Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 5/2024

01.02.2024

Glycerol solvothermal synthesis of high-performance lithium-ion battery cathode materials with surface oxygen vacancies

verfasst von: Fagang Yu, Zhengguang Zou, Yiying Huang, Min Feng, Shuchao Zhang, Fangan Liang, Jinxia Nong, Min Chen, Shengkun Jia

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Utilizing the glycerol-assisted solvothermal method, we successfully synthesized a high-performance lithium-rich layered cathode material, Li1.2Mn0.54Ni0.13Co0.13O2, adjusting the concentration of transition metal ions. The samples prepared via the solvothermal method exhibit a more homogeneous microstructure, with those synthesized at optimal transition metal concentrations demonstrating lower cation mixing degrees and increased surface oxygen vacancies. In comparison to LMR, the LMR-D samples exhibit enhanced cycling performance, higher discharge capacity, and superior multiplicity performance. The discharge capacity of LMR-D reached 279.6 mA h g−1 at 1 C (250 mAhg−1). At 1 C (250 mAhg−1), the discharge capacity of LMR-D reached 279.6 mA h g−1, retaining 181.2 mA h g−1 after 500 cycles, demonstrating a capacitance retention of 66.32%. In contrast, the capacity of LMR was 101.5 mA after 500 cycles, with a retention rate of 39.05%. The enhanced sample capacity and multiplicity performance of LMR-D can be attributed to both structural ordering and the increased presence of surface oxygen vacancies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat G. Chen, J. An, Y. Meng, C. Yuan, B. Matthews, F. Dou, L. Shi, Y. Zhou, P. Song, G. Wu, Cation and anion co-doping synergy to improve structural stability of Li-and Mn-rich layered cathode materials for lithium-ion batteries. Nano Energy. 57, 157–165 (2019)CrossRef G. Chen, J. An, Y. Meng, C. Yuan, B. Matthews, F. Dou, L. Shi, Y. Zhou, P. Song, G. Wu, Cation and anion co-doping synergy to improve structural stability of Li-and Mn-rich layered cathode materials for lithium-ion batteries. Nano Energy. 57, 157–165 (2019)CrossRef
2.
Zurück zum Zitat M. Akhilash, P. Salini, B. John, T. Mercy, A journey through layered cathode materials for lithium ion cells–from lithium cobalt oxide to lithium-rich transition metal oxides. J. Alloys Compd. 869, 159239 (2021)CrossRef M. Akhilash, P. Salini, B. John, T. Mercy, A journey through layered cathode materials for lithium ion cells–from lithium cobalt oxide to lithium-rich transition metal oxides. J. Alloys Compd. 869, 159239 (2021)CrossRef
3.
Zurück zum Zitat Y. Zhao, M. Xia, X. Hu, Z. Zhao, Y. Wang, Z. Lv, Effects of Sn doping on the structural and electrochemical properties of Li1.2Ni0.2Mn0.8O2 Li-rich cathode materials. Electrochim. Acta. 174, 1167–1174 (2015)CrossRef Y. Zhao, M. Xia, X. Hu, Z. Zhao, Y. Wang, Z. Lv, Effects of Sn doping on the structural and electrochemical properties of Li1.2Ni0.2Mn0.8O2 Li-rich cathode materials. Electrochim. Acta. 174, 1167–1174 (2015)CrossRef
4.
Zurück zum Zitat S. Zhang, Z. Zou, Y. Gao, J. Geng, M. Chen, W. Ling, F. Liang, X. Peng, M. Zhou, F. Yu, Boosting zinc-ion storage in vanadium oxide via dual-engineering strategy. Nano Energy. 115, 108736 (2023)CrossRef S. Zhang, Z. Zou, Y. Gao, J. Geng, M. Chen, W. Ling, F. Liang, X. Peng, M. Zhou, F. Yu, Boosting zinc-ion storage in vanadium oxide via dual-engineering strategy. Nano Energy. 115, 108736 (2023)CrossRef
5.
