Skip to main content
Erschienen in: Computational Mechanics 3/2022

21.01.2022 | Original Paper

Goal-oriented error estimation and h-adaptive finite elements for hyperelastic micromorphic continua

verfasst von: Xiaozhe Ju, Rolf Mahnken, Yangjian Xu, Lihua Liang

Erschienen in: Computational Mechanics | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We develop a goal-oriented finite element method for a class of micromorphic hyperelasticity problems, where size effects are taken into account by an enriched kinematics. Upon introducing a notion of generalized solutions, an abstract weak formulation that is convenient to error estimation is established along with its finite element discretization. Based on duality techniques, exact error representations aiming at a user-defined quantity of interest are derived. The dual problem is first introduced in a secant form, and subsequently linearized and discretized. The resulting discretizations of both primal and dual problem are shown to be consistent, thus theoretically ensuring an optimal convergence order. Some relevant numerical aspects are discussed in detail. In combination with a patch recovery technique avoiding nonlinear computations, an efficient error estimator is developed to guide a greedy adaptive mesh refinement algorithm. The effectiveness of the resulting algorithm is investigated by several numerical examples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ainsworth M, Oden J (1997) A posteriori error estimation in finite element analysis. Comput Methods Appl Mech Eng 142(1):1–88MathSciNetMATHCrossRef Ainsworth M, Oden J (1997) A posteriori error estimation in finite element analysis. Comput Methods Appl Mech Eng 142(1):1–88MathSciNetMATHCrossRef
2.
Zurück zum Zitat Ainsworth M, Oden J (2000) A posteriori error estimation in finite element analysis. Pure and applied mathematics, Wiley, New YorkMATHCrossRef Ainsworth M, Oden J (2000) A posteriori error estimation in finite element analysis. Pure and applied mathematics, Wiley, New YorkMATHCrossRef
3.
Zurück zum Zitat Andrews E, Gioux G, Onck P, Gibson L (2001) Size effects in ductile cellular solids. Part ii: experimental results. Int J Mech Sci 43(3):701–713MATHCrossRef Andrews E, Gioux G, Onck P, Gibson L (2001) Size effects in ductile cellular solids. Part ii: experimental results. Int J Mech Sci 43(3):701–713MATHCrossRef
4.
Zurück zum Zitat Babuska I, Whiteman J, Strouboulis T (2011) Finite elements: an introduction to the methods and error estimation. Oxford University Press, New YorkMATH Babuska I, Whiteman J, Strouboulis T (2011) Finite elements: an introduction to the methods and error estimation. Oxford University Press, New YorkMATH
5.
Zurück zum Zitat Becker R, Rannacher R (1996) A Feed-back approach to error control in finite element methods: basic analysis and examples. East-West J Numer Math 4(4):237–264MathSciNetMATH Becker R, Rannacher R (1996) A Feed-back approach to error control in finite element methods: basic analysis and examples. East-West J Numer Math 4(4):237–264MathSciNetMATH
6.
Zurück zum Zitat Begley MR, Hutchinson JW (1998) The mechanics of size-dependent indentation. J Mech Phys Solids 46(10):2049–2068MATHCrossRef Begley MR, Hutchinson JW (1998) The mechanics of size-dependent indentation. J Mech Phys Solids 46(10):2049–2068MATHCrossRef
7.
Zurück zum Zitat Bespalov A, Praetorius D, Rocchi L, Ruggeri M (2019) Goal-oriented error estimation and adaptivity for elliptic pdes with parametric or uncertain inputs. Comput Methods Appl Mech Eng 345:951–982MathSciNetMATHCrossRef Bespalov A, Praetorius D, Rocchi L, Ruggeri M (2019) Goal-oriented error estimation and adaptivity for elliptic pdes with parametric or uncertain inputs. Comput Methods Appl Mech Eng 345:951–982MathSciNetMATHCrossRef
8.
Zurück zum Zitat Biswas R, Poh LH (2017) A micromorphic computational homogenization framework for heterogeneous materials. J Mech Phys Solids 102:187–208MathSciNetCrossRef Biswas R, Poh LH (2017) A micromorphic computational homogenization framework for heterogeneous materials. J Mech Phys Solids 102:187–208MathSciNetCrossRef
9.
