Skip to main content

2019 | OriginalPaper | Buchkapitel

50. Glasses and Glass-Ceramics for Solid-State Battery Applications

verfasst von : Virginie Viallet, Vincent Seznec, Akitoshi Hayashi, Masahiro Tatsumisago, Annie Pradel

Erschienen in: Springer Handbook of Glass

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter reviews investigations carried out in the last decades to synthesize and characterize ion conducting glasses and glass-ceramics and further use them as solid electrolytes in all-solid-state batteries.
First, the focus is put on materials, either \(\mathrm{Li^{+}}\), \(\mathrm{Na^{+}}\) or \(\mathrm{Ag^{+}}\) conducting ones, with the most striking points being the discovery of ion conducting chalcogenide glasses in the 1980s, the elaboration of fast ion conducting glass-ceramics with the introduction of mechanical alloying techniques in the 1990s, and more recently the renewed interest in \(\mathrm{Na^{+}}\) conducting glasses and glass-ceramics.
The second part of the chapter focuses on the development of all-solid-state batteries, Li-ion and Li\(/\)S batteries and to a lesser extent \(\mathrm{Na^{+}}\) and \(\mathrm{Ag^{+}}\)-ion batteries. It is shown that the performance of the batteries relies on the development of optimized composite electrodes comprising the electrolyte, an active material and a conductive additive. The review sheds light on the key parameters that have to be considered, including the choice of compositions of active material and conductive additive, coating of electrode by the electrolyte, coating of the electrolyte, ratio of the components, homogenization of the mixture and compaction of the powders.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
50.2
Zurück zum Zitat K. Takada, N. Aotani, K. Iwamoto, S. Kondo: Solid state lithium battery with oxysulfide glass, Solid State Ion 86–88, 877 (1996)CrossRef K. Takada, N. Aotani, K. Iwamoto, S. Kondo: Solid state lithium battery with oxysulfide glass, Solid State Ion 86–88, 877 (1996)CrossRef
50.3
Zurück zum Zitat R. Komiya, A. Hayashi, H. Morimoto, M. Tatsumisago, T. Minami: Solid state lithium secondary batteries using an amorphous solid electrolyte in the system (100-x)(0.6Li2S\(\cdot{}\)0.4SiS2) xLi4SiO4 obtained by mechanochemical synthesis, Solid State Ion. 140, 83 (2001)CrossRef R. Komiya, A. Hayashi, H. Morimoto, M. Tatsumisago, T. Minami: Solid state lithium secondary batteries using an amorphous solid electrolyte in the system (100-x)(0.6Li2S\(\cdot{}\)0.4SiS2) xLi4SiO4 obtained by mechanochemical synthesis, Solid State Ion. 140, 83 (2001)CrossRef
50.4
Zurück zum Zitat N. Machida, H. Maeda, H. Peng, T. Shigematsu: All-solid-state lithium battery with LiCo0.3Ni0.7O2 fine powder as cathode materials with an amorphous sulfide electrolyte, J. Electrochem. Soc. 149, A688 (2002)CrossRef N. Machida, H. Maeda, H. Peng, T. Shigematsu: All-solid-state lithium battery with LiCo0.3Ni0.7O2 fine powder as cathode materials with an amorphous sulfide electrolyte, J. Electrochem. Soc. 149, A688 (2002)CrossRef
50.5
Zurück zum Zitat J.-M. Tarascon, M. Armand: Issues and challenges facing rechargeable lithium batteries, Nature 414, 359–367 (2001)CrossRef J.-M. Tarascon, M. Armand: Issues and challenges facing rechargeable lithium batteries, Nature 414, 359–367 (2001)CrossRef
50.6
Zurück zum Zitat Y. Nishi: Lithium ion secondary batteries; past 10 years and the future, J. Power Sources 100, 101–106 (2001)CrossRef Y. Nishi: Lithium ion secondary batteries; past 10 years and the future, J. Power Sources 100, 101–106 (2001)CrossRef
50.7
Zurück zum Zitat M. Armand, J.-M. Tarascon: Building better batteries, Nature 451, 652–657 (2008)CrossRef M. Armand, J.-M. Tarascon: Building better batteries, Nature 451, 652–657 (2008)CrossRef
50.8
Zurück zum Zitat W. Li, J.R. Dahn, D.S. Wainwright: Rechargeable lithium batteries with aqueous electrolytes, Science 264, 1115–1118 (1994)CrossRef W. Li, J.R. Dahn, D.S. Wainwright: Rechargeable lithium batteries with aqueous electrolytes, Science 264, 1115–1118 (1994)CrossRef
50.9
Zurück zum Zitat T. Minami, M. Tatsumisago, M. Wakihara, C. Iwakura, S. Kohgiya, I. Tanaka (Eds.): Solid State Ionics for Batteries (Springer, Tokyo 2005) T. Minami, M. Tatsumisago, M. Wakihara, C. Iwakura, S. Kohgiya, I. Tanaka (Eds.): Solid State Ionics for Batteries (Springer, Tokyo 2005)
50.17
Zurück zum Zitat J. Cao, R. He, T. Kyu: Fire retardant, superionic solid state polymer electrolyte membranes for lithium ion batteries, Curr. Opin. Chem. Eng. 15, 68–75 (2017)CrossRef J. Cao, R. He, T. Kyu: Fire retardant, superionic solid state polymer electrolyte membranes for lithium ion batteries, Curr. Opin. Chem. Eng. 15, 68–75 (2017)CrossRef
50.18
Zurück zum Zitat J.G. Kim, B. Son, S. Mukherjee, N. Schuppert, A. Bates, O. Kwon, M.J. Choi, H.Y. Chung, S. Park: A review of lithium and non-lithium based solid state batteries, J. Power Sources 282, 299–322 (2015)CrossRef J.G. Kim, B. Son, S. Mukherjee, N. Schuppert, A. Bates, O. Kwon, M.J. Choi, H.Y. Chung, S. Park: A review of lithium and non-lithium based solid state batteries, J. Power Sources 282, 299–322 (2015)CrossRef
50.19
Zurück zum Zitat N.J. Dudney, W.C. West, J. Nanda (Eds.): Handbook of Solid State Batteries, 2nd edn. (World Scientific, Singapore 2015) p. 836 N.J. Dudney, W.C. West, J. Nanda (Eds.): Handbook of Solid State Batteries, 2nd edn. (World Scientific, Singapore 2015) p. 836
50.20
Zurück zum Zitat C. Julien, G.A. Nazri: Solid State Batteries: Materials Design and Optimization (Kluwer Academic, Boston 1994) p. 629CrossRef C. Julien, G.A. Nazri: Solid State Batteries: Materials Design and Optimization (Kluwer Academic, Boston 1994) p. 629CrossRef
50.21
Zurück zum Zitat K. Takada: Progress and prospective of solid-state lithium batteries, Acta Mater. 61, 759–770 (2013)CrossRef K. Takada: Progress and prospective of solid-state lithium batteries, Acta Mater. 61, 759–770 (2013)CrossRef
50.22
Zurück zum Zitat Y. Kato, K. Kawamoto, R. Kanno, M. Hirayama: Discharge performance of all-solid-state battery using a lithium superionic conductor Li10GeP2S12, Electrochemistry 80, 749–751 (2012)CrossRef Y. Kato, K. Kawamoto, R. Kanno, M. Hirayama: Discharge performance of all-solid-state battery using a lithium superionic conductor Li10GeP2S12, Electrochemistry 80, 749–751 (2012)CrossRef
50.23
Zurück zum Zitat J.W. Fergus: Ceramic and polymeric solid electrolytes for lithium-ion batteries, J. Power Sources 195, 4554–4569 (2010)CrossRef J.W. Fergus: Ceramic and polymeric solid electrolytes for lithium-ion batteries, J. Power Sources 195, 4554–4569 (2010)CrossRef
50.24
Zurück zum Zitat N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Matsui: A lithium superionic conductor, Nat. Mater. 10, 682–686 (2011)CrossRef N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Matsui: A lithium superionic conductor, Nat. Mater. 10, 682–686 (2011)CrossRef
50.25
Zurück zum Zitat Y. Yoon, C. Park, J. Kim, D. Shin: Lattice orientation control of lithium cobalt oxide cathode film for all-solid-state thin film batteries, J. Power Sources 226, 186–190 (2013)CrossRef Y. Yoon, C. Park, J. Kim, D. Shin: Lattice orientation control of lithium cobalt oxide cathode film for all-solid-state thin film batteries, J. Power Sources 226, 186–190 (2013)CrossRef
50.26
Zurück zum Zitat M. Thackery, C. Wolverton, E.D. Isaacs: Electrical energy storage for transportation---approaching the limits of, and going beyond, lithium-ion batteries, Energy Environ. Sci. 5, 7854–7863 (2012)CrossRef M. Thackery, C. Wolverton, E.D. Isaacs: Electrical energy storage for transportation---approaching the limits of, and going beyond, lithium-ion batteries, Energy Environ. Sci. 5, 7854–7863 (2012)CrossRef
50.27
Zurück zum Zitat N. Yabuuchi, T. Ohzuku: Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries, J. Power Sources 119–121, 171 (2003)CrossRef N. Yabuuchi, T. Ohzuku: Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries, J. Power Sources 119–121, 171 (2003)CrossRef
50.28
Zurück zum Zitat R.J. Gummow, A. de Kock, M.M. Thackeray: Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells, Solid State Ion. 69, 59 (1994)CrossRef R.J. Gummow, A. de Kock, M.M. Thackeray: Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells, Solid State Ion. 69, 59 (1994)CrossRef
50.29
Zurück zum Zitat A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc. 144, 1188–1194 (1997)CrossRef A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc. 144, 1188–1194 (1997)CrossRef
50.30
Zurück zum Zitat C. Liu, Z.G. Neale, G. Cao: Understanding electrochemical potentials of cathode materials in rechargeable batteries, Mater. Today 19, 109–123 (2016)CrossRef C. Liu, Z.G. Neale, G. Cao: Understanding electrochemical potentials of cathode materials in rechargeable batteries, Mater. Today 19, 109–123 (2016)CrossRef
50.31
Zurück zum Zitat J.B. Goodenough, K.-S. Park: The Li-ion rechargeable battery: A perspective, J. Am. Chem. Soc. 135(4), 1167–1176 (2013)CrossRef J.B. Goodenough, K.-S. Park: The Li-ion rechargeable battery: A perspective, J. Am. Chem. Soc. 135(4), 1167–1176 (2013)CrossRef
50.32
Zurück zum Zitat V. Thangadurai, W. Weppner: Recent progress in solid oxide and lithium ion conducting electrolytes research, Ionics 12, 81–92 (2006)CrossRef V. Thangadurai, W. Weppner: Recent progress in solid oxide and lithium ion conducting electrolytes research, Ionics 12, 81–92 (2006)CrossRef
50.33
Zurück zum Zitat R.C. Agrawal, G.P. Pandey: Solid polymer electrolytes: Materials designing and all-solid-state battery applications: An overview, J. Phys. D 41, 1–18 (2008)CrossRef R.C. Agrawal, G.P. Pandey: Solid polymer electrolytes: Materials designing and all-solid-state battery applications: An overview, J. Phys. D 41, 1–18 (2008)CrossRef
50.34