Zurück zum Zitat P. Wu, Z. Zhang, F. Wang, J. Liao, W. Fan, C. Lin, X. Cai, Surface-modification of Doping and Coating Li1.2Ni0.2Co0.08Mn0.52O2 as a Long Life Cathode Material of Lithium-Ion Battery by Sodium Salt Treatment. J. Electrochem. Soc. 170, 080511 (2023)CrossRefADS P. Wu, Z. Zhang, F. Wang, J. Liao, W. Fan, C. Lin, X. Cai, Surface-modification of Doping and Coating Li1.2Ni0.2Co0.08Mn0.52O2 as a Long Life Cathode Material of Lithium-Ion Battery by Sodium Salt Treatment. J. Electrochem. Soc. 170, 080511 (2023)CrossRefADS
6.
Zurück zum Zitat Y. Sun, L. Zhang, S. Dong, J. Zeng, Y. Shen, X. Li, X. Ren, L. Ma, C. Hai, Y. Zhou, Improving the electrochemical performances of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 through cooperative doping of Na+ and Mg2+. Electrochim. Acta. 414, 140169 (2022)CrossRef Y. Sun, L. Zhang, S. Dong, J. Zeng, Y. Shen, X. Li, X. Ren, L. Ma, C. Hai, Y. Zhou, Improving the electrochemical performances of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 through cooperative doping of Na+ and Mg2+. Electrochim. Acta. 414, 140169 (2022)CrossRef
7.
Zurück zum Zitat P.K. Nayak, E.M. Erickson, F. Schipper, T.R. Penki, N. Munichandraiah, P. Adelhelm, H. Sclar, F. Amalraj, B. Markovsky, D. Aurbach, Review on challenges and recent advances in the electrochemical performance of high capacity Li-and Mn‐rich cathode materials for Li‐ion batteries. Adv. Energy Mater. 8, 1702397 (2018)CrossRef P.K. Nayak, E.M. Erickson, F. Schipper, T.R. Penki, N. Munichandraiah, P. Adelhelm, H. Sclar, F. Amalraj, B. Markovsky, D. Aurbach, Review on challenges and recent advances in the electrochemical performance of high capacity Li-and Mn‐rich cathode materials for Li‐ion batteries. Adv. Energy Mater. 8, 1702397 (2018)CrossRef
8.
Zurück zum Zitat Y. Li, Z. Li, C. Chen, K. Yang, B. Cao, S. Xu, N. Yang, W. Zhao, H. Chen, M. Zhang, Recent progress in Li and Mn rich layered oxide cathodes for Li-ion batteries. J. Energy Chem. 61, 368–385 (2021)CrossRef Y. Li, Z. Li, C. Chen, K. Yang, B. Cao, S. Xu, N. Yang, W. Zhao, H. Chen, M. Zhang, Recent progress in Li and Mn rich layered oxide cathodes for Li-ion batteries. J. Energy Chem. 61, 368–385 (2021)CrossRef
9.
Zurück zum Zitat K. Ku, B. Kim, S.-K. Jung, Y. Gong, D. Eum, G. Yoon, K.-Y. Park, J. Hong, S.-P. Cho, D.-H. Kim, A new lithium diffusion model in layered oxides based on asymmetric but reversible transition metal migration. Energy Environ. Sci. 13, 1269–1278 (2020)CrossRef K. Ku, B. Kim, S.-K. Jung, Y. Gong, D. Eum, G. Yoon, K.-Y. Park, J. Hong, S.-P. Cho, D.-H. Kim, A new lithium diffusion model in layered oxides based on asymmetric but reversible transition metal migration. Energy Environ. Sci. 13, 1269–1278 (2020)CrossRef
10.
