Skip to main content
Erschienen in: Computational Mechanics 3/2022

03.01.2022 | Original Paper

Multi-frequency model reduction for uncertainty quantification in computational vibroacoutics

verfasst von: J. Reyes, C. Desceliers, C. Soize, L. Gagliardini

Erschienen in: Computational Mechanics | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work is devoted to the vibroacoustics of complex systems over a broad-frequency band of analysis. The considered system is composed of a complex structure coupled with an internal acoustic cavity. On one hand, the global displacements are associated with the main stiff part and on the other hand, the local displacements are associated with the preponderant vibrations of the flexible subparts. Such complex structures induce interweaving of these two types of displacements, which introduce an overlap of the usual three frequency bands (low-, medium- and high-frequency bands (LF, MF, and HF). A reduced-order computational vibroacoustic model is constructed by using a classical modal analysis with the elastic and acoustic modes. Nevertheless, the dimension of such reduced-order model (ROM) is still important when there is an overlap for each one of the three frequency bands. A multi-frequency reduced-order model is then constructed for the structure over the LF, MF, and HF bands. The strategy is based on a multilevel projection consisting in introducing three reduced-order bases that are obtained by using a spatial filtering methodology. To filter out the local displacements in the structure, a set of global shape functions is introduced. In addition, a classical ROM using acoustic modes is carried out for the acoustic cavity. Then, the coupling between the multilevel ROM and the acoustic ROM is presented. A nonparametric probabilistic modeling is then proposed to take into account the model uncertainties induced by modeling errors that increase with the frequency. The proposed approach is applied to a large-scale computational vibroacoustic model of a car.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat Gagliardini L (2014) Dispersed vibroacoustic responses of industrial products: what are we able to predict? In The 26th international conference on noise and vibration engineering (ISMA2014), Leuven, 15–17 September 2003-01-1555, 17–37 Gagliardini L (2014) Dispersed vibroacoustic responses of industrial products: what are we able to predict? In The 26th international conference on noise and vibration engineering (ISMA2014), Leuven, 15–17 September 2003-01-1555, 17–37
5.
Zurück zum Zitat Bucher I, Braun S (1997) Left eigenvectors: extraction from measurements and physical interpretation. J Appl Mech ASME 64(1):97–105MathSciNetMATHCrossRef Bucher I, Braun S (1997) Left eigenvectors: extraction from measurements and physical interpretation. J Appl Mech ASME 64(1):97–105MathSciNetMATHCrossRef
7.
Zurück zum Zitat Guyan R (1965) Reduction of stiffness and mass matrices. AIAA J 3(2):380–380CrossRef Guyan R (1965) Reduction of stiffness and mass matrices. AIAA J 3(2):380–380CrossRef
8.
Zurück zum Zitat Guyan R (1992) A method for selecting master dof in dynamic substructuring using the Guyan condensation method. Comput Struct 45(5–6):941–946 Guyan R (1992) A method for selecting master dof in dynamic substructuring using the Guyan condensation method. Comput Struct 45(5–6):941–946
9.
Zurück zum Zitat Guyan R (1980) Flexural wave-propagation behavior of lumped mass approximations. Comput Struct 12(6):805–812MATHCrossRef Guyan R (1980) Flexural wave-propagation behavior of lumped mass approximations. Comput Struct 12(6):805–812MATHCrossRef
10.
Zurück zum Zitat Chan H, Cai C, Cheung Y (1993) High convergence order finite elements with lumped mass matrix. J Sound Vib 165(2):193–207MATHCrossRef Chan H, Cai C, Cheung Y (1993) High convergence order finite elements with lumped mass matrix. J Sound Vib 165(2):193–207MATHCrossRef
11.
Zurück zum Zitat Jensen M (1996) Convergence studies of dynamic analysis by using the finite element method with lumped mass matrix. Int J Numer Methods Eng 139(11):1879–1888MATHCrossRef Jensen M (1996) Convergence studies of dynamic analysis by using the finite element method with lumped mass matrix. Int J Numer Methods Eng 139(11):1879–1888MATHCrossRef
12.