Zurück zum Zitat H. Park, T. Yoon, J. Mun, J.H. Ryu, J.J. Kim, S.M. Oh: A comparative study on thermal stability of two solid electrolyte interphase (SEI) films on graphite negative electrode, J. Electrochem. Soc. 160, A1539–A1543 (2013)CrossRef H. Park, T. Yoon, J. Mun, J.H. Ryu, J.J. Kim, S.M. Oh: A comparative study on thermal stability of two solid electrolyte interphase (SEI) films on graphite negative electrode, J. Electrochem. Soc. 160, A1539–A1543 (2013)CrossRef
50.35
Zurück zum Zitat R.A. Huggins: Simple method to determine electronic and ionic components of the conductivity in mixed conductors: A review, Ionics 8(3/4), 300–313 (2002)CrossRef R.A. Huggins: Simple method to determine electronic and ionic components of the conductivity in mixed conductors: A review, Ionics 8(3/4), 300–313 (2002)CrossRef
50.36
Zurück zum Zitat J.B. Wagner, C. Wagner: Electrical conductivity measurements on cuprous halides, J. Chem. Phys. 26, 1597–1601 (1957)CrossRef J.B. Wagner, C. Wagner: Electrical conductivity measurements on cuprous halides, J. Chem. Phys. 26, 1597–1601 (1957)CrossRef
50.37
Zurück zum Zitat I. Riess: Review of the limitation of the Hebb-Wagner polarization method for measuring partial conductivities in mixed ionic electronic conductors, Solid State Ion. 91(3/4), 221–232 (1996)CrossRef I. Riess: Review of the limitation of the Hebb-Wagner polarization method for measuring partial conductivities in mixed ionic electronic conductors, Solid State Ion. 91(3/4), 221–232 (1996)CrossRef
50.38
Zurück zum Zitat E. Robinel, A. Kone, M.J. Duclot, J.L. Souquet: Silver sulfide based glasses: (II). Electrochemical properties of GeS2-Ag2S-Agl glasses: Transference number measurement and redox stability range, J Non-Cryst. Solids 57(1), 59–70 (1983)CrossRef E. Robinel, A. Kone, M.J. Duclot, J.L. Souquet: Silver sulfide based glasses: (II). Electrochemical properties of GeS2-Ag2S-Agl glasses: Transference number measurement and redox stability range, J Non-Cryst. Solids 57(1), 59–70 (1983)CrossRef
50.40
Zurück zum Zitat D. Kunze: Fast Ion Transport in Solids. Solid State Batteries and Devices, ed. by W.V. Gool (North Holland, Amsterdam 1973) p. 495 D. Kunze: Fast Ion Transport in Solids. Solid State Batteries and Devices, ed. by W.V. Gool (North Holland, Amsterdam 1973) p. 495
50.41
Zurück zum Zitat B. Barrau, A. Kone, M. Ribes, J.L. Souquet, M. Maurin: La conductivité électrique des verres appartenant au système monosulfure de sodium disulfure de germanium, C.R. Hebd. Seances Acad. Sci. C 287, 43 (1978) B. Barrau, A. Kone, M. Ribes, J.L. Souquet, M. Maurin: La conductivité électrique des verres appartenant au système monosulfure de sodium disulfure de germanium, C.R. Hebd. Seances Acad. Sci. C 287, 43 (1978)
50.42
Zurück zum Zitat B. Barrau, J.M. Latour, D. Ravaine, M. Ribes: Synthèse et étude des propriétés électriques de nouveaux verres à conductivité ionique élevée, Proc. Conference on Science of Materials and Energy Problems (Brussels 1977), Silic. Ind. 12, 275 (1979) B. Barrau, J.M. Latour, D. Ravaine, M. Ribes: Synthèse et étude des propriétés électriques de nouveaux verres à conductivité ionique élevée, Proc. Conference on Science of Materials and Energy Problems (Brussels 1977), Silic. Ind. 12, 275 (1979)
50.43
Zurück zum Zitat M. Ribes, D. Ravaine, J.L. Souquet, M. Maurin: Synthese, structure et conduction ionique de nouveaux verres a base de sulfures, Rev. Chim. Minér. 16, 339 (1979) M. Ribes, D. Ravaine, J.L. Souquet, M. Maurin: Synthese, structure et conduction ionique de nouveaux verres a base de sulfures, Rev. Chim. Minér. 16, 339 (1979)
50.44
Zurück zum Zitat M. Ribes, B. Barrau, J.L. Souquet: Sulfide glasses: Glass forming region, structure and ionic conduction of glasses in Na2S-XS2 (X = Si; Ge), Na2S-P2S5 and Li2S-GeS2 systems, J. Non-Cryst. Solids 38/39, 271 (1980)CrossRef M. Ribes, B. Barrau, J.L. Souquet: Sulfide glasses: Glass forming region, structure and ionic conduction of glasses in Na2S-XS2 (X = Si; Ge), Na2S-P2S5 and Li2S-GeS2 systems, J. Non-Cryst. Solids 38/39, 271 (1980)CrossRef
50.45
Zurück zum Zitat J.-P. Malugani, B. Fahys, R. Mercier, G. Robert, J.P. Duchange, S. Baudry, M. Broussely, J.P. Gabano: De nouveaux verres conducteurs par l'ion lithium et leurs applications dans des générateurs electrochimiques, Solid State Ion. 9/10, 659–665 (1983)CrossRef J.-P. Malugani, B. Fahys, R. Mercier, G. Robert, J.P. Duchange, S. Baudry, M. Broussely, J.P. Gabano: De nouveaux verres conducteurs par l'ion lithium et leurs applications dans des générateurs electrochimiques, Solid State Ion. 9/10, 659–665 (1983)CrossRef
50.46
Zurück zum Zitat J. Akridge, H. Vourlis: Solid state batteries using vitreous solid electrolytes, Solid State Ion. 18/19, 1082–1087 (1986)CrossRef J. Akridge, H. Vourlis: Solid state batteries using vitreous solid electrolytes, Solid State Ion. 18/19, 1082–1087 (1986)CrossRef
50.47
Zurück zum Zitat J. Akridge, H. Vourlis: Performance of Li/TiS2 solid state batteries using phosphorous chalcogenide network former glasses as solid electrolyte, Solid State Ion. 28/30, 841–846 (1988)CrossRef J. Akridge, H. Vourlis: Performance of Li/TiS2 solid state batteries using phosphorous chalcogenide network former glasses as solid electrolyte, Solid State Ion. 28/30, 841–846 (1988)CrossRef
50.48
Zurück zum Zitat A. Levasseur, M. Menetrier, R. Dormoy, G. Meunier: Solid state microbatteries, Mater. Sci. Eng. B 3, 5–12 (1989)CrossRef A. Levasseur, M. Menetrier, R. Dormoy, G. Meunier: Solid state microbatteries, Mater. Sci. Eng. B 3, 5–12 (1989)CrossRef
50.49
Zurück zum Zitat M. Tatsumisago, A. Hayashi: Superionic glasses and glass–ceramics in the Li2S–P2S5 system for all-solid-state lithium secondary batteries, Solid State Ion. 225, 342–345 (2012)CrossRef M. Tatsumisago, A. Hayashi: Superionic glasses and glass–ceramics in the Li2S–P2S5 system for all-solid-state lithium secondary batteries, Solid State Ion. 225, 342–345 (2012)CrossRef
50.50
Zurück zum Zitat C.A. Angell: Dynamic processes in ionic glasses, Chem. Rev. 90, 523 (1990)CrossRef C.A. Angell: Dynamic processes in ionic glasses, Chem. Rev. 90, 523 (1990)CrossRef
50.51
Zurück zum Zitat M. Tatsumisago, Y. Shinkuma, T. Minami: Stabilization of superionic \(\alpha\)-Agl at room temperature in a glass matrix, Nature 354, 217–218 (1991)CrossRef M. Tatsumisago, Y. Shinkuma, T. Minami: Stabilization of superionic \(\alpha\)-Agl at room temperature in a glass matrix, Nature 354, 217–218 (1991)CrossRef
50.52
Zurück zum Zitat A. Hayashi, Y. Ishikawa, S. Hama, T. Minami, M. Tatsumisago: Fast lithium-ion conducting glass-ceramics in the system Li2S-SiS2-P2S5, Electrochem. Solid State Lett. 6, A47–A49 (2003)CrossRef A. Hayashi, Y. Ishikawa, S. Hama, T. Minami, M. Tatsumisago: Fast lithium-ion conducting glass-ceramics in the system Li2S-SiS2-P2S5, Electrochem. Solid State Lett. 6, A47–A49 (2003)CrossRef
50.53
Zurück zum Zitat M. Tatsumisago, M. Nagao, A. Hayashi: Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries, J. Asian Ceram. Soc. 1, 17–25 (2013)CrossRef M. Tatsumisago, M. Nagao, A. Hayashi: Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries, J. Asian Ceram. Soc. 1, 17–25 (2013)CrossRef
50.54
Zurück zum Zitat J. Fu: Superionic conductivity of glass-ceramics in the system Li2O-Al2O3-TiO2-P2O5, Solid State Ion. 96, 195–200 (1997)CrossRef J. Fu: Superionic conductivity of glass-ceramics in the system Li2O-Al2O3-TiO2-P2O5, Solid State Ion. 96, 195–200 (1997)CrossRef
50.55
Zurück zum Zitat J. Fu: Fast Li+ ion conducting glass-ceramics in the system Li2O-Al2O3-GeO2-P2O5, Solid State Ion. 104, 191–194 (1997)CrossRef J. Fu: Fast Li+ ion conducting glass-ceramics in the system Li2O-Al2O3-GeO2-P2O5, Solid State Ion. 104, 191–194 (1997)CrossRef
50.56
Zurück zum Zitat F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago: New, highly ion-conductive crystals precipitated from Li2S–P2S5 Glasses, Adv. Mater. 17, 918–921 (2005)CrossRef F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago: New, highly ion-conductive crystals precipitated from Li2S–P2S5 Glasses, Adv. Mater. 17, 918–921 (2005)CrossRef
50.57
Zurück zum Zitat A. Hayashi, K. Minami, M. Tatsumisago: High lithium ion conduction of sulfide glass-based solid electrolytes and their application to all-solid-state batteries, J. Non-Cryst. Solids 355(37–42), 1919 (2009)CrossRef A. Hayashi, K. Minami, M. Tatsumisago: High lithium ion conduction of sulfide glass-based solid electrolytes and their application to all-solid-state batteries, J. Non-Cryst. Solids 355(37–42), 1919 (2009)CrossRef
50.58
Zurück zum Zitat P.E. Doherty, D.W. Lee, R.S. Davis: Direct observation of the crystallization of Li2O-Al2O3-SiO2 glasses containing TiO2, J. Am. Ceram. Soc. 50, 77 (1967)CrossRef P.E. Doherty, D.W. Lee, R.S. Davis: Direct observation of the crystallization of Li2O-Al2O3-SiO2 glasses containing TiO2, J. Am. Ceram. Soc. 50, 77 (1967)CrossRef
50.59
Zurück zum Zitat Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno: High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy 1, 16030 (2016)CrossRef Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno: High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy 1, 16030 (2016)CrossRef
50.60
Zurück zum Zitat R. Mercier, J.-P. Malugani, B. Fahys, G. Robert: Superionic conduction in Li2S-P2S5-LiI-glasses, Solid State Ion. 5, 663–666 (1981)CrossRef R. Mercier, J.-P. Malugani, B. Fahys, G. Robert: Superionic conduction in Li2S-P2S5-LiI-glasses, Solid State Ion. 5, 663–666 (1981)CrossRef
50.61
Zurück zum Zitat S. Ujiie, A. Hayashi, M. Tatsumisago: Preparation and ionic conductivity of (100-x)(0.8Li2S\(\cdot{}\)0.2P2S5)\(\cdot{}\)xLiI glass–ceramic electrolytes, J. Solid State Electrochem. 17(3), 675 (2013)CrossRef S. Ujiie, A. Hayashi, M. Tatsumisago: Preparation and ionic conductivity of (100-x)(0.8Li2S\(\cdot{}\)0.2P2S5)\(\cdot{}\)xLiI glass–ceramic electrolytes, J. Solid State Electrochem. 17(3), 675 (2013)CrossRef