Zurück zum Zitat Y. Zuo, H. Shang, J. Hao, J. Song, F. Ning, K. Zhang, L. He, D. Xia, Regulating the potential of Anion Redox to reduce the voltage hysteresis of Li-Rich Cathode materials. J. Am. Chem. Soc. 145, 5174–5182 (2023)PubMedCrossRef Y. Zuo, H. Shang, J. Hao, J. Song, F. Ning, K. Zhang, L. He, D. Xia, Regulating the potential of Anion Redox to reduce the voltage hysteresis of Li-Rich Cathode materials. J. Am. Chem. Soc. 145, 5174–5182 (2023)PubMedCrossRef
11.
Zurück zum Zitat W. Yuan, H. Zhang, Q. Liu, G. Li, X. Gao, Surface modification of Li (Li0.17Ni0.2Co0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries. Electrochim. Acta. 135, 199–207 (2014)CrossRef W. Yuan, H. Zhang, Q. Liu, G. Li, X. Gao, Surface modification of Li (Li0.17Ni0.2Co0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries. Electrochim. Acta. 135, 199–207 (2014)CrossRef
12.
Zurück zum Zitat Y. Liu, Y. Gao, Q. Wang, A. Dou, Influence of coated MnO2 content on the electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathodes. Ionics. 20, 825–831 (2014)CrossRef Y. Liu, Y. Gao, Q. Wang, A. Dou, Influence of coated MnO2 content on the electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathodes. Ionics. 20, 825–831 (2014)CrossRef
13.
Zurück zum Zitat S. Li, L. Yang, Z. Liu, C. Zhang, X. Shen, Y. Gao, Q. Kong, Z. Hu, C.-Y. Kuo, H.-J. Lin, Surface Al-doping for compromise between facilitating oxygen redox and enhancing structural stability of Li-rich layered oxide. Energy Storage Mater. 55, 356–363 (2023)CrossRef S. Li, L. Yang, Z. Liu, C. Zhang, X. Shen, Y. Gao, Q. Kong, Z. Hu, C.-Y. Kuo, H.-J. Lin, Surface Al-doping for compromise between facilitating oxygen redox and enhancing structural stability of Li-rich layered oxide. Energy Storage Mater. 55, 356–363 (2023)CrossRef
14.
Zurück zum Zitat S. Nana, H. Jingru, G. Yinhao, W. Chenyu, S. Wenhua, W. Liang, H. Zhiyi, L. Jing, L. Yu, S. Baolian, ZIF-8-derived three-dimensional silicon-carbon network composite for high-performance lithium-ion batteries. J. Inorg. Mater. 37, 1016 (2022)CrossRef S. Nana, H. Jingru, G. Yinhao, W. Chenyu, S. Wenhua, W. Liang, H. Zhiyi, L. Jing, L. Yu, S. Baolian, ZIF-8-derived three-dimensional silicon-carbon network composite for high-performance lithium-ion batteries. J. Inorg. Mater. 37, 1016 (2022)CrossRef
16.
Zurück zum Zitat Q. Zhao, M. Zhang, Z. Ye, Y. Li, L. Qiu, Z. Zheng, Y. Liu, B. Zhong, Y. Song, X. Guo, Addressing voltage hysteresis in Li-rich cathode materials via gas–solid interface modification. Nanoscale. 15, 3326–3336 (2023)PubMedCrossRef Q. Zhao, M. Zhang, Z. Ye, Y. Li, L. Qiu, Z. Zheng, Y. Liu, B. Zhong, Y. Song, X. Guo, Addressing voltage hysteresis in Li-rich cathode materials via gas–solid interface modification. Nanoscale. 15, 3326–3336 (2023)PubMedCrossRef
17.
Zurück zum Zitat S. Lee, W. Jin, S.H. Kim, S.H. Joo, G. Nam, P. Oh, Y.K. Kim, S.K. Kwak, J. Cho, Oxygen Vacancy Diffusion and Condensation in Lithium-Ion Battery Cathode materials. Angew. Chem. Int. Ed. 58, 10478–10485 (2019)CrossRef S. Lee, W. Jin, S.H. Kim, S.H. Joo, G. Nam, P. Oh, Y.K. Kim, S.K. Kwak, J. Cho, Oxygen Vacancy Diffusion and Condensation in Lithium-Ion Battery Cathode materials. Angew. Chem. Int. Ed. 58, 10478–10485 (2019)CrossRef
18.