Zurück zum Zitat Biswas R, Poh LH, Shedbale AS (2020) A micromorphic computational homogenization framework for auxetic tetra-chiral structures. J Mech Phys Solids 135:103801MathSciNetCrossRef Biswas R, Poh LH, Shedbale AS (2020) A micromorphic computational homogenization framework for auxetic tetra-chiral structures. J Mech Phys Solids 135:103801MathSciNetCrossRef
10.
Zurück zum Zitat Brevis I, Muga I, van der Zee KG (2021) A machine-learning minimal-residual (ml-mres) framework for goal-oriented finite element discretizations. Comput Math with Appl 95:186–199MathSciNetMATHCrossRef Brevis I, Muga I, van der Zee KG (2021) A machine-learning minimal-residual (ml-mres) framework for goal-oriented finite element discretizations. Comput Math with Appl 95:186–199MathSciNetMATHCrossRef
11.
Zurück zum Zitat Bui TQ, Vo DQ, Zhang C, Nguyen DD (2014) A consecutive-interpolation quadrilateral element (cq4): formulation and applications. Finite Elem Anal Des 84:14–31MathSciNetCrossRef Bui TQ, Vo DQ, Zhang C, Nguyen DD (2014) A consecutive-interpolation quadrilateral element (cq4): formulation and applications. Finite Elem Anal Des 84:14–31MathSciNetCrossRef
12.
Zurück zum Zitat Chamoin L, Legoll F (2021) Goal-oriented error estimation and adaptivity in msfem computations. Comput Mech 67(4):1201–1228MathSciNetMATHCrossRef Chamoin L, Legoll F (2021) Goal-oriented error estimation and adaptivity in msfem computations. Comput Mech 67(4):1201–1228MathSciNetMATHCrossRef
13.
Zurück zum Zitat Chung E, Pollock S, Pun S-M (2019) Online basis construction for goal-oriented adaptivity in the generalized multiscale finite element method. J Comput Phys 393:59–73MathSciNetMATHCrossRef Chung E, Pollock S, Pun S-M (2019) Online basis construction for goal-oriented adaptivity in the generalized multiscale finite element method. J Comput Phys 393:59–73MathSciNetMATHCrossRef
14.
Zurück zum Zitat Cirak F, Ramm E (1998) A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem. Comput Methods Appl Mech Eng 156:351–362MathSciNetMATHCrossRef Cirak F, Ramm E (1998) A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem. Comput Methods Appl Mech Eng 156:351–362MathSciNetMATHCrossRef
15.
Zurück zum Zitat Dillard T, Forest S, Ienny P (2006) Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. Eur J Mech A/Solids 25:526–549MATHCrossRef Dillard T, Forest S, Ienny P (2006) Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. Eur J Mech A/Solids 25:526–549MATHCrossRef
16.
Zurück zum Zitat Ehlers W, Scholz B (2007) An inverse algorithm for the identification and the sensitivity analysis of the parameters governing micropolar elasto-plastic granular material. Arch Appl Mech 77(12):911–931MATHCrossRef Ehlers W, Scholz B (2007) An inverse algorithm for the identification and the sensitivity analysis of the parameters governing micropolar elasto-plastic granular material. Arch Appl Mech 77(12):911–931MATHCrossRef
17.
Zurück zum Zitat Eriksson K, Estep D, Hansbo P, Johnson C (1995) Introduction to adaptive methods for differential equations. Acta Numer 4:150–158MathSciNetMATHCrossRef Eriksson K, Estep D, Hansbo P, Johnson C (1995) Introduction to adaptive methods for differential equations. Acta Numer 4:150–158MathSciNetMATHCrossRef
18.
Zurück zum Zitat Eringen AC (1964) Mechanics of micromorphic materials. In: Görtler H (ed) Applied mechanics. Springer, Berlin, pp 131–138 Eringen AC (1964) Mechanics of micromorphic materials. In: Görtler H (ed) Applied mechanics. Springer, Berlin, pp 131–138
19.