50.62
Zurück zum Zitat H. Wada, M. Menetrier, A. Levasseur, P. Hagenmuller: Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses, Mater. Res. Bull. 18(2), 189 (1983)CrossRef H. Wada, M. Menetrier, A. Levasseur, P. Hagenmuller: Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses, Mater. Res. Bull. 18(2), 189 (1983)CrossRef
50.63
Zurück zum Zitat M. Ménétrier, A. Levasseur, C. Delmas, J.F. Audebert, P. Hagenmüller: New secondary batteries for room temperature applications using a vitreous electrolyte, Solid State Ion. 14(3), 257 (1984)CrossRef M. Ménétrier, A. Levasseur, C. Delmas, J.F. Audebert, P. Hagenmüller: New secondary batteries for room temperature applications using a vitreous electrolyte, Solid State Ion. 14(3), 257 (1984)CrossRef
50.64
Zurück zum Zitat A. Pradel, M. Ribes: Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching, Solid State Ion. 18/19, 351 (1986)CrossRef A. Pradel, M. Ribes: Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching, Solid State Ion. 18/19, 351 (1986)CrossRef
50.65
Zurück zum Zitat J.H. Kennedy, Z. Zhang: Preparation and electrochemical properties of the SiS2-P2S5-Li2S glass coformer system, J. Electrochem. Soc. 135(8), C396 (1988) J.H. Kennedy, Z. Zhang: Preparation and electrochemical properties of the SiS2-P2S5-Li2S glass coformer system, J. Electrochem. Soc. 135(8), C396 (1988)
50.66
Zurück zum Zitat J.H. Kennedy, Y. Yang: Glass-forming region and structure in SiS2-Li2S-LiX (X = Br, I), J. Solid State Chem. 69(2), 252 (1987)CrossRef J.H. Kennedy, Y. Yang: Glass-forming region and structure in SiS2-Li2S-LiX (X = Br, I), J. Solid State Chem. 69(2), 252 (1987)CrossRef
50.67
Zurück zum Zitat Z.M. Zhang, J.H. Kennedy: Synthesis and characterization of the B2S3-Li2S, the P2S5-Li2S and the B2S3-P2S5-Li2S glass systems, Solid State Ion. 38(3/4), 217–224 (1990)CrossRef Z.M. Zhang, J.H. Kennedy: Synthesis and characterization of the B2S3-Li2S, the P2S5-Li2S and the B2S3-P2S5-Li2S glass systems, Solid State Ion. 38(3/4), 217–224 (1990)CrossRef
50.68
Zurück zum Zitat S. Kondo, K. Takada: New lithium ion conductors based on Li2S-SiS2 system, Solid State Ionics 53–56, 1183 (1992)CrossRef S. Kondo, K. Takada: New lithium ion conductors based on Li2S-SiS2 system, Solid State Ionics 53–56, 1183 (1992)CrossRef
50.69
Zurück zum Zitat N. Aotani, K. Iwamoto, K. Takada, S. Kondo: Synthesis and electrochemical properties of lithium ion conductive glass, Li3PO4-Li2S-SiS2, Solid State Ion. 68(1/2), 35 (1994)CrossRef N. Aotani, K. Iwamoto, K. Takada, S. Kondo: Synthesis and electrochemical properties of lithium ion conductive glass, Li3PO4-Li2S-SiS2, Solid State Ion. 68(1/2), 35 (1994)CrossRef
50.70
Zurück zum Zitat K. Hirai, M. Tatsumisago, T. Minami: Thermal and electrical properties of rapidly quenched glasses in the systems Li2S-SiS2-LixMOy (LixMOy= Li4SiO4, Li2SO4), Solid State Ion. 78(3/4), 269 (1995)CrossRef K. Hirai, M. Tatsumisago, T. Minami: Thermal and electrical properties of rapidly quenched glasses in the systems Li2S-SiS2-LixMOy (LixMOy= Li4SiO4, Li2SO4), Solid State Ion. 78(3/4), 269 (1995)CrossRef
50.71
Zurück zum Zitat M. Tatsumisago, K. Hirai, T. Minami, M. Takahashi: Preparation and characterisation of superionic Li2S-SiS2-Li4GeO4 glasses, Phys. Chem. Glasses 38(2), 63 (1997) M. Tatsumisago, K. Hirai, T. Minami, M. Takahashi: Preparation and characterisation of superionic Li2S-SiS2-Li4GeO4 glasses, Phys. Chem. Glasses 38(2), 63 (1997)
50.72
Zurück zum Zitat A. Hayashi, M. Tatsumisago, T. Minami: Electrochemical properties for the lithium ion conductive (100-x)(0.6Li2S\(\cdot{}\)0.4SiS2)\(\cdot{}\)xLi4SiO4 oxysulfide glasses, J. Electrochem. Soc. 146(9), 3472 (1999)CrossRef A. Hayashi, M. Tatsumisago, T. Minami: Electrochemical properties for the lithium ion conductive (100-x)(0.6Li2S\(\cdot{}\)0.4SiS2)\(\cdot{}\)xLi4SiO4 oxysulfide glasses, J. Electrochem. Soc. 146(9), 3472 (1999)CrossRef
50.73
Zurück zum Zitat M. Tatsumisago, N. Machida, T. Minami: Mixed anion effect in conductivity of rapidly quenched Li4SiO4-Li3BO3 glasses, J. Ceram. Soc. Jpn. 95, 197–201 (1987) M. Tatsumisago, N. Machida, T. Minami: Mixed anion effect in conductivity of rapidly quenched Li4SiO4-Li3BO3 glasses, J. Ceram. Soc. Jpn. 95, 197–201 (1987)
50.74
Zurück zum Zitat A. Yamauchi, A. Sakuda, A. Hayashi, M. Tatsumisago: Preparation and ionic conductivities of (100-x)(0.75Li2S\(\cdot{}\)0.25P2S5)\(\cdot{}\)xLiBH4 glass electrolytes, J. Power Sources 244, 707 (2013)CrossRef A. Yamauchi, A. Sakuda, A. Hayashi, M. Tatsumisago: Preparation and ionic conductivities of (100-x)(0.75Li2S\(\cdot{}\)0.25P2S5)\(\cdot{}\)xLiBH4 glass electrolytes, J. Power Sources 244, 707 (2013)CrossRef
50.75
Zurück zum Zitat H. Morimoto, H. Yamashita, M. Tatsumisago, T. Minami: Mechanochemical synthesis of new amorphous materials of 60Li2S\(\cdot{}\)40SiS2 with high lithium ion conductivity, J. Am. Ceram. Soc. 82(5), 1352 (1999)CrossRef H. Morimoto, H. Yamashita, M. Tatsumisago, T. Minami: Mechanochemical synthesis of new amorphous materials of 60Li2S\(\cdot{}\)40SiS2 with high lithium ion conductivity, J. Am. Ceram. Soc. 82(5), 1352 (1999)CrossRef
50.76
Zurück zum Zitat H. Morimoto, H. Yamashita, M. Tatsumisago, T. Minami: Mechanochemical synthesis of the high lithium ion conductive amorphous materials in the systems Li2S-SiS2 and Li2S-SiS2-Li4SiO4, J. Ceram. Soc. Jpn. 108(2), 128 (2000)CrossRef H. Morimoto, H. Yamashita, M. Tatsumisago, T. Minami: Mechanochemical synthesis of the high lithium ion conductive amorphous materials in the systems Li2S-SiS2 and Li2S-SiS2-Li4SiO4, J. Ceram. Soc. Jpn. 108(2), 128 (2000)CrossRef
50.77
Zurück zum Zitat M. Tatsumisago, H. Yamashita, A. Hayashi, H. Morimoto, T. Minami: Preparation and structure of amorphous solid electrolytes based on lithium sulfide, J. Non-Cryst. Solids 274(1–3), 30 (2000)CrossRef M. Tatsumisago, H. Yamashita, A. Hayashi, H. Morimoto, T. Minami: Preparation and structure of amorphous solid electrolytes based on lithium sulfide, J. Non-Cryst. Solids 274(1–3), 30 (2000)CrossRef
50.78
Zurück zum Zitat A. Hayashi, S. Hama, H. Morimoto, M. Tatsumisago, T. Minami: Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling, J. Am. Ceram. Soc. 84(2), 477 (2001)CrossRef A. Hayashi, S. Hama, H. Morimoto, M. Tatsumisago, T. Minami: Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling, J. Am. Ceram. Soc. 84(2), 477 (2001)CrossRef
50.79
Zurück zum Zitat J.E. Trevey, J.R. Gilsdorf, S.W. Miller, S.-H. Lee: Li2S–Li2O–P2S5 solid electrolyte for all-solid-state lithium batteries, Solid State Ion. 214, 25–30 (2012)CrossRef J.E. Trevey, J.R. Gilsdorf, S.W. Miller, S.-H. Lee: Li2S–Li2O–P2S5 solid electrolyte for all-solid-state lithium batteries, Solid State Ion. 214, 25–30 (2012)CrossRef
50.80
Zurück zum Zitat A. Hayashi, S. Hama, T. Minami, M. Tatsumisago: Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses, Electrochem. Commun. 5(2), 111 (2003)CrossRef A. Hayashi, S. Hama, T. Minami, M. Tatsumisago: Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses, Electrochem. Commun. 5(2), 111 (2003)CrossRef
50.81
Zurück zum Zitat M. Tatsumisago, S. Hama, A. Hayashi, H. Morimoto, T. Minami: New lithium ion conducting glass-ceramics prepared from mechanochemical Li2S–P2S5 glasses, Solid State Ion. 154/155, 635–640 (2002)CrossRef M. Tatsumisago, S. Hama, A. Hayashi, H. Morimoto, T. Minami: New lithium ion conducting glass-ceramics prepared from mechanochemical Li2S–P2S5 glasses, Solid State Ion. 154/155, 635–640 (2002)CrossRef
50.82
Zurück zum Zitat M. Tatsumisago: Glassy materials based on Li2S for all-solid-state lithium secondary batteries, Solid State Ion. 175, 13–18 (2004)CrossRef M. Tatsumisago: Glassy materials based on Li2S for all-solid-state lithium secondary batteries, Solid State Ion. 175, 13–18 (2004)CrossRef
50.83
Zurück zum Zitat A. Sakuda, A. Hayashi, M. Tatsumisago: Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery, Sci. Rep. 3(2261), 1–5 (2013) A. Sakuda, A. Hayashi, M. Tatsumisago: Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery, Sci. Rep. 3(2261), 1–5 (2013)
50.84
Zurück zum Zitat F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago: High lithium ion conducting glass-ceramics in the system Li2S–P2S5, Solid State Ion. 177(26–32), 2721 (2006)CrossRef F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago: High lithium ion conducting glass-ceramics in the system Li2S–P2S5, Solid State Ion. 177(26–32), 2721 (2006)CrossRef
50.85
Zurück zum Zitat H. Yamane, M. Shibata, Y. Shimane, T. Junke, Y. Seino, S. Adams, K. Minami, A. Hayashi, M. Tatsumisago: Crystal structure of a superionic conductor, Li7P3S11, Solid State Ion. 178(15–18), 1163 (2007)CrossRef H. Yamane, M. Shibata, Y. Shimane, T. Junke, Y. Seino, S. Adams, K. Minami, A. Hayashi, M. Tatsumisago: Crystal structure of a superionic conductor, Li7P3S11, Solid State Ion. 178(15–18), 1163 (2007)CrossRef
50.86
Zurück zum Zitat K. Minami, A. Hayashi, S. Ujiie, M. Tatsumisago: Structure and properties of Li2S–P2S5–P2S3 glass and glass–ceramic electrolytes, J. Power Sources 189(1), 651 (2009)CrossRef K. Minami, A. Hayashi, S. Ujiie, M. Tatsumisago: Structure and properties of Li2S–P2S5–P2S3 glass and glass–ceramic electrolytes, J. Power Sources 189(1), 651 (2009)CrossRef
50.87
Zurück zum Zitat K. Minami, F. Mizuno, A. Hayashi, M. Tatsumisago: Structure and properties of the 70Li2S\(\cdot{}\)(30–x)P2S5\(\cdot{}\)xP2O5 oxysulfide glasses and glass–ceramics, J. Non-Cryst. Solids 354(2–9), 370 (2008)CrossRef K. Minami, F. Mizuno, A. Hayashi, M. Tatsumisago: Structure and properties of the 70Li2S\(\cdot{}\)(30–x)P2S5\(\cdot{}\)xP2O5 oxysulfide glasses and glass–ceramics, J. Non-Cryst. Solids 354(2–9), 370 (2008)CrossRef
50.88