Zurück zum Zitat Z. Huang, T. Xiong, X. Lin, M. Tian, W. Zeng, J. He, M. Shi, J. Li, G. Zhang, L. Mai, Carbon dioxide directly induced oxygen vacancy in the surface of lithium-rich layered oxides for high-energy lithium storage. J. Power Sources. 432, 8–15 (2019)CrossRefADS Z. Huang, T. Xiong, X. Lin, M. Tian, W. Zeng, J. He, M. Shi, J. Li, G. Zhang, L. Mai, Carbon dioxide directly induced oxygen vacancy in the surface of lithium-rich layered oxides for high-energy lithium storage. J. Power Sources. 432, 8–15 (2019)CrossRefADS
19.
Zurück zum Zitat E.M. Erickson, H. Sclar, F. Schipper, J. Liu, R. Tian, C. Ghanty, L. Burstein, N. Leifer, J. Grinblat, M. Talianker, High-temperature treatment of Li‐Rich Cathode materials with Ammonia: Improved Capacity and Mean Voltage Stability during Cycling. Adv. Energy Mater. 7, 1700708 (2017)CrossRef E.M. Erickson, H. Sclar, F. Schipper, J. Liu, R. Tian, C. Ghanty, L. Burstein, N. Leifer, J. Grinblat, M. Talianker, High-temperature treatment of Li‐Rich Cathode materials with Ammonia: Improved Capacity and Mean Voltage Stability during Cycling. Adv. Energy Mater. 7, 1700708 (2017)CrossRef
20.
Zurück zum Zitat H. Peng, S.-X. Zhao, C. Huang, L.-Q. Yu, Z.-Q. Fang, G.-D. Wei, In situ construction of spinel coating on the surface of a lithium-rich manganese-based single crystal for inhibiting voltage fade. ACS Appl. Mater. Interfaces. 12, 11579–11588 (2020)PubMedCrossRef H. Peng, S.-X. Zhao, C. Huang, L.-Q. Yu, Z.-Q. Fang, G.-D. Wei, In situ construction of spinel coating on the surface of a lithium-rich manganese-based single crystal for inhibiting voltage fade. ACS Appl. Mater. Interfaces. 12, 11579–11588 (2020)PubMedCrossRef
21.
Zurück zum Zitat B. Chen, B. Zhao, J. Zhou, Z. Fang, Y. Huang, X. Zhu, Y. Sun, Surface modification with oxygen vacancy in Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries. J. Mater. Sci. Technol. 35, 994–1002 (2019)CrossRefADS B. Chen, B. Zhao, J. Zhou, Z. Fang, Y. Huang, X. Zhu, Y. Sun, Surface modification with oxygen vacancy in Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries. J. Mater. Sci. Technol. 35, 994–1002 (2019)CrossRefADS
22.
Zurück zum Zitat D. Dai, B. Wang, B. Li, F. Li, X. Wang, H. Tang, Z. Chang, Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 derived from transition metal carbonate with a micro–nanostructure as a cathode material for high-performance Li-ion batteries. RSC Adv. 6, 96714–96720 (2016)CrossRefADS D. Dai, B. Wang, B. Li, F. Li, X. Wang, H. Tang, Z. Chang, Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 derived from transition metal carbonate with a micro–nanostructure as a cathode material for high-performance Li-ion batteries. RSC Adv. 6, 96714–96720 (2016)CrossRefADS
23.