Zurück zum Zitat Langley R, Bremner P (1999) A hybrid method for the vibration analysis of complex structural-acoustic systems. J Acoust Soc Am 105(3):1657–1671CrossRef Langley R, Bremner P (1999) A hybrid method for the vibration analysis of complex structural-acoustic systems. J Acoust Soc Am 105(3):1657–1671CrossRef
13.
Zurück zum Zitat Ji L, Mace B, Pinnington R (2006) A mode-based approach for the mid-frequency vibration analysis of coupled long- and short-wavelength structures. J Sound Vib 289(1–2):148–170CrossRef Ji L, Mace B, Pinnington R (2006) A mode-based approach for the mid-frequency vibration analysis of coupled long- and short-wavelength structures. J Sound Vib 289(1–2):148–170CrossRef
14.
Zurück zum Zitat Hahn Y, Kikuchi N (2005) Identification of global modeshape from a few nodal eigenvectors using simple free-form deformation. Eng Comput 21(2):115–128CrossRef Hahn Y, Kikuchi N (2005) Identification of global modeshape from a few nodal eigenvectors using simple free-form deformation. Eng Comput 21(2):115–128CrossRef
15.
Zurück zum Zitat Guyader J (2009) Characterization and reduction of dynamic models of vibrating systems with high modal density. J Sound Vib 328(4–5):488–506CrossRef Guyader J (2009) Characterization and reduction of dynamic models of vibrating systems with high modal density. J Sound Vib 328(4–5):488–506CrossRef
16.
Zurück zum Zitat Guyader J (1990) Modal sampling method for the vibration study of systems of high modal density. J Acoust Soc Am 88(5):2269–2276CrossRef Guyader J (1990) Modal sampling method for the vibration study of systems of high modal density. J Acoust Soc Am 88(5):2269–2276CrossRef
17.
Zurück zum Zitat Noor A, Anderson M, Greene W (1978) Continuum models for beam- and platelike-lattice structures. AIAA J 16(12):1219–1228CrossRef Noor A, Anderson M, Greene W (1978) Continuum models for beam- and platelike-lattice structures. AIAA J 16(12):1219–1228CrossRef
18.
19.
Zurück zum Zitat Sigrits J, Broc D (2008) Dynamic analysis of a tube bundle with fluid-structure interaction modelling using a homogenisation method. Comput Methods Appl Mech Eng 197(9–12):1080–1099MathSciNetMATH Sigrits J, Broc D (2008) Dynamic analysis of a tube bundle with fluid-structure interaction modelling using a homogenisation method. Comput Methods Appl Mech Eng 197(9–12):1080–1099MathSciNetMATH
20.
Zurück zum Zitat Craig R (1985) A Review of time domain and frequency domain component mode synthesis method in combined experimental-analytical modeling of dynamic structural systems. D.R. Martinez and A.K. Miller, New York Craig R (1985) A Review of time domain and frequency domain component mode synthesis method in combined experimental-analytical modeling of dynamic structural systems. D.R. Martinez and A.K. Miller, New York
21.
Zurück zum Zitat de Klerk D, Rixen D, Voormeeren S (2008) General framework for dynamic substructuring: history, review, and classification of techniques. AIAA J 4:1169–1181CrossRef de Klerk D, Rixen D, Voormeeren S (2008) General framework for dynamic substructuring: history, review, and classification of techniques. AIAA J 4:1169–1181CrossRef
22.
24.
Zurück zum Zitat Argyris J, Kelsey S (1959) The analysis of fuselages of arbitrary cross-section and taper: a DSIR sponsored research program on the development and application of the matrix force method and the digital computer. Aircr Eng Aerosp Technol 31(3):62–74CrossRef Argyris J, Kelsey S (1959) The analysis of fuselages of arbitrary cross-section and taper: a DSIR sponsored research program on the development and application of the matrix force method and the digital computer. Aircr Eng Aerosp Technol 31(3):62–74CrossRef
25.