Zurück zum Zitat K. Minami, A. Hayashi, M. Tatsumisago: Preparation and characterization of superionic conducting Li7P3S11 crystal from glassy liquids, J. Ceram. Soc. Jpn 118, 305–308 (2010)CrossRef K. Minami, A. Hayashi, M. Tatsumisago: Preparation and characterization of superionic conducting Li7P3S11 crystal from glassy liquids, J. Ceram. Soc. Jpn 118, 305–308 (2010)CrossRef
50.89
Zurück zum Zitat H. Muramatsu, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago: Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere, Solid State Ion. 182, 116–119 (2011)CrossRef H. Muramatsu, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago: Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere, Solid State Ion. 182, 116–119 (2011)CrossRef
50.90
Zurück zum Zitat T. Ohtomo, A. Hayashi, M. Tatsumisago, K. Kawamoto: Characteristics of the Li2O–Li2S–P2S5 glasses synthesized by the two-step mechanical milling, J. Non-Cryst. Solids 364, 57–61 (2013)CrossRef T. Ohtomo, A. Hayashi, M. Tatsumisago, K. Kawamoto: Characteristics of the Li2O–Li2S–P2S5 glasses synthesized by the two-step mechanical milling, J. Non-Cryst. Solids 364, 57–61 (2013)CrossRef
50.91
Zurück zum Zitat A. Hayashi, H. Muramatsu, T. Ohtomo, S. Hama, M. Tatsumisago: Improved chemical stability and cyclability in Li2S–P2S5–P2O5–ZnO composite electrolytes for all-solid-state rechargeable lithium batteries, J. Alloys Compd. 591, 247–250 (2014)CrossRef A. Hayashi, H. Muramatsu, T. Ohtomo, S. Hama, M. Tatsumisago: Improved chemical stability and cyclability in Li2S–P2S5–P2O5–ZnO composite electrolytes for all-solid-state rechargeable lithium batteries, J. Alloys Compd. 591, 247–250 (2014)CrossRef
50.92
Zurück zum Zitat A. Hayashi, H. Muramatsu, T. Ohtomo, S. Hama: Improvement of chemical stability of Li3PS4glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles, J. Mater. Chem. A 1, 6320–6326 (2013)CrossRef A. Hayashi, H. Muramatsu, T. Ohtomo, S. Hama: Improvement of chemical stability of Li3PS4glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles, J. Mater. Chem. A 1, 6320–6326 (2013)CrossRef
50.94
Zurück zum Zitat W.F. Kuhs, R. Nitsche, K. Scheunemann: The argyrodites—A new family of tetrahedrally close-packed structures, Mater. Res. Bull. 14(2), 241 (1979)CrossRef W.F. Kuhs, R. Nitsche, K. Scheunemann: The argyrodites—A new family of tetrahedrally close-packed structures, Mater. Res. Bull. 14(2), 241 (1979)CrossRef
50.95
Zurück zum Zitat H.-J. Deiseroth, S.-T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiß, M. Schlosser: Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility, Angew. Chem. Int. Ed. 47(4), 755 (2008)CrossRef H.-J. Deiseroth, S.-T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiß, M. Schlosser: Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility, Angew. Chem. Int. Ed. 47(4), 755 (2008)CrossRef
50.96
Zurück zum Zitat R.P. Rao, N. Sharma, V.K. Peterson, S. Adams: Variation in structure and Li+-ion migration in argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes, J. Solid State Electrochem. 16, 1807–1813 (2012)CrossRef R.P. Rao, N. Sharma, V.K. Peterson, S. Adams: Variation in structure and Li+-ion migration in argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes, J. Solid State Electrochem. 16, 1807–1813 (2012)CrossRef
50.97
Zurück zum Zitat R.P. Rao, N. Sharma, V.K. Peterson, S. Adams: Formation and conductivity studies of lithium argyrodite solid electrolytes using in-situ neutron diffraction, Solid State Ion. 230, 72–76 (2013)CrossRef R.P. Rao, N. Sharma, V.K. Peterson, S. Adams: Formation and conductivity studies of lithium argyrodite solid electrolytes using in-situ neutron diffraction, Solid State Ion. 230, 72–76 (2013)CrossRef
50.98
Zurück zum Zitat S. Boulineau, M. Courty, J.-M. Tarascon, V. Viallet: Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application, Solid State Ion. 221, 1–5 (2012)CrossRef S. Boulineau, M. Courty, J.-M. Tarascon, V. Viallet: Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application, Solid State Ion. 221, 1–5 (2012)CrossRef
50.99
Zurück zum Zitat M.H. Braga, J.A. Ferreira, V. Stockhausen, J.E. Oliveira, A. El-Azab: Novel Li3ClO based glasses with superionic properties for lithium batteries, J. Mater. Chem. A 2, 5470–5480 (2014)CrossRef M.H. Braga, J.A. Ferreira, V. Stockhausen, J.E. Oliveira, A. El-Azab: Novel Li3ClO based glasses with superionic properties for lithium batteries, J. Mater. Chem. A 2, 5470–5480 (2014)CrossRef
50.100
Zurück zum Zitat M.H. Braga, A.J. Murchison, J.A. Ferreira, P. Singh, J.B. Goodenough: Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells, Energy Environ. Sci. 9, 948–954 (2016)CrossRef M.H. Braga, A.J. Murchison, J.A. Ferreira, P. Singh, J.B. Goodenough: Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells, Energy Environ. Sci. 9, 948–954 (2016)CrossRef
50.101
Zurück zum Zitat J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury, C.F. Luck: Electrical properties of amorphous lithium electrolyte thin films, Solid State Ion. 53–56, 647 (1992)CrossRef J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury, C.F. Luck: Electrical properties of amorphous lithium electrolyte thin films, Solid State Ion. 53–56, 647 (1992)CrossRef
50.102
Zurück zum Zitat X. Yu, J.B. Bates, G.E. Jellison, F.X. Hart: A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride, J. Electrochem. Soc. 144(2), 524 (1997)CrossRef X. Yu, J.B. Bates, G.E. Jellison, F.X. Hart: A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride, J. Electrochem. Soc. 144(2), 524 (1997)CrossRef
50.103
Zurück zum Zitat L.M. Goncalves, J.F. Ribeiro, M.F. Silva, M.M. Silva, J.H. Correia: Integrated solid-state film lithium battery, Procedia Eng. 5, 778–781 (2010)CrossRef L.M. Goncalves, J.F. Ribeiro, M.F. Silva, M.M. Silva, J.H. Correia: Integrated solid-state film lithium battery, Procedia Eng. 5, 778–781 (2010)CrossRef
50.104
Zurück zum Zitat H.K. Song, K.T. Lee, M.G. Kim, L.F. Nazar, J. Cho: Recent progress in nanostructured cathode materials for lithium secondary batteries, Adv. Funct. Mater. 20, 3818–3834 (2010)CrossRef H.K. Song, K.T. Lee, M.G. Kim, L.F. Nazar, J. Cho: Recent progress in nanostructured cathode materials for lithium secondary batteries, Adv. Funct. Mater. 20, 3818–3834 (2010)CrossRef
50.105
Zurück zum Zitat V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, K.B. Carretero-Gonzalez, J. Rojo: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems, Energy Environ. Sci. 5, 5884–5901 (2012)CrossRef V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, K.B. Carretero-Gonzalez, J. Rojo: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems, Energy Environ. Sci. 5, 5884–5901 (2012)CrossRef
50.106
Zurück zum Zitat B.L. Ellis, L.F. Nazar: Sodium and sodium-ion energy storage batteries, Curr. Opin. Solid State Mater. Sci. 16, 168–177 (2012)CrossRef B.L. Ellis, L.F. Nazar: Sodium and sodium-ion energy storage batteries, Curr. Opin. Solid State Mater. Sci. 16, 168–177 (2012)CrossRef
50.107
Zurück zum Zitat N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba: Research development on sodium-ion batteries, Chem. Rev. 114, 11636–11682 (2014)CrossRef N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba: Research development on sodium-ion batteries, Chem. Rev. 114, 11636–11682 (2014)CrossRef
50.108
Zurück zum Zitat D. Kundu, E. Talaie, V. Duffort, L.F. Nazar: The emerging chemistry of sodium ion batteries for electrochemical energy storage, Angew. Chem. Int. Ed. 54, 3431–3448 (2015)CrossRef D. Kundu, E. Talaie, V. Duffort, L.F. Nazar: The emerging chemistry of sodium ion batteries for electrochemical energy storage, Angew. Chem. Int. Ed. 54, 3431–3448 (2015)CrossRef
50.109
Zurück zum Zitat A. Manthiram, X. Yu: Ambient temperature sodium-sulfur batteries, Small 11, 2108–2114 (2015)CrossRef A. Manthiram, X. Yu: Ambient temperature sodium-sulfur batteries, Small 11, 2108–2114 (2015)CrossRef
50.110
Zurück zum Zitat J.T. Kummer: \(\upbeta\)-Alumina electrolytes, Prog. Solid State Chem. 7, 141–175 (1972)CrossRef J.T. Kummer: \(\upbeta\)-Alumina electrolytes, Prog. Solid State Chem. 7, 141–175 (1972)CrossRef
50.111
Zurück zum Zitat A. Hooper: A study of the electrical properties of single-crystal and polycrystalline \(\upbeta\)-alumina using complex plane analysis, J. Phys. D 10, 1487 (1977)CrossRef A. Hooper: A study of the electrical properties of single-crystal and polycrystalline \(\upbeta\)-alumina using complex plane analysis, J. Phys. D 10, 1487 (1977)CrossRef
50.112
Zurück zum Zitat U. Von Alpen, M.F. Bell, H.H. Höfer: Compositional dependence of the electrochemical and structural parameters in the nasicon system (Na1+xSixZr2P3-xO12), Solid State Ion. 3/4, 215–218 (1981)CrossRef U. Von Alpen, M.F. Bell, H.H. Höfer: Compositional dependence of the electrochemical and structural parameters in the nasicon system (Na1+xSixZr2P3-xO12), Solid State Ion. 3/4, 215–218 (1981)CrossRef
50.113
Zurück zum Zitat J.B. Goodenough, H.Y.P. Hong, J.A. Kafalas: Fast Na+-ion transport in skeleton structures, Mater. Res. Bull. 11, 203–220 (1976)CrossRef J.B. Goodenough, H.Y.P. Hong, J.A. Kafalas: Fast Na+-ion transport in skeleton structures, Mater. Res. Bull. 11, 203–220 (1976)CrossRef
50.114
Zurück zum Zitat A. Hayashi, K. Noi, A. Sakuda, M. Tatsumisago: Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries, Nat. Commun. 3(856), 1–5 (2012) A. Hayashi, K. Noi, A. Sakuda, M. Tatsumisago: Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries, Nat. Commun. 3(856), 1–5 (2012)
50.115
Zurück zum Zitat W. Yao, K. Berg, S. Martin: Structure and properties of glasses in the MI + M2S + (0.1Ga2S3 + 0.9GeS2), M = Li, Na, K and Cs, system, J. Non-Cryst. Solids 354(18), 2045 (2008)CrossRef W. Yao, K. Berg, S. Martin: Structure and properties of glasses in the MI + M2S + (0.1Ga2S3 + 0.9GeS2), M = Li, Na, K and Cs, system, J. Non-Cryst. Solids 354(18), 2045 (2008)CrossRef
50.116