Zurück zum Zitat Q. Li, G. Li, C. Fu, D. Luo, J. Fan, D. Xie, L. Li, Balancing stability and specific energy in Li-rich cathodes for lithium ion batteries: a case study of a novel Li–Mn–Ni–Co oxide. J. Mater. Chem. A 3, 10592–10602 (2015)CrossRef Q. Li, G. Li, C. Fu, D. Luo, J. Fan, D. Xie, L. Li, Balancing stability and specific energy in Li-rich cathodes for lithium ion batteries: a case study of a novel Li–Mn–Ni–Co oxide. J. Mater. Chem. A 3, 10592–10602 (2015)CrossRef
24.
Zurück zum Zitat J. Fang, H. An, F. Qin, H. Wang, C. Chen, X. Wang, Y. Li, B. Hong, J. Li, Simple glycerol-assisted and morphology-controllable solvothermal synthesis of lithium-ion battery-layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials. ACS Appl. Mater. Interfaces. 12, 55926–55935 (2020)PubMedCrossRef J. Fang, H. An, F. Qin, H. Wang, C. Chen, X. Wang, Y. Li, B. Hong, J. Li, Simple glycerol-assisted and morphology-controllable solvothermal synthesis of lithium-ion battery-layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials. ACS Appl. Mater. Interfaces. 12, 55926–55935 (2020)PubMedCrossRef
25.
Zurück zum Zitat F. Fu, Q. Wang, Y.-P. Deng, C.-H. Shen, X.-X. Peng, L. Huang, S.-G. Sun, Effect of synthetic routes on the rate performance of Li-rich layered Li1.2Mn0.56Ni0.12Co0.12O2. J. Mater. Chem. A 3, 5197–5203 (2015)CrossRef F. Fu, Q. Wang, Y.-P. Deng, C.-H. Shen, X.-X. Peng, L. Huang, S.-G. Sun, Effect of synthetic routes on the rate performance of Li-rich layered Li1.2Mn0.56Ni0.12Co0.12O2. J. Mater. Chem. A 3, 5197–5203 (2015)CrossRef
26.
Zurück zum Zitat W. Tong, Y. Huang, Y. Cai, Y. Guo, X. Wang, D. Jia, Z. Sun, W. Pang, Z. Guo, J. Zong, Synthesis of hierarchical mesoporous lithium nickel cobalt manganese oxide spheres with high rate capability for lithium-ion batteries. Appl. Surf. Sci. 428, 1036–1045 (2018)CrossRefADS W. Tong, Y. Huang, Y. Cai, Y. Guo, X. Wang, D. Jia, Z. Sun, W. Pang, Z. Guo, J. Zong, Synthesis of hierarchical mesoporous lithium nickel cobalt manganese oxide spheres with high rate capability for lithium-ion batteries. Appl. Surf. Sci. 428, 1036–1045 (2018)CrossRefADS
27.
Zurück zum Zitat Q. Ren, Y. Yuan, S. Wang, Interfacial strategies for suppression of mn dissolution in rechargeable battery cathode materials. ACS Appl. Mater. Interfaces. 14, 23022–23032 (2021)CrossRef Q. Ren, Y. Yuan, S. Wang, Interfacial strategies for suppression of mn dissolution in rechargeable battery cathode materials. ACS Appl. Mater. Interfaces. 14, 23022–23032 (2021)CrossRef
28.
Zurück zum Zitat A. Manthiram, J.C. Knight, S.T. Myung, S.M. Oh, Y.K. Sun, Nickel-rich and lithium‐rich layered oxide cathodes: progress and perspectives. Adv. Energy Mater. 6, 1501010 (2016)CrossRef A. Manthiram, J.C. Knight, S.T. Myung, S.M. Oh, Y.K. Sun, Nickel-rich and lithium‐rich layered oxide cathodes: progress and perspectives. Adv. Energy Mater. 6, 1501010 (2016)CrossRef
29.
