efficient probabilistic routing algorithm for internet of things. Journal of Applied Mathematics, 2014, 1–7.
32.
Zurück zum Zitat Hauer, J.-H. (2014). Leveraging human mobility for communication in body area networks. ACM Trans. Sens. Networks, 10(3), 1–38.CrossRef Hauer, J.-H. (2014). Leveraging human mobility for communication in body area networks. ACM Trans. Sens. Networks, 10(3), 1–38.CrossRef
33.
Zurück zum Zitat Dias, G. M., Adame, T., Bellalta, B., & Oechsner, S. (2016). “A self-managed architecture for sensor networks based on real time data analysis”, in. Future Technologies Conference (FTC), 2016, 1297–1299.CrossRef Dias, G. M., Adame, T., Bellalta, B., & Oechsner, S. (2016). “A self-managed architecture for sensor networks based on real time data analysis”, in. Future Technologies Conference (FTC), 2016, 1297–1299.CrossRef
34.
Zurück zum Zitat vidhyotma Gandhi; Jaiteg Singh. (2019). Optimization of WBSN deployment model for biophysical data recording and communication. Journal of Advance Research Dynamic Control System, 11(02), 1523–1532. vidhyotma Gandhi; Jaiteg Singh. (2019). Optimization of WBSN deployment model for biophysical data recording and communication. Journal of Advance Research Dynamic Control System, 11(02), 1523–1532.
Metadaten
Titel
Gait Adaptive Duty Cycle: Optimize the QoS of WBSN-HAR
verfasst von
Vidhyotma Gandhi
Jaiteg Singh
Publikationsdatum
10.11.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-09224-2

Weitere Artikel der Ausgabe 3/2022

Wireless Personal Communications 3/2022 Zur Ausgabe

Neuer Inhalt