Zurück zum Zitat H. Che, S. Chen, Y. Xie, H. Wang, K. Amine, X.-Z. Liao, Z.-F. Ma: Electrolyte design strategies and research progress for room-temperature sodium-ion batteries, Energy Environ. Sci. 10, 1075–1101 (2017)CrossRef H. Che, S. Chen, Y. Xie, H. Wang, K. Amine, X.-Z. Liao, Z.-F. Ma: Electrolyte design strategies and research progress for room-temperature sodium-ion batteries, Energy Environ. Sci. 10, 1075–1101 (2017)CrossRef
50.117
Zurück zum Zitat J.-J. Kim, K. Yoon, I. Park, K. Kang: Progress in the development of sodium-ion solid electrolytes, Small Methods 1(10), 1700219 (2017)CrossRef J.-J. Kim, K. Yoon, I. Park, K. Kang: Progress in the development of sodium-ion solid electrolytes, Small Methods 1(10), 1700219 (2017)CrossRef
50.118
Zurück zum Zitat S.S. Berbano, I. Seo, C.M. Bischoff, K.E. Schuller, S.W. Martin: Formation and structure of Na2S + P2S5 amorphous materials prepared by melt-quenching and mechanical milling, J. Non-Cryst. Solids 358, 93–98 (2012)CrossRef S.S. Berbano, I. Seo, C.M. Bischoff, K.E. Schuller, S.W. Martin: Formation and structure of Na2S + P2S5 amorphous materials prepared by melt-quenching and mechanical milling, J. Non-Cryst. Solids 358, 93–98 (2012)CrossRef
50.119
Zurück zum Zitat M. Jansen, U. Henseler: Synthesis, structure determination, and ionic conductivity of sodium tetrathiophosphate, J. Solid State Chem. 99(1), 110 (1992)CrossRef M. Jansen, U. Henseler: Synthesis, structure determination, and ionic conductivity of sodium tetrathiophosphate, J. Solid State Chem. 99(1), 110 (1992)CrossRef
50.120
Zurück zum Zitat K. Noi, A. Hayashi, M. Tatsumisago: Structure and properties of the Na2S–P2S5 glasses and glass–ceramics prepared by mechanical milling, J. Power Sources 269, 260–265 (2014)CrossRef K. Noi, A. Hayashi, M. Tatsumisago: Structure and properties of the Na2S–P2S5 glasses and glass–ceramics prepared by mechanical milling, J. Power Sources 269, 260–265 (2014)CrossRef
50.121
Zurück zum Zitat A. Hayashi, K. Noi, N. Tanibata, M. Nagao, M. Tatsumisago: High sodium ion conductivity of glass–ceramic electrolytes with cubic Na3PS4, J. Power Sources 258, 420–423 (2014)CrossRef A. Hayashi, K. Noi, N. Tanibata, M. Nagao, M. Tatsumisago: High sodium ion conductivity of glass–ceramic electrolytes with cubic Na3PS4, J. Power Sources 258, 420–423 (2014)CrossRef
50.122
Zurück zum Zitat S. Yubuchi, A. Hayashi, M. Tatsumisago: Sodium-ion conducting Na3PS4 electrolyte synthesized via a liquid-phase process using N-methylformamide, Chem. Lett. 44(7), 884–886 (2015)CrossRef S. Yubuchi, A. Hayashi, M. Tatsumisago: Sodium-ion conducting Na3PS4 electrolyte synthesized via a liquid-phase process using N-methylformamide, Chem. Lett. 44(7), 884–886 (2015)CrossRef
50.123
Zurück zum Zitat N. Tanibata, K. Noi, A. Hayashi, M. Tatsumisago: Preparation and characterization of highly sodium ion conducting Na3PS4–Na4SiS4 solid electrolytes, RSC Advances 4, 17120–17123 (2014)CrossRef N. Tanibata, K. Noi, A. Hayashi, M. Tatsumisago: Preparation and characterization of highly sodium ion conducting Na3PS4–Na4SiS4 solid electrolytes, RSC Advances 4, 17120–17123 (2014)CrossRef
50.124
Zurück zum Zitat L. Zhang, K. Yang, J. Mi, L. Lu, L. Zhao, L. Wang, Y. Li, H. Zeng: Na3PSe4: A novel chalcogenide solid electrolyte with high ionic conductivity, Adv. Energy Mater. 5, 1501294 (2015)CrossRef L. Zhang, K. Yang, J. Mi, L. Lu, L. Zhao, L. Wang, Y. Li, H. Zeng: Na3PSe4: A novel chalcogenide solid electrolyte with high ionic conductivity, Adv. Energy Mater. 5, 1501294 (2015)CrossRef
50.125
Zurück zum Zitat Y. Hibi, N. Tanibata, A. Hayashi, M. Tatsumisago: Preparation of sodium ion conducting Na3PS4–NaI glasses by a mechanochemical technique, Solid State Ion. 270, 6–9 (2015)CrossRef Y. Hibi, N. Tanibata, A. Hayashi, M. Tatsumisago: Preparation of sodium ion conducting Na3PS4–NaI glasses by a mechanochemical technique, Solid State Ion. 270, 6–9 (2015)CrossRef
50.126
Zurück zum Zitat Y. Onodera, H. Nakashima, K. Mori, T. Otomo, T. Fukunaga: Structure and conductivity of Na-P-S superionic conducting glasses studied by Neutron and x-ray diffraction, JPS Cinf. Proc. 8, 031031 (2015) Y. Onodera, H. Nakashima, K. Mori, T. Otomo, T. Fukunaga: Structure and conductivity of Na-P-S superionic conducting glasses studied by Neutron and x-ray diffraction, JPS Cinf. Proc. 8, 031031 (2015)
50.127
Zurück zum Zitat S.-L. Shang, Z. Yu, Y. Wang, D. Wang, Z.-K. Liu: Origin of outstanding phase and moisture stability in a Na3P1-xAsxS4 superionic conductor, Appl. Mater. Interfaces 9, 16261–16269 (2017)CrossRef S.-L. Shang, Z. Yu, Y. Wang, D. Wang, Z.-K. Liu: Origin of outstanding phase and moisture stability in a Na3P1-xAsxS4 superionic conductor, Appl. Mater. Interfaces 9, 16261–16269 (2017)CrossRef
50.128
Zurück zum Zitat Z. Yu, S.-L. Shang, J.-H. Seo, D. Wang, X. Luo, Q. Huang, S. Chen, J. Lu, X. Li, Z.-K. Liu, D. Wang: Exceptionally high ionic conductivity in Na3P0.62As0.38S4 with improved moisture stability for solid-state sodium-ion batteries, Adv. Mater. 29, 1605561 (2017)CrossRef Z. Yu, S.-L. Shang, J.-H. Seo, D. Wang, X. Luo, Q. Huang, S. Chen, J. Lu, X. Li, Z.-K. Liu, D. Wang: Exceptionally high ionic conductivity in Na3P0.62As0.38S4 with improved moisture stability for solid-state sodium-ion batteries, Adv. Mater. 29, 1605561 (2017)CrossRef
50.129
Zurück zum Zitat H. Wang, Y. Chen, Z.D. Hood, G. Sahu, A.S. Pandian, J.K. Keum, K. An, C. Liang: An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure, Angew. Chem. Int. Ed. 55, 8551–8555 (2016)CrossRef H. Wang, Y. Chen, Z.D. Hood, G. Sahu, A.S. Pandian, J.K. Keum, K. An, C. Liang: An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure, Angew. Chem. Int. Ed. 55, 8551–8555 (2016)CrossRef
50.130
Zurück zum Zitat A. Banerjee, K.H. Park, J.W. Heo, Y.J. Nam, C.K. Moon, S.M. Oh, S.T. Hong, Y.S. Jung: Na3SbS4: A solution processable sodium superionic conductor for all-solid-state sodium-ion batteries, Angew. Chem. 128, 9786 (2016)CrossRef A. Banerjee, K.H. Park, J.W. Heo, Y.J. Nam, C.K. Moon, S.M. Oh, S.T. Hong, Y.S. Jung: Na3SbS4: A solution processable sodium superionic conductor for all-solid-state sodium-ion batteries, Angew. Chem. 128, 9786 (2016)CrossRef
50.131
Zurück zum Zitat S.-H. Bo, Y. Wang, J.C. Kim, W.D. Richards, G. Ceder: Computational and experimental investigations of Na-ion conduction in cubic Na3PSe4, Chem. Mater. 28, 252–258 (2016)CrossRef S.-H. Bo, Y. Wang, J.C. Kim, W.D. Richards, G. Ceder: Computational and experimental investigations of Na-ion conduction in cubic Na3PSe4, Chem. Mater. 28, 252–258 (2016)CrossRef
50.132
Zurück zum Zitat Y. Wang, W.D. Richards, S.-H. Bo, L.J. Miara, G. Ceder: Computational prediction and evaluation of solid-state sodium superionic conductors Na7P3X11 (X=O, S, Se), Chem. Mater. 29, 7475–7482 (2017)CrossRef Y. Wang, W.D. Richards, S.-H. Bo, L.J. Miara, G. Ceder: Computational prediction and evaluation of solid-state sodium superionic conductors Na7P3X11 (X=O, S, Se), Chem. Mater. 29, 7475–7482 (2017)CrossRef
50.133
Zurück zum Zitat W.D. Richards, T. Tsujimura, L.J. Miara, Y. Wang, J.C. Kim, S.P. Ong, I. Uechi, N. Suzuki, G. Ceder: Design and synthesis of the superionic conductor Na10SnP2S12, Nat. Commun. 7, 11009 (2016)CrossRef W.D. Richards, T. Tsujimura, L.J. Miara, Y. Wang, J.C. Kim, S.P. Ong, I. Uechi, N. Suzuki, G. Ceder: Design and synthesis of the superionic conductor Na10SnP2S12, Nat. Commun. 7, 11009 (2016)CrossRef
50.134
Zurück zum Zitat C. Li, S. Jiang, J. Lv, T. Zheng: Ionic conductivities of Na–Ge–P glass ceramics as solid electrolyte, J. Alloys Compd. 633, 246–249 (2015)CrossRef C. Li, S. Jiang, J. Lv, T. Zheng: Ionic conductivities of Na–Ge–P glass ceramics as solid electrolyte, J. Alloys Compd. 633, 246–249 (2015)CrossRef
50.135
Zurück zum Zitat T. Honma, M. Okamoto, T. Togashi, N. Ito, K. Shinozaki, T. Komatsu: Electrical conductivity of Na2O–Nb2O5–P2O5 glass and fabrication of glass–ceramic composites with NASICON type Na3Zr2Si2PO12, Solid State Ion. 269, 19–23 (2015)CrossRef T. Honma, M. Okamoto, T. Togashi, N. Ito, K. Shinozaki, T. Komatsu: Electrical conductivity of Na2O–Nb2O5–P2O5 glass and fabrication of glass–ceramic composites with NASICON type Na3Zr2Si2PO12, Solid State Ion. 269, 19–23 (2015)CrossRef
50.136
Zurück zum Zitat Y. Ni, R. Zheng, X. Tan, W. Yue, P. Lv, J. Yang, D. Song, K. Yu, W. Wei: A fluorophosphate glass–ceramic electrolyte with superior ionic conductivity and stability for Na-ion batteries, J. Mater. Chem. A 3, 17558–17562 (2015)CrossRef Y. Ni, R. Zheng, X. Tan, W. Yue, P. Lv, J. Yang, D. Song, K. Yu, W. Wei: A fluorophosphate glass–ceramic electrolyte with superior ionic conductivity and stability for Na-ion batteries, J. Mater. Chem. A 3, 17558–17562 (2015)CrossRef
50.137
Zurück zum Zitat M.H. Braga, J.A. Ferreira, A.J. Murchison, J.B. Goodenough: Electric dipoles and ionic conductivity in a Na+ glass electrolyte, J. Electrochem. Soc. 164(2), A207–A213 (2017)CrossRef M.H. Braga, J.A. Ferreira, A.J. Murchison, J.B. Goodenough: Electric dipoles and ionic conductivity in a Na+ glass electrolyte, J. Electrochem. Soc. 164(2), A207–A213 (2017)CrossRef
50.138
Zurück zum Zitat M.H. Braga, J.A. Ferreira, A.J. Murchison: An electrochemical solid carbon-sulfur Na-ion based device and uses thereof, Patent WO2016157083A1 (2016) M.H. Braga, J.A. Ferreira, A.J. Murchison: An electrochemical solid carbon-sulfur Na-ion based device and uses thereof, Patent WO2016157083A1 (2016)
50.139
Zurück zum Zitat M. Venkateswarlu, N. Satyanarayana: AC conductivity studies of silver based fast ion conducting glassy materials for solid state batteries, Mater. Sci. Eng. B 54, 189–195 (1998)CrossRef M. Venkateswarlu, N. Satyanarayana: AC conductivity studies of silver based fast ion conducting glassy materials for solid state batteries, Mater. Sci. Eng. B 54, 189–195 (1998)CrossRef
50.140
