Skip to main content
Erschienen in: Computational Mechanics 2/2020

03.11.2019 | Original Paper

GENERIC-based formulation and discretization of initial boundary value problems for finite strain thermoelasticity

verfasst von: Peter Betsch, Mark Schiebl

Erschienen in: Computational Mechanics | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new variational formulation for finite strain thermoelastodynamics is proposed. The variational formulation emanates from the GENERIC formalism and makes possible the free choice of the thermodynamic state variable. In particular, one may choose the absolute temperature, the internal energy density or the entropy density as state variable. To solve initial boundary value problems, the GENERIC formalism is extended to open systems. The discretization in time makes use of the standard mid-point rule. Depending on the choice of the thermodynamic state variable structure-preserving schemes are obtained. For example, choosing the internal energy as state variable yields a new energy–momentum consistent scheme. Thus the newly developed GENERIC-based weak form is particularly well suited for the design of structure-preserving methods. Numerical investigations are presented which confirm the theoretical findings and shed light on the numerical stability of the newly developed schemes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Öttinger HC (2005) Beyond equilibrium thermodynamics. Wiley, New YorkCrossRef Öttinger HC (2005) Beyond equilibrium thermodynamics. Wiley, New YorkCrossRef
2.
Zurück zum Zitat Hütter M, Tervoort TA (2008) Finite anisotropic elasticity and material frame indifference from a nonequilibrium thermodynamics perspective. J Non Newton Fluid Mech 152(1–3):45–52CrossRef Hütter M, Tervoort TA (2008) Finite anisotropic elasticity and material frame indifference from a nonequilibrium thermodynamics perspective. J Non Newton Fluid Mech 152(1–3):45–52CrossRef
3.
Zurück zum Zitat Hütter M, Svendsen B (2011) On the formulation of continuum thermodynamic models for solids as general equations for non-equilibrium reversible–irreversible coupling. J Elast 104(1–2):357–368MathSciNetCrossRef Hütter M, Svendsen B (2011) On the formulation of continuum thermodynamic models for solids as general equations for non-equilibrium reversible–irreversible coupling. J Elast 104(1–2):357–368MathSciNetCrossRef
4.
Zurück zum Zitat Hütter M, Svendsen B (2012) Thermodynamic model formulation for viscoplastic solids as general equations for non-equilibrium reversible–irreversible coupling. Contin Mech Thermodyn 24(3):211–227MathSciNetCrossRef Hütter M, Svendsen B (2012) Thermodynamic model formulation for viscoplastic solids as general equations for non-equilibrium reversible–irreversible coupling. Contin Mech Thermodyn 24(3):211–227MathSciNetCrossRef
5.
Zurück zum Zitat Mielke A (2011) Formulation of thermoelastic dissipative material behavior using GENERIC. Contin Mech Thermodyn 23(3):233–256MathSciNetCrossRef Mielke A (2011) Formulation of thermoelastic dissipative material behavior using GENERIC. Contin Mech Thermodyn 23(3):233–256MathSciNetCrossRef
6.
Zurück zum Zitat Romero I (2009) Thermodynamically consistent time-stepping algorithms for non-linear thermomechanical systems. Int J Numer Methods Eng 79(6):706–732MathSciNetCrossRef Romero I (2009) Thermodynamically consistent time-stepping algorithms for non-linear thermomechanical systems. Int J Numer Methods Eng 79(6):706–732MathSciNetCrossRef
7.
Zurück zum Zitat Romero I (2010) Algorithms for coupled problems that preserve symmetries and the laws of thermodynamics: part I: monolithic integrators and their application to finite strain thermoelasticity. Comput Methods Appl Mech Eng 199(25–28):1841–1858MathSciNetCrossRef Romero I (2010) Algorithms for coupled problems that preserve symmetries and the laws of thermodynamics: part I: monolithic integrators and their application to finite strain thermoelasticity. Comput Methods Appl Mech Eng 199(25–28):1841–1858MathSciNetCrossRef