Zurück zum Zitat Eringen AC (1965) Theory of micropolar continua. In: Proceedings of the ninth midwestern mechanics conference. University of Wisconsin, Wiley, p 23 Eringen AC (1965) Theory of micropolar continua. In: Proceedings of the ninth midwestern mechanics conference. University of Wisconsin, Wiley, p 23
20.
Zurück zum Zitat Eringen AC (1990) Theory of thermo-microstretch elastic solids. Int J Eng Sci 28(12):1291–1301MATHCrossRef Eringen AC (1990) Theory of thermo-microstretch elastic solids. Int J Eng Sci 28(12):1291–1301MATHCrossRef
21.
Zurück zum Zitat Eringen AC (2012) Microcontinuum field theories: I. Foundations and solids. Springer, BerlinMATH Eringen AC (2012) Microcontinuum field theories: I. Foundations and solids. Springer, BerlinMATH
22.
Zurück zum Zitat Fick PW, van Brummelen EH, van der Zee KG (2010) On the adjoint-consistent formulation of interface conditions in goal-oriented error estimation and adaptivity for fluid-structure interaction. Comput Methods Appl Mech Eng 199(49):3369–3385MathSciNetMATHCrossRef Fick PW, van Brummelen EH, van der Zee KG (2010) On the adjoint-consistent formulation of interface conditions in goal-oriented error estimation and adaptivity for fluid-structure interaction. Comput Methods Appl Mech Eng 199(49):3369–3385MathSciNetMATHCrossRef
23.
Zurück zum Zitat Fleck N, Olurin O, Chen C, Ashby M (2001) The effect of hole size upon the strength of metallic and polymeric foams. J Mech Phys Solids 49(9):2015–2030MATHCrossRef Fleck N, Olurin O, Chen C, Ashby M (2001) The effect of hole size upon the strength of metallic and polymeric foams. J Mech Phys Solids 49(9):2015–2030MATHCrossRef
25.
Zurück zum Zitat Ghorashi SS, Rabczuk T (2017) Goal-oriented error estimation and mesh adaptivity in 3d elastoplasticity problems. Int J Fract 203(1–2):3–19CrossRef Ghorashi SS, Rabczuk T (2017) Goal-oriented error estimation and mesh adaptivity in 3d elastoplasticity problems. Int J Fract 203(1–2):3–19CrossRef
26.
Zurück zum Zitat Giles MB, Pierce NA (1997) Adjoint equations in cfd: duality, boundary conditions and solution behaviour. AIAA Paper 97:1850 Giles MB, Pierce NA (1997) Adjoint equations in cfd: duality, boundary conditions and solution behaviour. AIAA Paper 97:1850
27.
Zurück zum Zitat Harriman K, Gavaghan D, Suli E (2004) The importance of adjoint consistency in the approximation of linear functionals using the discontinuous Galerkin finite element method Harriman K, Gavaghan D, Suli E (2004) The importance of adjoint consistency in the approximation of linear functionals using the discontinuous Galerkin finite element method
28.
Zurück zum Zitat Hartmann R (2007) Adjoint consistency analysis of discontinuous Galerkin discretizations. SIAM J Numer Anal 45(6):2671–2696MathSciNetMATHCrossRef Hartmann R (2007) Adjoint consistency analysis of discontinuous Galerkin discretizations. SIAM J Numer Anal 45(6):2671–2696MathSciNetMATHCrossRef
29.
Zurück zum Zitat Hartmann R, Leicht T (2015) Generalized adjoint consistent treatment of wall boundary conditions for compressible flows. J Comput Phys 300:754–778MathSciNetMATHCrossRef Hartmann R, Leicht T (2015) Generalized adjoint consistent treatment of wall boundary conditions for compressible flows. J Comput Phys 300:754–778MathSciNetMATHCrossRef
30.
Zurück zum Zitat Hirschberger CB, Kuhl E, Steinmann P (2007) On deformational and configurational mechanics of micromorphic hyperelasticity-theory and computation. Comput Methods Appl Mech Eng 196(41–44):4027–4044MathSciNetMATHCrossRef Hirschberger CB, Kuhl E, Steinmann P (2007) On deformational and configurational mechanics of micromorphic hyperelasticity-theory and computation. Comput Methods Appl Mech Eng 196(41–44):4027–4044MathSciNetMATHCrossRef
31.