Zurück zum Zitat S.S. Das, B.P. Baranwal, C.P. Gupta, P. Singh: Characteristics of solid-state batteries with zinc/cadmium halide-doped silver phosphate glasses as electrolytes, J. Power Sources 114, 346–351 (2003)CrossRef S.S. Das, B.P. Baranwal, C.P. Gupta, P. Singh: Characteristics of solid-state batteries with zinc/cadmium halide-doped silver phosphate glasses as electrolytes, J. Power Sources 114, 346–351 (2003)CrossRef
50.141
Zurück zum Zitat R.C. Agrawal, M.L. Verma, R.K. Gupta: Electrical and electrochemical properties of a new silver tungstate glass system: X[0.75AgI: 0.25AgCl]: (1-x)[Ag2O: WO3, Solid State Ion. 171(3/4), 199–205 (2004)CrossRef R.C. Agrawal, M.L. Verma, R.K. Gupta: Electrical and electrochemical properties of a new silver tungstate glass system: X[0.75AgI: 0.25AgCl]: (1-x)[Ag2O: WO3, Solid State Ion. 171(3/4), 199–205 (2004)CrossRef
50.142
Zurück zum Zitat E. Lefterova, S. Bliznakov, P. Angelov, S. Vassilev, Y. Dimitriev: New silver fast ion-conducting glassy materials in the AgI-Ag2So4TeO2 system for solid state batteries, Bulg. chem. Commun. 38(3), 197–201 (2006) E. Lefterova, S. Bliznakov, P. Angelov, S. Vassilev, Y. Dimitriev: New silver fast ion-conducting glassy materials in the AgI-Ag2So4TeO2 system for solid state batteries, Bulg. chem. Commun. 38(3), 197–201 (2006)
50.143
Zurück zum Zitat S. Bhattacharya, A. Ghosh: Relaxation of silver ions in superionic borate glasses, Chem. Phys. Lett. 424, 295 (2006)CrossRef S. Bhattacharya, A. Ghosh: Relaxation of silver ions in superionic borate glasses, Chem. Phys. Lett. 424, 295 (2006)CrossRef
50.144
Zurück zum Zitat S.S. Das, P.K. Srivastava, N.B. Singh: Fast ion conducting phosphate glasses and glass ceramic composites: Promising materials for solid state batteries, J. Non-Cryst. Solids 358, 2841–2846 (2012)CrossRef S.S. Das, P.K. Srivastava, N.B. Singh: Fast ion conducting phosphate glasses and glass ceramic composites: Promising materials for solid state batteries, J. Non-Cryst. Solids 358, 2841–2846 (2012)CrossRef
50.145
Zurück zum Zitat S.A. Suthanthiraraj, R. Sarumathi: A new silver ion conducting SbI3–Ag4P2O7 nanocomposite solid electrolyte, Appl. Nanosci. 3, 501–508 (2013)CrossRef S.A. Suthanthiraraj, R. Sarumathi: A new silver ion conducting SbI3–Ag4P2O7 nanocomposite solid electrolyte, Appl. Nanosci. 3, 501–508 (2013)CrossRef
50.146
Zurück zum Zitat G. Delaizir, N. Manafi, G. Jouan, P. Rozier, M. Dolle: All-solid-state silver batteries assembled by spark plasma sintering, Solid State Ion. 207, 57–63 (2012)CrossRef G. Delaizir, N. Manafi, G. Jouan, P. Rozier, M. Dolle: All-solid-state silver batteries assembled by spark plasma sintering, Solid State Ion. 207, 57–63 (2012)CrossRef
50.147
Zurück zum Zitat T. Takahashi, S. Ikeda, O. Yamamoto: Solid-state ionics: A new high ionic conductivity solid electrolyte Ag6I4WO4 and use of this compound in a solid-electrolyte cell, J. Electrochem. Soc. 120, 647–651 (1973)CrossRef T. Takahashi, S. Ikeda, O. Yamamoto: Solid-state ionics: A new high ionic conductivity solid electrolyte Ag6I4WO4 and use of this compound in a solid-electrolyte cell, J. Electrochem. Soc. 120, 647–651 (1973)CrossRef
50.148
Zurück zum Zitat E.M. Masoud, M. Khairy, M.A. Mousa: Electrical properties of fast ion conducting silver based borate glasses: Application in solid battery, J. Alloys Compd. 569, 150–155 (2013)CrossRef E.M. Masoud, M. Khairy, M.A. Mousa: Electrical properties of fast ion conducting silver based borate glasses: Application in solid battery, J. Alloys Compd. 569, 150–155 (2013)CrossRef
50.149
Zurück zum Zitat X. Ji, L.F. Nazar: Advances in Li–S batteries, J. Mater. Chem. 20, 9821–9826 (2010)CrossRef X. Ji, L.F. Nazar: Advances in Li–S batteries, J. Mater. Chem. 20, 9821–9826 (2010)CrossRef
50.150
Zurück zum Zitat D. Marmorstein, T.H. Yu, K.A. Striebel, F.R. McLarnon, J. Hou, E.J. Cairns: Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes, J. Power Sources 89, 219–226 (2000)CrossRef D. Marmorstein, T.H. Yu, K.A. Striebel, F.R. McLarnon, J. Hou, E.J. Cairns: Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes, J. Power Sources 89, 219–226 (2000)CrossRef
50.151
Zurück zum Zitat M. Ribes, B. Carette, M. Maurin: Verres conducteurs ioniques du système Li2S-GeS2-LiI. Leur utilisation dans des générateurs “tout solide” à anode de lithium, J. Phys. Colloq. C 9(43), 403–406 (1982) M. Ribes, B. Carette, M. Maurin: Verres conducteurs ioniques du système Li2S-GeS2-LiI. Leur utilisation dans des générateurs “tout solide” à anode de lithium, J. Phys. Colloq. C 9(43), 403–406 (1982)
50.152
Zurück zum Zitat B. Carette, M. Maurin, M. Ribes, M. Duclot: Ionic conductive sulfide-based M2S-GeS2-MI (M = Li, Ag) glass systems. Their use in solid state batteries, Solid State Ion. 9/10, 655 (1983)CrossRef B. Carette, M. Maurin, M. Ribes, M. Duclot: Ionic conductive sulfide-based M2S-GeS2-MI (M = Li, Ag) glass systems. Their use in solid state batteries, Solid State Ion. 9/10, 655 (1983)CrossRef
50.153
Zurück zum Zitat B. Knutz, S. Skaarup: Cycling of Li/Li3N/TiS2 solid state cells, Solid State Ion. 9/10, 371 (1983)CrossRef B. Knutz, S. Skaarup: Cycling of Li/Li3N/TiS2 solid state cells, Solid State Ion. 9/10, 371 (1983)CrossRef
50.154
Zurück zum Zitat T. Minami, A. Hayashi, M. Tatsumisago: Preparation and characterization of lithium ion-conducting oxysulfide glasses, Solid State Ion. 136/137, 1015 (2000)CrossRef T. Minami, A. Hayashi, M. Tatsumisago: Preparation and characterization of lithium ion-conducting oxysulfide glasses, Solid State Ion. 136/137, 1015 (2000)CrossRef
50.155
Zurück zum Zitat R. Komiya, A. Hayashi, H. Morimoto, M. Tatsumisago, T. Minami: Solid state lithium secondary batteries using an amorphous solid electrolyte in the system (100-x)(0.6Li2S\(\cdot{}\)0.4SiS2)\(\cdot{}\)xLi4SiO4 obtained by mechanochemical synthesis, Solid State Ion. 140(1/2), 83–87 (2001)CrossRef R. Komiya, A. Hayashi, H. Morimoto, M. Tatsumisago, T. Minami: Solid state lithium secondary batteries using an amorphous solid electrolyte in the system (100-x)(0.6Li2S\(\cdot{}\)0.4SiS2)\(\cdot{}\)xLi4SiO4 obtained by mechanochemical synthesis, Solid State Ion. 140(1/2), 83–87 (2001)CrossRef
50.156
Zurück zum Zitat F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago: Effects of conductive additives in composite positive electrodes on charge–discharge behaviors of all-solid-state lithium secondary batteries, J. Electrochem. Soc. 152(8), A1499 (2005)CrossRef F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago: Effects of conductive additives in composite positive electrodes on charge–discharge behaviors of all-solid-state lithium secondary batteries, J. Electrochem. Soc. 152(8), A1499 (2005)CrossRef
50.157
Zurück zum Zitat F. Mizuno, S. Hama, A. Hayashi, K. Tadanaga, T. Minami, M. Tatsumisago: All solid-state lithium secondary batteries using high lithium ion conducting Li2S–P2S5 glass-ceramics, Chem. Lett. 31(12), 1244 (2002)CrossRef F. Mizuno, S. Hama, A. Hayashi, K. Tadanaga, T. Minami, M. Tatsumisago: All solid-state lithium secondary batteries using high lithium ion conducting Li2S–P2S5 glass-ceramics, Chem. Lett. 31(12), 1244 (2002)CrossRef
50.158
Zurück zum Zitat H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago: All-solid-state lithium secondary batteries using LiMn2O4 electrode and Li2S–P2S5 solid electrolyte, J. Electrochem. Soc. 157(4), A407 (2010)CrossRef H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago: All-solid-state lithium secondary batteries using LiMn2O4 electrode and Li2S–P2S5 solid electrolyte, J. Electrochem. Soc. 157(4), A407 (2010)CrossRef
50.159
Zurück zum Zitat F. Mizuno, A. Hayashi, K. Tadanaga, T. Minami, M. Tatsumisago: All-solid-state lithium secondary batteries using a layer-structured LiNi0.5Mn0.5O2 cathode material, J. Power Sources 124(1), 170 (2003)CrossRef F. Mizuno, A. Hayashi, K. Tadanaga, T. Minami, M. Tatsumisago: All-solid-state lithium secondary batteries using a layer-structured LiNi0.5Mn0.5O2 cathode material, J. Power Sources 124(1), 170 (2003)CrossRef
50.160
Zurück zum Zitat H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago: Electrochemical performance of all-solid-state lithium secondary batteries with Li–Ni–Co–Mn oxide positive electrodes, Electrochim. Acta 55(28), 8821 (2010)CrossRef H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago: Electrochemical performance of all-solid-state lithium secondary batteries with Li–Ni–Co–Mn oxide positive electrodes, Electrochim. Acta 55(28), 8821 (2010)CrossRef
50.161
Zurück zum Zitat A. Hayashi, T. Konishi, K. Tadanaga, T. Minami, M. Tatsumisago: All-solid-state lithium secondary batteries with SnS–P2S5 negative electrodes and Li2S–P2S5 solid electrolytes, J. Power Sources 146(1/2), 496 (2005)CrossRef A. Hayashi, T. Konishi, K. Tadanaga, T. Minami, M. Tatsumisago: All-solid-state lithium secondary batteries with SnS–P2S5 negative electrodes and Li2S–P2S5 solid electrolytes, J. Power Sources 146(1/2), 496 (2005)CrossRef
50.162
Zurück zum Zitat H. Kitaura, K. Takahashi, F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago: Preparation of \(\upalpha\)-Fe2O3 electrode materials via solution process and their electrochemical properties in all-solid-state lithium batteries, J. Electrochem. Soc. 154(7), A725 (2007)CrossRef H. Kitaura, K. Takahashi, F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago: Preparation of \(\upalpha\)-Fe2O3 electrode materials via solution process and their electrochemical properties in all-solid-state lithium batteries, J. Electrochem. Soc. 154(7), A725 (2007)CrossRef
50.163
Zurück zum Zitat Y. Nishio, H. Kitaura, A. Hayashi, M. Tatsumisago: All-solid-state lithium secondary batteries using nanocomposites of NiS electrode/Li2S–P2S5 electrolyte prepared via mechanochemical reaction, J. Power Sources 189(1), 629 (2009)CrossRef Y. Nishio, H. Kitaura, A. Hayashi, M. Tatsumisago: All-solid-state lithium secondary batteries using nanocomposites of NiS electrode/Li2S–P2S5 electrolyte prepared via mechanochemical reaction, J. Power Sources 189(1), 629 (2009)CrossRef