Zurück zum Zitat F. Wu, Z. Wang, Y. Su, Y. Guan, Y. Jin, N. Yan, J. Tian, L. Bao, S. Chen, Synthesis and characterization of hollow spherical cathode Li1.2Mn0.54Ni0.13Co0.13O2 assembled with nanostructured particles via homogeneous precipitation-hydrothermal synthesis. J. Power Sources. 267, 337–346 (2014)CrossRefADS F. Wu, Z. Wang, Y. Su, Y. Guan, Y. Jin, N. Yan, J. Tian, L. Bao, S. Chen, Synthesis and characterization of hollow spherical cathode Li1.2Mn0.54Ni0.13Co0.13O2 assembled with nanostructured particles via homogeneous precipitation-hydrothermal synthesis. J. Power Sources. 267, 337–346 (2014)CrossRefADS
30.
Zurück zum Zitat J.-L. Shi, J.-N. Zhang, M. He, X.-D. Zhang, Y.-X. Yin, H. Li, Y.-G. Guo, L. Gu, L.-J. Wan, Mitigating voltage decay of Li-rich cathode material via increasing Ni content for lithium-ion batteries. ACS Appl. Mater. Interfaces. 8, 20138–20146 (2016)PubMedCrossRef J.-L. Shi, J.-N. Zhang, M. He, X.-D. Zhang, Y.-X. Yin, H. Li, Y.-G. Guo, L. Gu, L.-J. Wan, Mitigating voltage decay of Li-rich cathode material via increasing Ni content for lithium-ion batteries. ACS Appl. Mater. Interfaces. 8, 20138–20146 (2016)PubMedCrossRef
31.
Zurück zum Zitat G. Wang, L. Yi, R. Yu, X. Wang, Y. Wang, Z. Liu, B. Wu, M. Liu, X. Zhang, X. Yang, Li1.2Ni0.13Co0.13Mn0.54O2 with controllable morphology and size for high performance lithium-ion batteries. ACS Appl. Mater. Interfaces. 9, 25358–25368 (2017)PubMedCrossRef G. Wang, L. Yi, R. Yu, X. Wang, Y. Wang, Z. Liu, B. Wu, M. Liu, X. Zhang, X. Yang, Li1.2Ni0.13Co0.13Mn0.54O2 with controllable morphology and size for high performance lithium-ion batteries. ACS Appl. Mater. Interfaces. 9, 25358–25368 (2017)PubMedCrossRef
32.
Zurück zum Zitat J. Yang, Y. Xia, Suppressing the phase transition of the layered Ni-rich oxide cathode during high-voltage cycling by introducing low-content Li2MnO3. ACS Appl. Mater. Interfaces. 8, 1297–1308 (2016)PubMedCrossRef J. Yang, Y. Xia, Suppressing the phase transition of the layered Ni-rich oxide cathode during high-voltage cycling by introducing low-content Li2MnO3. ACS Appl. Mater. Interfaces. 8, 1297–1308 (2016)PubMedCrossRef
33.
Zurück zum Zitat J. Yang, Y. Chen, Y. Li, X. Xi, J. Zheng, Y. Zhu, Y. Xiong, S. Liu, Encouraging voltage stability upon long cycling of Li-rich Mn-based cathode materials by Ta–Mo dual doping. ACS Appl. Mater. Interfaces. 13, 25981–25992 (2021)PubMedCrossRef J. Yang, Y. Chen, Y. Li, X. Xi, J. Zheng, Y. Zhu, Y. Xiong, S. Liu, Encouraging voltage stability upon long cycling of Li-rich Mn-based cathode materials by Ta–Mo dual doping. ACS Appl. Mater. Interfaces. 13, 25981–25992 (2021)PubMedCrossRef
34.
Zurück zum Zitat L. Zhou, L. Qiao, X. Wu, H. Min, X. Liu, H. Yang, Synergetic effects of Na+-Mo6+ co-doping on layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode for high performance lithium-ion batteries. J. Alloys Compd. 957, 170423 (2023)CrossRef L. Zhou, L. Qiao, X. Wu, H. Min, X. Liu, H. Yang, Synergetic effects of Na+-Mo6+ co-doping on layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode for high performance lithium-ion batteries. J. Alloys Compd. 957, 170423 (2023)CrossRef
35.