8.
Zurück zum Zitat Betsch P (ed) (2016) Structure-preserving integrators in nonlinear structural dynamics and flexible multibody dynamics. Volume 565 of CISM courses and lectures. Springer, Berlin Betsch P (ed) (2016) Structure-preserving integrators in nonlinear structural dynamics and flexible multibody dynamics. Volume 565 of CISM courses and lectures. Springer, Berlin
9.
Zurück zum Zitat Romero I (2013) A characterization of conserved quantities in non-equilibrium thermodynamics. Entropy 15:5580–5596CrossRef Romero I (2013) A characterization of conserved quantities in non-equilibrium thermodynamics. Entropy 15:5580–5596CrossRef
10.
Zurück zum Zitat Krüger M, Groß M, Betsch P (2016) An energy–entropy-consistent time stepping scheme for nonlinear thermo-viscoelastic continua. ZAMM 96(2):141–178MathSciNetCrossRef Krüger M, Groß M, Betsch P (2016) An energy–entropy-consistent time stepping scheme for nonlinear thermo-viscoelastic continua. ZAMM 96(2):141–178MathSciNetCrossRef
11.
Zurück zum Zitat Groß M, Betsch P (2011) Galerkin-based energy–momentum consistent time-stepping algorithms for classical nonlinear thermo-elastodynamics. Math Comput Simul 82(4):718–770MathSciNetCrossRef Groß M, Betsch P (2011) Galerkin-based energy–momentum consistent time-stepping algorithms for classical nonlinear thermo-elastodynamics. Math Comput Simul 82(4):718–770MathSciNetCrossRef
12.
Zurück zum Zitat García Orden JC, Romero I (2012) Energy–Entropy–Momentum integration of discrete thermo-visco-elastic dynamics. Eur J Mech A Solids 32:76–87MathSciNetCrossRef García Orden JC, Romero I (2012) Energy–Entropy–Momentum integration of discrete thermo-visco-elastic dynamics. Eur J Mech A Solids 32:76–87MathSciNetCrossRef
13.
Zurück zum Zitat Groß M, Bartelt M, Betsch P (2018) Structure-preserving time integration of non-isothermal finite viscoelastic continua related to variational formulations of continuum dynamics. Comput Mech 62(2):123–150MathSciNetCrossRef Groß M, Bartelt M, Betsch P (2018) Structure-preserving time integration of non-isothermal finite viscoelastic continua related to variational formulations of continuum dynamics. Comput Mech 62(2):123–150MathSciNetCrossRef
15.
Zurück zum Zitat Conde Martín S, Betsch P, García Orden JC (2016) A temperature-based thermodynamically consistent integration scheme for discrete thermo-elastodynamics. Commun Nonlinear Sci Numer Simul 32:63–80CrossRef Conde Martín S, Betsch P, García Orden JC (2016) A temperature-based thermodynamically consistent integration scheme for discrete thermo-elastodynamics. Commun Nonlinear Sci Numer Simul 32:63–80CrossRef
16.
Zurück zum Zitat Conde Martín S, García Orden JC (2017) On energy–entropy–momentum integration methods for discrete thermo-visco-elastodynamics. Comput Struct 181:3–20CrossRef Conde Martín S, García Orden JC (2017) On energy–entropy–momentum integration methods for discrete thermo-visco-elastodynamics. Comput Struct 181:3–20CrossRef
17.
Zurück zum Zitat Portillo D, García Orden JC, Romero I (2017) Energy–entropy–momentum integration schemes for general discrete non-smooth dissipative problems in thermomechanics. Int J Numer Methods Eng 112(7):776–802MathSciNetCrossRef Portillo D, García Orden JC, Romero I (2017) Energy–entropy–momentum integration schemes for general discrete non-smooth dissipative problems in thermomechanics. Int J Numer Methods Eng 112(7):776–802MathSciNetCrossRef
18.
Zurück zum Zitat Beris AN, Edwards BJ (1994) Thermodynamics of flowing systems with internal microstructure. Oxford University Press, Oxford Beris AN, Edwards BJ (1994) Thermodynamics of flowing systems with internal microstructure. Oxford University Press, Oxford
19.
Zurück zum Zitat Gonzalez O, Stuart AM (2008) A first course in continuum mechanics. Cambridge University Press, CambridgeMATH Gonzalez O, Stuart AM (2008) A first course in continuum mechanics. Cambridge University Press, CambridgeMATH
20.