50.164
Zurück zum Zitat M. Nagao, H. Kitaura, A. Hayashi, M. Tatsumisago: Characterization of all-solid-state lithium secondary batteries using CuxMo6S8-y electrode and Li2S–P2S5 solid electrolyte, J. Power Sources 189(1), 672 (2009)CrossRef M. Nagao, H. Kitaura, A. Hayashi, M. Tatsumisago: Characterization of all-solid-state lithium secondary batteries using CuxMo6S8-y electrode and Li2S–P2S5 solid electrolyte, J. Power Sources 189(1), 672 (2009)CrossRef
50.165
Zurück zum Zitat A. Hayashi, A. Inoue, M. Tatsumisago: Electrochemical performance of NiP2 negative electrodes in all-solid-state lithium secondary batteries, J. Power Sources 189(1), 669 (2009)CrossRef A. Hayashi, A. Inoue, M. Tatsumisago: Electrochemical performance of NiP2 negative electrodes in all-solid-state lithium secondary batteries, J. Power Sources 189(1), 669 (2009)CrossRef
50.166
Zurück zum Zitat M. Nagao, A. Hayashi, M. Tatsumisago: All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode, J. Power Sources 196(16), 6902 (2011)CrossRef M. Nagao, A. Hayashi, M. Tatsumisago: All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode, J. Power Sources 196(16), 6902 (2011)CrossRef
50.167
Zurück zum Zitat K. Aso, H. Kitaura, A. Hayashi, M. Tatsumisago: SnP0.94 active material synthesized in high-boiling solvents for all-solid-state lithium batteries, J. Ceram. Soc. Jpn 118(1379), 620 (2010)CrossRef K. Aso, H. Kitaura, A. Hayashi, M. Tatsumisago: SnP0.94 active material synthesized in high-boiling solvents for all-solid-state lithium batteries, J. Ceram. Soc. Jpn 118(1379), 620 (2010)CrossRef
50.168
Zurück zum Zitat T. Ohzuku, A. Ueda, N. Yamamoto: Zero-Strain Insertion Material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells, J. Electrochem. Soc. 142(5), 1431 (1995)CrossRef T. Ohzuku, A. Ueda, N. Yamamoto: Zero-Strain Insertion Material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells, J. Electrochem. Soc. 142(5), 1431 (1995)CrossRef
50.169
Zurück zum Zitat K. Minami, A. Hayashi, S. Ujiie, M. Tatsumisago: Electrical and electrochemical properties of glass–ceramic electrolytes in the systems Li2S–P2S5–P2S3 and Li2S–P2S5–P2O5, Solid State Ion. 192, 122–125 (2011)CrossRef K. Minami, A. Hayashi, S. Ujiie, M. Tatsumisago: Electrical and electrochemical properties of glass–ceramic electrolytes in the systems Li2S–P2S5–P2S3 and Li2S–P2S5–P2O5, Solid State Ion. 192, 122–125 (2011)CrossRef
50.170
Zurück zum Zitat M. Nagao, A. Hayashi, M. Tatsumisago: Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery, Electrochem. Commun. 22, 177–180 (2012)CrossRef M. Nagao, A. Hayashi, M. Tatsumisago: Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery, Electrochem. Commun. 22, 177–180 (2012)CrossRef
50.171
Zurück zum Zitat M. Nagao, A. Hayashi, M. Tatsumisago: Bulk-type lithium metal secondary battery with indium thin layer at interface between Li electrode and Li2S-P2S5 solid electrolyte, Electrochemistry 80, 734–736 (2012)CrossRef M. Nagao, A. Hayashi, M. Tatsumisago: Bulk-type lithium metal secondary battery with indium thin layer at interface between Li electrode and Li2S-P2S5 solid electrolyte, Electrochemistry 80, 734–736 (2012)CrossRef
50.172
Zurück zum Zitat N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada, T. Sasaki: Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification, Adv. Mater. 18(17), 2226 (2006)CrossRef N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada, T. Sasaki: Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification, Adv. Mater. 18(17), 2226 (2006)CrossRef
50.173
Zurück zum Zitat N. Ohta, K. Takada, I. Sakaguchi, L. Zhang, R. Ma, K. Fukuda, M. Osada, T. Sasaki: LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries, Electrochem. Commun. 9(7), 1486 (2007)CrossRef N. Ohta, K. Takada, I. Sakaguchi, L. Zhang, R. Ma, K. Fukuda, M. Osada, T. Sasaki: LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries, Electrochem. Commun. 9(7), 1486 (2007)CrossRef
50.174
Zurück zum Zitat H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago: Improvement of electrochemical performance of all-solid-state lithium secondary batteries by surface modification of LiMn2O4 positive electrode, Solid State Ion. 192(1), 304 (2011)CrossRef H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago: Improvement of electrochemical performance of all-solid-state lithium secondary batteries by surface modification of LiMn2O4 positive electrode, Solid State Ion. 192(1), 304 (2011)CrossRef
50.175
Zurück zum Zitat A. Sakuda, H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago: Improvement of high-rate performance of all-solid-state lithium secondary batteries using LiCoO2 coated with Li2O–SiO2 glasses, Electrochem. Solid State Lett. 11(1), A1 (2008)CrossRef A. Sakuda, H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago: Improvement of high-rate performance of all-solid-state lithium secondary batteries using LiCoO2 coated with Li2O–SiO2 glasses, Electrochem. Solid State Lett. 11(1), A1 (2008)CrossRef
50.176
Zurück zum Zitat A. Sakuda, H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago: Modification of interface between LiCoO2 electrode and Li2S–P2S5 solid electrolyte using Li2O–SiO2 glassy layers, J. Electrochem. Soc. 156(1), A27 (2009)CrossRef A. Sakuda, H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago: Modification of interface between LiCoO2 electrode and Li2S–P2S5 solid electrolyte using Li2O–SiO2 glassy layers, J. Electrochem. Soc. 156(1), A27 (2009)CrossRef
50.177
Zurück zum Zitat A. Sakuda, A. Hayashi, M. Tatsumisago: Interfacial Observation between LiCoO2 Electrode and Li2S–P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy, Chem. Mater. 22(3), 949 (2010)CrossRef A. Sakuda, A. Hayashi, M. Tatsumisago: Interfacial Observation between LiCoO2 Electrode and Li2S–P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy, Chem. Mater. 22(3), 949 (2010)CrossRef
50.178
Zurück zum Zitat A. Sakuda, H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago: All-solid-state lithium secondary batteries with oxide-coated LiCoO2 electrode and Li2S–P2S5 electrolyte, J. Power Sources 189(1), 527 (2009)CrossRef A. Sakuda, H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago: All-solid-state lithium secondary batteries with oxide-coated LiCoO2 electrode and Li2S–P2S5 electrolyte, J. Power Sources 189(1), 527 (2009)CrossRef
50.179
Zurück zum Zitat A. Sakuda, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago: LiCoO2 electrode particles coated with Li2S–P2S5 solid electrolyte for all-solid-state batteries, Electrochem. Solid State Lett. 13(6), A73 (2010)CrossRef A. Sakuda, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago: LiCoO2 electrode particles coated with Li2S–P2S5 solid electrolyte for all-solid-state batteries, Electrochem. Solid State Lett. 13(6), A73 (2010)CrossRef
50.180
Zurück zum Zitat A. Sakuda, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago: All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S–P2S5 solid electrolytes, J. Power Sources 196, 6735–6741 (2011)CrossRef A. Sakuda, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago: All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S–P2S5 solid electrolytes, J. Power Sources 196, 6735–6741 (2011)CrossRef
50.181
Zurück zum Zitat H. Kitaura, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago: Fabrication of electrode–electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes, J. Mater. Chem. 21(1), 118 (2011)CrossRef H. Kitaura, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago: Fabrication of electrode–electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes, J. Mater. Chem. 21(1), 118 (2011)CrossRef
50.182
Zurück zum Zitat F. Stadler, C. Fietzek: Crystalline halide substituted Li-argyrodites as solid electrolytes for lithium secondary batteries, ECS Transactions 25, 177 (2010)CrossRef F. Stadler, C. Fietzek: Crystalline halide substituted Li-argyrodites as solid electrolytes for lithium secondary batteries, ECS Transactions 25, 177 (2010)CrossRef
50.183
Zurück zum Zitat S. Boulineau: Synthèses et caractérisations de matériaux céramiques, vitreux et vitrocéramiques à base de soufre, utilisables comme électrolytes dans les batteries tout-solide, Ph.D. Thesis (University Picardie Jules Verne, Amiens France 2013), https://tel.archives-ouvertes.fr/tel-01356443 S. Boulineau: Synthèses et caractérisations de matériaux céramiques, vitreux et vitrocéramiques à base de soufre, utilisables comme électrolytes dans les batteries tout-solide, Ph.D. Thesis (University Picardie Jules Verne, Amiens France 2013), https://​tel.​archives-ouvertes.​fr/​tel-01356443
50.184
Zurück zum Zitat S. Boulineau, J.-M. Tarascon, J.-B. Leriche, V. Viallet: Electrochemical properties of all-solid-state lithium secondary batteries using Li-argyrodite Li6PS5Cl as solid electrolyte, Solid State Ion. 242, 45–48 (2013)CrossRef S. Boulineau, J.-M. Tarascon, J.-B. Leriche, V. Viallet: Electrochemical properties of all-solid-state lithium secondary batteries using Li-argyrodite Li6PS5Cl as solid electrolyte, Solid State Ion. 242, 45–48 (2013)CrossRef
50.185
Zurück zum Zitat N.J. Dudney: Solid-state thin-film rechargeable batteries, Mater. Sci. Eng. B 116, 245–249 (2005)CrossRef N.J. Dudney: Solid-state thin-film rechargeable batteries, Mater. Sci. Eng. B 116, 245–249 (2005)CrossRef
50.186
Zurück zum Zitat K. Kanehori, K. Matsumoto, K. Miyauchi, T. Kudo: Thin film solid electrolyte and its application to secondary lithium cell, Solid State Ion. 9, 1445–1448 (1983)CrossRef K. Kanehori, K. Matsumoto, K. Miyauchi, T. Kudo: Thin film solid electrolyte and its application to secondary lithium cell, Solid State Ion. 9, 1445–1448 (1983)CrossRef
50.187