Zurück zum Zitat Hirschberger CB, Steinmann P (2009) Classification of concepts in thermodynamically consistent generalized plasticity. J Eng Mech 135(3):156–170 Hirschberger CB, Steinmann P (2009) Classification of concepts in thermodynamically consistent generalized plasticity. J Eng Mech 135(3):156–170
32.
Zurück zum Zitat Houston P, Rannacher R, Süli E (2000) A posteriori error analysis for stabilised finite element approximations of transport problems. Comput Methods Appl Mech Eng 190(11):1483–1508MathSciNetMATHCrossRef Houston P, Rannacher R, Süli E (2000) A posteriori error analysis for stabilised finite element approximations of transport problems. Comput Methods Appl Mech Eng 190(11):1483–1508MathSciNetMATHCrossRef
33.
Zurück zum Zitat Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation, New York Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation, New York
34.
Zurück zum Zitat Hütter G (2019) On the micro-macro relation for the microdeformation in the homogenization towards micromorphic and micropolar continua. J Mech Phys Solids 127:62–79MathSciNetCrossRef Hütter G (2019) On the micro-macro relation for the microdeformation in the homogenization towards micromorphic and micropolar continua. J Mech Phys Solids 127:62–79MathSciNetCrossRef
35.
Zurück zum Zitat Jirásek M, Rolshoven S (2009) Localization properties of strain-softening gradient plasticity models. Part I: Strain-gradient theories. Int J Solids Struct 46(11–12):2225–2238MATHCrossRef Jirásek M, Rolshoven S (2009) Localization properties of strain-softening gradient plasticity models. Part I: Strain-gradient theories. Int J Solids Struct 46(11–12):2225–2238MATHCrossRef
36.
Zurück zum Zitat Ju X, Mahnken R (2016) An NTFA-based homogenization framework considering softening effects. Mech Mater 96:106–125CrossRef Ju X, Mahnken R (2016) An NTFA-based homogenization framework considering softening effects. Mech Mater 96:106–125CrossRef
37.
Zurück zum Zitat Ju X, Mahnken R (2017) Goal-oriented adaptivity for linear elastic micromorphic continua based on primal and adjoint consistency analysis. Int J Numer Methods Eng 112:1017–1039MathSciNetCrossRef Ju X, Mahnken R (2017) Goal-oriented adaptivity for linear elastic micromorphic continua based on primal and adjoint consistency analysis. Int J Numer Methods Eng 112:1017–1039MathSciNetCrossRef
38.
Zurück zum Zitat Ju X, Mahnken R (2017) Model adaptivity on effective elastic properties coupled with adaptive fem. Comput Methods Appl Mech Eng 322:208–237MathSciNetMATHCrossRef Ju X, Mahnken R (2017) Model adaptivity on effective elastic properties coupled with adaptive fem. Comput Methods Appl Mech Eng 322:208–237MathSciNetMATHCrossRef
39.
Zurück zum Zitat Ju X, Mahnken R (2019) Goal-oriented h-type adaptive finite elements for micromorphic elastoplasticity. Comput Methods Appl Mech Eng 351:297–329MathSciNetMATHCrossRef Ju X, Mahnken R (2019) Goal-oriented h-type adaptive finite elements for micromorphic elastoplasticity. Comput Methods Appl Mech Eng 351:297–329MathSciNetMATHCrossRef
40.
Zurück zum Zitat Ju X, Mahnken R, Liang L, Xu Y (2021) Goal-oriented mesh adaptivity for inverse problems in linear micromorphic elasticity. Comput Struct 257:106671CrossRef Ju X, Mahnken R, Liang L, Xu Y (2021) Goal-oriented mesh adaptivity for inverse problems in linear micromorphic elasticity. Comput Struct 257:106671CrossRef
41.
Zurück zum Zitat Ju X, Mahnken R, Xu Y, Liang L, Zhou W (2021) A nonuniform transformation field analysis for composites with strength difference effects in elastoplasticity. Int J Solids Struct 228:111103CrossRef Ju X, Mahnken R, Xu Y, Liang L, Zhou W (2021) A nonuniform transformation field analysis for composites with strength difference effects in elastoplasticity. Int J Solids Struct 228:111103CrossRef
42.