Zurück zum Zitat H. Li, Y. Ren, P. Yang, Z. Jian, W. Wang, Y. Xing, S. Zhang, Morphology and size controlled synthesis of the hierarchical structured Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials for lithium ion batteries. Electrochim. Acta. 297, 406–416 (2019)CrossRef H. Li, Y. Ren, P. Yang, Z. Jian, W. Wang, Y. Xing, S. Zhang, Morphology and size controlled synthesis of the hierarchical structured Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials for lithium ion batteries. Electrochim. Acta. 297, 406–416 (2019)CrossRef
36.
Zurück zum Zitat J. Li, M. Li, L. Zhang, J. Wang, General synthesis of x Li2MnO3·(1– x) LiNi1/3Co1/3Mn1/3O2 (x = 1/4, 1/3, and 1/2) hollow microspheres towards enhancing the performance of rechargeable lithium ion batteries. J. Mater. Chem. A 4, 12442–12450 (2016)CrossRef J. Li, M. Li, L. Zhang, J. Wang, General synthesis of x Li2MnO3·(1– x) LiNi1/3Co1/3Mn1/3O2 (x = 1/4, 1/3, and 1/2) hollow microspheres towards enhancing the performance of rechargeable lithium ion batteries. J. Mater. Chem. A 4, 12442–12450 (2016)CrossRef
37.
Zurück zum Zitat W. He, P. Liu, Y. Zhang, J. Lin, B. Qu, Z. Zheng, J. Wang, Y. Zhang, B. Sa, L. Wang, Utilizing the different distribution habit of La and Zr in Li-rich Mn-based cathode to achieve fast lithium-ion diffusion kinetics. J. Power Sources. 499, 229915 (2021)CrossRef W. He, P. Liu, Y. Zhang, J. Lin, B. Qu, Z. Zheng, J. Wang, Y. Zhang, B. Sa, L. Wang, Utilizing the different distribution habit of La and Zr in Li-rich Mn-based cathode to achieve fast lithium-ion diffusion kinetics. J. Power Sources. 499, 229915 (2021)CrossRef
38.
Zurück zum Zitat F. Wu, H. Wang, Y. Bai, Y. Li, C. Wu, G. Chen, L. Liu, Q. Ni, X. Wang, J. Zhou, Hierarchical microspheres and nanoscale particles: effects of morphology on electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion batteries. Solid State Ionics. 300, 149–156 (2017)CrossRef F. Wu, H. Wang, Y. Bai, Y. Li, C. Wu, G. Chen, L. Liu, Q. Ni, X. Wang, J. Zhou, Hierarchical microspheres and nanoscale particles: effects of morphology on electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion batteries. Solid State Ionics. 300, 149–156 (2017)CrossRef
39.
Zurück zum Zitat Z. Li, S. Cao, C. Wu, H. Li, J. Chen, W. Guo, B. Chang, Y. Shen, Y. Bai, X. Wang, A facile and high-effective oxygen defect engineering for improving electrochemical performance of lithium-rich manganese-based cathode materials. J. Power Sources. 536, 231456 (2022)CrossRef Z. Li, S. Cao, C. Wu, H. Li, J. Chen, W. Guo, B. Chang, Y. Shen, Y. Bai, X. Wang, A facile and high-effective oxygen defect engineering for improving electrochemical performance of lithium-rich manganese-based cathode materials. J. Power Sources. 536, 231456 (2022)CrossRef
40.