Zurück zum Zitat R. Creus, J. Sarradin, R. Astier, A. Pradel, A.M. Ribes: The use of ionic and mixed conductive glasses in microbatteries, Mater. Sci. Eng. B 3(1/2), 109–112 (1989)CrossRef R. Creus, J. Sarradin, R. Astier, A. Pradel, A.M. Ribes: The use of ionic and mixed conductive glasses in microbatteries, Mater. Sci. Eng. B 3(1/2), 109–112 (1989)CrossRef
50.188
Zurück zum Zitat G. Meunier, R. Dormoy, A. Levasseur: New positive-electrode materials for lithium thin film secondary batteries, Mater. Sci. Eng. B 3(1/2), 19–23 (1989)CrossRef G. Meunier, R. Dormoy, A. Levasseur: New positive-electrode materials for lithium thin film secondary batteries, Mater. Sci. Eng. B 3(1/2), 19–23 (1989)CrossRef
50.189
Zurück zum Zitat J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury, C.F. Luck, J.D. Robertson: Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries, J. Power Sources 43/44, 103–110 (1993)CrossRef J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury, C.F. Luck, J.D. Robertson: Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries, J. Power Sources 43/44, 103–110 (1993)CrossRef
50.190
Zurück zum Zitat S.-J. Lee, H.-K. Baik, S.-M. Lee: An all-solid-state thin film battery using LISIPON electrolyte and Si–V negative electrode films, Electrochem. Commun. 5, 32–35 (2003)CrossRef S.-J. Lee, H.-K. Baik, S.-M. Lee: An all-solid-state thin film battery using LISIPON electrolyte and Si–V negative electrode films, Electrochem. Commun. 5, 32–35 (2003)CrossRef
50.191
Zurück zum Zitat V.P. Phan, B. Pecquenard, F.L. Cras: High-performance all-solid-state cells fabricated with silicon electrodes, Adv. Funct. Mater. 22(12), 2580–2584 (2012)CrossRef V.P. Phan, B. Pecquenard, F.L. Cras: High-performance all-solid-state cells fabricated with silicon electrodes, Adv. Funct. Mater. 22(12), 2580–2584 (2012)CrossRef
50.192
Zurück zum Zitat B. Fleutot, B. Pecquenard, F.L. Cras, B. Delis, H. Martinez, L. Dupont, A. Levasseur: Characterization of all-solid-state Li/LiPONB/TiOS microbatteries produced at the pilot scale, J. Power Sources 196, 10289–10296 (2011)CrossRef B. Fleutot, B. Pecquenard, F.L. Cras, B. Delis, H. Martinez, L. Dupont, A. Levasseur: Characterization of all-solid-state Li/LiPONB/TiOS microbatteries produced at the pilot scale, J. Power Sources 196, 10289–10296 (2011)CrossRef
50.193
Zurück zum Zitat B.J. Neudecker, R.A. Zuhr, J.B. Bates: Lithium silicon tin oxynitride (LiySiTON): high-performance anode in thin-film lithium-ion batteries for microelectronics, J. Power Sources 81, 27–32 (1999)CrossRef B.J. Neudecker, R.A. Zuhr, J.B. Bates: Lithium silicon tin oxynitride (LiySiTON): high-performance anode in thin-film lithium-ion batteries for microelectronics, J. Power Sources 81, 27–32 (1999)CrossRef
50.194
Zurück zum Zitat B. Wang, J.B. Bates, F.X. Hart, B.C. Sales, R.A. Zuhr, J.D. Robertson: Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes, J. Electrochem. Soc. 143(10), 3203–3213 (1996)CrossRef B. Wang, J.B. Bates, F.X. Hart, B.C. Sales, R.A. Zuhr, J.D. Robertson: Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes, J. Electrochem. Soc. 143(10), 3203–3213 (1996)CrossRef
50.195
Zurück zum Zitat J.B. Bates, D. Lubben, N.J. Dudney: Thin-film Li-LiMn2O4 batteries, IEEE Aerosp. Electron. Syst. Mag. 10(4), 30–32 (1995)CrossRef J.B. Bates, D. Lubben, N.J. Dudney: Thin-film Li-LiMn2O4 batteries, IEEE Aerosp. Electron. Syst. Mag. 10(4), 30–32 (1995)CrossRef
50.196
Zurück zum Zitat B. Fleutot, B. Pecquenard, H. Martinez, M. Letellier, A. Levasseur: Investigation of the local structure of LiPON thin films to better understand the role of nitrogen on their performance, Solid State Ion. 186, 29–36 (2011)CrossRef B. Fleutot, B. Pecquenard, H. Martinez, M. Letellier, A. Levasseur: Investigation of the local structure of LiPON thin films to better understand the role of nitrogen on their performance, Solid State Ion. 186, 29–36 (2011)CrossRef
50.197
Zurück zum Zitat B. Fleutot, B. Pecquenard, H. Martinez, A. Levasseur: Thorough study of the local structure of LiPON thin films to better understand the influence of a solder-reflow type thermal treatment on their performances, Solid State Ion. 206, 72–77 (2012)CrossRef B. Fleutot, B. Pecquenard, H. Martinez, A. Levasseur: Thorough study of the local structure of LiPON thin films to better understand the influence of a solder-reflow type thermal treatment on their performances, Solid State Ion. 206, 72–77 (2012)CrossRef
50.198
Zurück zum Zitat B. Fleutot, B. Pecquenard, H. Martinez, A. Levasseur: Lithium borophosphate thin film electrolyte as an alternative to LiPON for solder-reflow processed lithium-ion microbatteries, Solid State Ion. 249/250, 49–55 (2013)CrossRef B. Fleutot, B. Pecquenard, H. Martinez, A. Levasseur: Lithium borophosphate thin film electrolyte as an alternative to LiPON for solder-reflow processed lithium-ion microbatteries, Solid State Ion. 249/250, 49–55 (2013)CrossRef
50.199
Zurück zum Zitat P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon: Li-O2 and Li-S batteries with high energy storage, Nat. Mater. 11(1), 19 (2012)CrossRef P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon: Li-O2 and Li-S batteries with high energy storage, Nat. Mater. 11(1), 19 (2012)CrossRef
50.200
Zurück zum Zitat N. Machida, T. Shigematsu: An all-solid-state lithium battery with sulfur as positive electrode materials, Chem. Lett. 33(4), 376 (2004)CrossRef N. Machida, T. Shigematsu: An all-solid-state lithium battery with sulfur as positive electrode materials, Chem. Lett. 33(4), 376 (2004)CrossRef
50.201
Zurück zum Zitat A. Hayashi, T. Ohtomo, F. Mizuno, K. Tadanaga, M. Tatsumisago: All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes, Electrochem. Commun. 5(8), 701 (2003)CrossRef A. Hayashi, T. Ohtomo, F. Mizuno, K. Tadanaga, M. Tatsumisago: All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes, Electrochem. Commun. 5(8), 701 (2003)CrossRef
50.202
Zurück zum Zitat A. Hayashi, R. Ohtsubo, T. Ohtomo, F. Mizuno, M. Tatsumisago: All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material, J. Power Sources 183(1), 422 (2008)CrossRef A. Hayashi, R. Ohtsubo, T. Ohtomo, F. Mizuno, M. Tatsumisago: All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material, J. Power Sources 183(1), 422 (2008)CrossRef
50.203
Zurück zum Zitat M. Nagao, A. Hayashi, M. Tatsumisago: Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte, Electrochim. Acta 56(17), 6055 (2011)CrossRef M. Nagao, A. Hayashi, M. Tatsumisago: Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte, Electrochim. Acta 56(17), 6055 (2011)CrossRef
50.204
Zurück zum Zitat M. Nagao, Y. Imade, H. Narisawa, T. Kobayashi, R. Watanabe, T. Yokoi, T. Tatsumi, R. Kanno: All-solid-state lithium–sulfur batteries with three-dimensional mesoporous electrode structures, J. Power Sources 222, 237 (2013)CrossRef M. Nagao, Y. Imade, H. Narisawa, T. Kobayashi, R. Watanabe, T. Yokoi, T. Tatsumi, R. Kanno: All-solid-state lithium–sulfur batteries with three-dimensional mesoporous electrode structures, J. Power Sources 222, 237 (2013)CrossRef
50.205
Zurück zum Zitat T. Kobayashi, Y. Imade, D. Shishihara, K. Homma, M. Nagao, R. Watanabe, T. Yokoi, A. Yamada, R. Kanno, T. Tatsumi: All solid-state battery with sulfur electrode and thio-LISICON electrolyte, J. Power Sources 182(2), 621 (2008)CrossRef T. Kobayashi, Y. Imade, D. Shishihara, K. Homma, M. Nagao, R. Watanabe, T. Yokoi, A. Yamada, R. Kanno, T. Tatsumi: All solid-state battery with sulfur electrode and thio-LISICON electrolyte, J. Power Sources 182(2), 621 (2008)CrossRef
50.206
Zurück zum Zitat F. Lufrano, P. Staiti: Influence of the surface—chemistry of modified mesoporous carbon on the electrochemical behavior of solid-state supercapacitors, Energy Fuels 24, 3313–3320 (2010)CrossRef F. Lufrano, P. Staiti: Influence of the surface—chemistry of modified mesoporous carbon on the electrochemical behavior of solid-state supercapacitors, Energy Fuels 24, 3313–3320 (2010)CrossRef
50.207
Zurück zum Zitat H.B. Lin, W.Z. Huang, H.B. Rong, J.N. Hu, S.W. Mai, L.D. Xing, M.Q. Xu, X.P. Li, W.S. Li: Surface natures of conductive carbon materials and their contributions to charge/discharge performance of cathodes for lithium ion batteries, J. Power Sources 287, 276–282 (2015)CrossRef H.B. Lin, W.Z. Huang, H.B. Rong, J.N. Hu, S.W. Mai, L.D. Xing, M.Q. Xu, X.P. Li, W.S. Li: Surface natures of conductive carbon materials and their contributions to charge/discharge performance of cathodes for lithium ion batteries, J. Power Sources 287, 276–282 (2015)CrossRef
50.208
Zurück zum Zitat M. Chen, S. Adams: High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte, J. Solid State Electrochem. 19, 697–702 (2015)CrossRef M. Chen, S. Adams: High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte, J. Solid State Electrochem. 19, 697–702 (2015)CrossRef
50.209
Zurück zum Zitat N. Tanibata, T. Matsuyama, A. Hayashi, M. Tatsumisago: All-solid-state sodium batteries using amorphous TiS3 electrode with high capacity, J. Power Sources 275, 284–287 (2015)CrossRef N. Tanibata, T. Matsuyama, A. Hayashi, M. Tatsumisago: All-solid-state sodium batteries using amorphous TiS3 electrode with high capacity, J. Power Sources 275, 284–287 (2015)CrossRef
50.210
Zurück zum Zitat K. Takada, T. Kanbara, Y. Yamamura, S. Kondo: Rechargeable solid-state batteries with silver ion conductors, Solid State Ion. 40/41, 988–992 (1990)CrossRef K. Takada, T. Kanbara, Y. Yamamura, S. Kondo: Rechargeable solid-state batteries with silver ion conductors, Solid State Ion. 40/41, 988–992 (1990)CrossRef
Metadaten
Titel
Glasses and Glass-Ceramics for Solid-State Battery Applications
verfasst von
Virginie Viallet
Vincent Seznec
Akitoshi Hayashi
Masahiro Tatsumisago
Annie Pradel
Copyright-Jahr
2019
Verlag
Springer International Publishing
DOI
https://doi.org/10.1007/978-3-319-93728-1_50

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.