Zurück zum Zitat Larsson P, Hansbo F, Runesson K (2002) Strategies for computing goal-oriented a posteriori error measures in non-linear elasticity. Int J Numer Mech Eng 55:879–894MathSciNetMATHCrossRef Larsson P, Hansbo F, Runesson K (2002) Strategies for computing goal-oriented a posteriori error measures in non-linear elasticity. Int J Numer Mech Eng 55:879–894MathSciNetMATHCrossRef
43.
Zurück zum Zitat Leismann T, Mahnken R (2015) Comparison of hyperelastic micromorphic, micropolar and microstrain continua. Int J Nonlinear Mech 77:115–127CrossRef Leismann T, Mahnken R (2015) Comparison of hyperelastic micromorphic, micropolar and microstrain continua. Int J Nonlinear Mech 77:115–127CrossRef
44.
Zurück zum Zitat Ma Q, Clarke DR (1995) Size dependent hardness of silver single crystals. J Mater Res 10(4):853–863CrossRef Ma Q, Clarke DR (1995) Size dependent hardness of silver single crystals. J Mater Res 10(4):853–863CrossRef
45.
Zurück zum Zitat Maugin GA, Metrikine AV (2010) Mechanics of generalized continua. In: Advances in mechanics and mathematics, vol 21 Maugin GA, Metrikine AV (2010) Mechanics of generalized continua. In: Advances in mechanics and mathematics, vol 21
46.
Zurück zum Zitat Muñoz-Matute J, Pardo D, Calo VM, Alberdi E (2019) Forward-in-time goal-oriented adaptivity. Int J Numer Methods Eng 119(6):490–505MathSciNetMATHCrossRef Muñoz-Matute J, Pardo D, Calo VM, Alberdi E (2019) Forward-in-time goal-oriented adaptivity. Int J Numer Methods Eng 119(6):490–505MathSciNetMATHCrossRef
47.
Zurück zum Zitat Neff P, Jeong J, Fischle A (2010) Stable identification of linear isotropic Cosserat parameters: bounded stiffness in bending and torsion implies conformal invariance of curvature. Acta Mech 211(3):237–249MATHCrossRef Neff P, Jeong J, Fischle A (2010) Stable identification of linear isotropic Cosserat parameters: bounded stiffness in bending and torsion implies conformal invariance of curvature. Acta Mech 211(3):237–249MATHCrossRef
48.
Zurück zum Zitat Nguyen DD, Nguyen MN, Duc ND, Rungamornrat J, Bui TQ (2021) Enhanced nodal gradient finite elements with new numerical integration schemes for 2d and 3d geometrically nonlinear analysis. Appl Math Model 93:326–359MathSciNetMATHCrossRef Nguyen DD, Nguyen MN, Duc ND, Rungamornrat J, Bui TQ (2021) Enhanced nodal gradient finite elements with new numerical integration schemes for 2d and 3d geometrically nonlinear analysis. Appl Math Model 93:326–359MathSciNetMATHCrossRef
49.
Zurück zum Zitat Nguyen MN, Bui TQ, Truong TT, Trinh NA, Singh IV, Yu T, Doan DH (2016) Enhanced nodal gradient 3d consecutive-interpolation tetrahedral element (cth4) for heat transfer analysis. Int J Heat Mass Transf 103:14–27CrossRef Nguyen MN, Bui TQ, Truong TT, Trinh NA, Singh IV, Yu T, Doan DH (2016) Enhanced nodal gradient 3d consecutive-interpolation tetrahedral element (cth4) for heat transfer analysis. Int J Heat Mass Transf 103:14–27CrossRef
50.
Zurück zum Zitat Onck P, Andrews E, Gibson L (2001) Size effects in ductile cellular solids. Part i: modeling. Int J Mech Sci 43(3):681–699MATHCrossRef Onck P, Andrews E, Gibson L (2001) Size effects in ductile cellular solids. Part i: modeling. Int J Mech Sci 43(3):681–699MATHCrossRef
51.