Zurück zum Zitat Marsden JE, Ratiu TS (1994) Introduction to mechanics and symmetry. Springer, BerlinCrossRef Marsden JE, Ratiu TS (1994) Introduction to mechanics and symmetry. Springer, BerlinCrossRef
21.
Zurück zum Zitat Edwards BJ (1998) An analysis of single and double generator thermodynamic formalisms for the macroscopic description of complex fluids. J Non Equilib Thermodyn 23(4):301–333MATH Edwards BJ (1998) An analysis of single and double generator thermodynamic formalisms for the macroscopic description of complex fluids. J Non Equilib Thermodyn 23(4):301–333MATH
24.
Zurück zum Zitat Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Prentice-Hall, Englewood CliffsMATH Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Prentice-Hall, Englewood CliffsMATH
25.
Zurück zum Zitat Miehe C (1995) Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical implementation. Comput Methods Appl Mech Eng 120:243–269MathSciNetCrossRef Miehe C (1995) Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical implementation. Comput Methods Appl Mech Eng 120:243–269MathSciNetCrossRef
26.
Zurück zum Zitat Balzani D, Gandhi A, Tanaka M, Schröder J (2015) Numerical calculation of thermo-mechanical problems at large strains based on complex step derivative approximation of tangent stiffness matrices. Comput Mech 55(5):861–871MathSciNetCrossRef Balzani D, Gandhi A, Tanaka M, Schröder J (2015) Numerical calculation of thermo-mechanical problems at large strains based on complex step derivative approximation of tangent stiffness matrices. Comput Mech 55(5):861–871MathSciNetCrossRef
27.
Zurück zum Zitat Netz T, Hartmann S (2015) A monolithic finite element approach using high-order schemes in time and space applied to finite strain thermo-viscoelasticity. Comput Math Appl 70(7):1457–1480MathSciNetCrossRef Netz T, Hartmann S (2015) A monolithic finite element approach using high-order schemes in time and space applied to finite strain thermo-viscoelasticity. Comput Math Appl 70(7):1457–1480MathSciNetCrossRef
28.
Zurück zum Zitat Holzapfel GA, Simo JC (1996) Entropy elasticity of isotropic rubber-like solids at finite strains. Comput Methods Appl Mech Eng 132(1–2):17–44MathSciNetCrossRef Holzapfel GA, Simo JC (1996) Entropy elasticity of isotropic rubber-like solids at finite strains. Comput Methods Appl Mech Eng 132(1–2):17–44MathSciNetCrossRef
29.
Zurück zum Zitat Hesch C, Betsch P (2011) Energy–momentum consistent algorithms for dynamic thermomechanical problems: application to mortar domain decomposition problems. Int J Numer Methods Eng 86(11):1277–1302MathSciNetCrossRef Hesch C, Betsch P (2011) Energy–momentum consistent algorithms for dynamic thermomechanical problems: application to mortar domain decomposition problems. Int J Numer Methods Eng 86(11):1277–1302MathSciNetCrossRef
30.
Zurück zum Zitat Hughes TJR (2000) The finite element method. Dover Publications, New YorkMATH Hughes TJR (2000) The finite element method. Dover Publications, New YorkMATH
32.
Zurück zum Zitat Betsch P, Schiebl M (2019) Energy–momentum–entropy consistent numerical methods for large strain thermoelasticity relying on the GENERIC formalism. Int J Numer Methods Eng 119(12):1216–1244MathSciNet Betsch P, Schiebl M (2019) Energy–momentum–entropy consistent numerical methods for large strain thermoelasticity relying on the GENERIC formalism. Int J Numer Methods Eng 119(12):1216–1244MathSciNet
33.
Zurück zum Zitat Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice-Hall, Englewood Cliffs Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice-Hall, Englewood Cliffs
Metadaten
Titel
GENERIC-based formulation and discretization of initial boundary value problems for finite strain thermoelasticity
verfasst von
Peter Betsch
Mark Schiebl
Publikationsdatum
03.11.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 2/2020
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-019-01781-5

Weitere Artikel der Ausgabe 2/2020

Computational Mechanics 2/2020 Zur Ausgabe

Neuer Inhalt