Zurück zum Zitat Q. Chen, Y. Pei, H. Chen, Y. Song, L. Zhen, C.-Y. Xu, P. Xiao, G. Henkelman, Highly reversible oxygen redox in layered compounds enabled by surface polyanions. Nat. Commun. 11, 3411 (2020)PubMedPubMedCentralCrossRefADS Q. Chen, Y. Pei, H. Chen, Y. Song, L. Zhen, C.-Y. Xu, P. Xiao, G. Henkelman, Highly reversible oxygen redox in layered compounds enabled by surface polyanions. Nat. Commun. 11, 3411 (2020)PubMedPubMedCentralCrossRefADS
41.
Zurück zum Zitat J. Zheng, P. Xu, M. Gu, J. Xiao, N.D. Browning, P. Yan, C. Wang, J.-G. Zhang, Structural and chemical evolution of Li- and Mn-Rich layered Cathode Material. Chem. Mater. 27, 1381–1390 (2015)CrossRef J. Zheng, P. Xu, M. Gu, J. Xiao, N.D. Browning, P. Yan, C. Wang, J.-G. Zhang, Structural and chemical evolution of Li- and Mn-Rich layered Cathode Material. Chem. Mater. 27, 1381–1390 (2015)CrossRef
42.
Zurück zum Zitat Y. Chen, K. Xie, C. Zheng, Z. Ma, Z. Chen, Enhanced Li storage performance of LiNi0.5Mn1.5O4–coated 0.4 Li2MnO3·0.6 LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. ACS Appl. Mater. Interfaces. 6, 16888–16894 (2014)PubMedCrossRef Y. Chen, K. Xie, C. Zheng, Z. Ma, Z. Chen, Enhanced Li storage performance of LiNi0.5Mn1.5O4–coated 0.4 Li2MnO3·0.6 LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. ACS Appl. Mater. Interfaces. 6, 16888–16894 (2014)PubMedCrossRef
43.
Zurück zum Zitat K. Zhang, F. Qin, J. Fang, Q. Li, M. Jia, Y. Lai, Z. Zhang, J. Li, Nickel foam as interlayer to improve the performance of lithium–sulfur battery. J. Solid State Electrochem. 18, 1025–1029 (2014)CrossRef K. Zhang, F. Qin, J. Fang, Q. Li, M. Jia, Y. Lai, Z. Zhang, J. Li, Nickel foam as interlayer to improve the performance of lithium–sulfur battery. J. Solid State Electrochem. 18, 1025–1029 (2014)CrossRef
44.
Zurück zum Zitat X. Wang, Z. Feng, X. Hou, L. Liu, M. He, X. He, J. Huang, Z. Wen, Fluorine doped carbon coating of LiFePO4 as a cathode material for lithium-ion batteries. Chem. Eng. J. 379, 122371 (2020)CrossRef X. Wang, Z. Feng, X. Hou, L. Liu, M. He, X. He, J. Huang, Z. Wen, Fluorine doped carbon coating of LiFePO4 as a cathode material for lithium-ion batteries. Chem. Eng. J. 379, 122371 (2020)CrossRef
45.
Zurück zum Zitat J. Tu, K. Wu, H. Tang, H. Zhou, S. Jiao, Mg–Ti co-doping behavior of porous LiFePO4 microspheres for high-rate lithium-ion batteries. J. Mater. Chem. A 5, 17021–17028 (2017)CrossRef J. Tu, K. Wu, H. Tang, H. Zhou, S. Jiao, Mg–Ti co-doping behavior of porous LiFePO4 microspheres for high-rate lithium-ion batteries. J. Mater. Chem. A 5, 17021–17028 (2017)CrossRef
Metadaten
Titel
Glycerol solvothermal synthesis of high-performance lithium-ion battery cathode materials with surface oxygen vacancies
verfasst von
Fagang Yu
Zhengguang Zou
Yiying Huang
Min Feng
Shuchao Zhang
Fangan Liang
Jinxia Nong
Min Chen
Shengkun Jia
Publikationsdatum
01.02.2024
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 5/2024
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-024-12125-2

Weitere Artikel der Ausgabe 5/2024

Journal of Materials Science: Materials in Electronics 5/2024 Zur Ausgabe

Neuer Inhalt