Zurück zum Zitat Peerlings RHJ, Geers MGD, de Borst R, Brekelmans WAM (2001) A critical comparison of nonlocal and gradient-enhanced softening continua. Int J Solids Struct 38(44–45):7723–7746MATHCrossRef Peerlings RHJ, Geers MGD, de Borst R, Brekelmans WAM (2001) A critical comparison of nonlocal and gradient-enhanced softening continua. Int J Solids Struct 38(44–45):7723–7746MATHCrossRef
52.
Zurück zum Zitat Poole WJ, Ashby MF, Fleck NA (1996) Micro-hardness of annealed and work-hardened copper polycrystals. Scr Mater 34(4):559–564CrossRef Poole WJ, Ashby MF, Fleck NA (1996) Micro-hardness of annealed and work-hardened copper polycrystals. Scr Mater 34(4):559–564CrossRef
53.
Zurück zum Zitat Prudhomme S, Oden J (1999) On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors. Comput Methods Appl Mech Eng 176(1–4):313–331MathSciNetMATHCrossRef Prudhomme S, Oden J (1999) On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors. Comput Methods Appl Mech Eng 176(1–4):313–331MathSciNetMATHCrossRef
54.
Zurück zum Zitat Qu J, Cherkaoui M (2006) Fundamentals of micromechanics of solids. Wiley, HobokenCrossRef Qu J, Cherkaoui M (2006) Fundamentals of micromechanics of solids. Wiley, HobokenCrossRef
55.
Zurück zum Zitat Rokoš O, Ameen MM, Peerlings RH, Geers MG (2019) Micromorphic computational homogenization for mechanical metamaterials with patterning fluctuation fields. J Mech Phys Solids 123:119–137MathSciNetMATHCrossRef Rokoš O, Ameen MM, Peerlings RH, Geers MG (2019) Micromorphic computational homogenization for mechanical metamaterials with patterning fluctuation fields. J Mech Phys Solids 123:119–137MathSciNetMATHCrossRef
56.
Zurück zum Zitat Rüter M (2003) Error-controlled Adaptive Finite Element Methods in Large Strain Hyperelasticity and Fracture Mechanics. PhD thesis, University of Hannover, Hannover, Mai Rüter M (2003) Error-controlled Adaptive Finite Element Methods in Large Strain Hyperelasticity and Fracture Mechanics. PhD thesis, University of Hannover, Hannover, Mai
57.
Zurück zum Zitat Stelmashenko NA, Walls MG, Brown LM, Milman YUV (1993) Microindentations on W and Mo oriented single crystals: an STM study. Acta Metall Mater 41(10):2855–2865CrossRef Stelmashenko NA, Walls MG, Brown LM, Milman YUV (1993) Microindentations on W and Mo oriented single crystals: an STM study. Acta Metall Mater 41(10):2855–2865CrossRef
58.
Zurück zum Zitat Widany K-U, Mahnken R (2016) Dual-based adaptive fem for inelastic problems with standard fe implementations. Int J Numer Methods Eng 107(2):127–154MathSciNetMATHCrossRef Widany K-U, Mahnken R (2016) Dual-based adaptive fem for inelastic problems with standard fe implementations. Int J Numer Methods Eng 107(2):127–154MathSciNetMATHCrossRef
59.
Zurück zum Zitat Wriggers P (2008) Nonlinear finite element methods. Springer, BerlinMATH Wriggers P (2008) Nonlinear finite element methods. Springer, BerlinMATH
60.
Zurück zum Zitat Yang G, Zhang B (2015) Micromorphic model of graphene-like two-dimensional atomic crystals. Chin J Theor Appl Mech 47(3):451–457 Yang G, Zhang B (2015) Micromorphic model of graphene-like two-dimensional atomic crystals. Chin J Theor Appl Mech 47(3):451–457
61.
Zurück zum Zitat Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics. Butterworth-Heinemann, LondonMATH Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics. Butterworth-Heinemann, LondonMATH
Metadaten
Titel
Goal-oriented error estimation and h-adaptive finite elements for hyperelastic micromorphic continua
verfasst von
Xiaozhe Ju
Rolf Mahnken
Yangjian Xu
Lihua Liang
Publikationsdatum
21.01.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 3/2022
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-021-02117-y

Weitere Artikel der Ausgabe 3/2022

Computational Mechanics 3/2022 Zur Ausgabe

Neuer Inhalt