Zurück zum Zitat Przemieniecki J (1963) Matrix structural analysis of substructures. AIAA J 1(1):138–147CrossRef Przemieniecki J (1963) Matrix structural analysis of substructures. AIAA J 1(1):138–147CrossRef
26.
Zurück zum Zitat Irons B (1965) Structural eigenvalue problems—elimination of unwanted variables. AIAA J 3(5):961–962 Irons B (1965) Structural eigenvalue problems—elimination of unwanted variables. AIAA J 3(5):961–962
27.
Zurück zum Zitat Hurty W (1960) Vibrations of structural systems by component mode synthesis. J Eng Mech ASCE 86(4):51–70 Hurty W (1960) Vibrations of structural systems by component mode synthesis. J Eng Mech ASCE 86(4):51–70
28.
Zurück zum Zitat Hurty W (1965) Dynamic analysis of structural systems using component modes. AIAA J 3(4):678–685CrossRef Hurty W (1965) Dynamic analysis of structural systems using component modes. AIAA J 3(4):678–685CrossRef
29.
Zurück zum Zitat Craig R, Bampton M (1968) Coupling of substructures for dynamic analyses. AIAA J 6(7):1313–1319MATHCrossRef Craig R, Bampton M (1968) Coupling of substructures for dynamic analyses. AIAA J 6(7):1313–1319MATHCrossRef
30.
Zurück zum Zitat Bathe K, Gracewski S (1981) On nonlinear dynamic analysis using substructuring and mode superposition. Comput Struct 13(5):699–707MATHCrossRef Bathe K, Gracewski S (1981) On nonlinear dynamic analysis using substructuring and mode superposition. Comput Struct 13(5):699–707MATHCrossRef
31.
Zurück zum Zitat Farhat C, Geradin M (1994) On a component mode synthesis method and its application to incompatible substructures. Comput Struct 51(5):459–473MATHCrossRef Farhat C, Geradin M (1994) On a component mode synthesis method and its application to incompatible substructures. Comput Struct 51(5):459–473MATHCrossRef
32.
Zurück zum Zitat Meirovitch L, Hale A (1981) On the substructure synthesis method. AIAA J 19(7):940–947CrossRef Meirovitch L, Hale A (1981) On the substructure synthesis method. AIAA J 19(7):940–947CrossRef
33.
Zurück zum Zitat Meirovitch L, Kwak M (1991) Rayleigh-ritz based substructure synthesis for flexible multibody systems. AIAA J 29(10):1709–1719MATHCrossRef Meirovitch L, Kwak M (1991) Rayleigh-ritz based substructure synthesis for flexible multibody systems. AIAA J 29(10):1709–1719MATHCrossRef
34.
Zurück zum Zitat Voormeeren S, van der Valk P, Rixen D (2011) Generalized methodology for assembly and reduction of component models for dynamic substructuring. AIAA J 49(5):1010–1020CrossRef Voormeeren S, van der Valk P, Rixen D (2011) Generalized methodology for assembly and reduction of component models for dynamic substructuring. AIAA J 49(5):1010–1020CrossRef
35.
Zurück zum Zitat Voormeeren S, van der Valk P, Rixen D (1971) Vibration analysis of structures by component mode substitution. AIAA J 9(7):1255–1261CrossRef Voormeeren S, van der Valk P, Rixen D (1971) Vibration analysis of structures by component mode substitution. AIAA J 9(7):1255–1261CrossRef
36.
Zurück zum Zitat R.MacNeal,Vibration analysis of structures by component mode substitution, Computers & Structures 1 (4)(1971) 581–601 R.MacNeal,Vibration analysis of structures by component mode substitution, Computers & Structures 1 (4)(1971) 581–601
37.
Zurück zum Zitat Rubin S (1975) Improved component-mode representation for structural dynamic analysis. AIAA J 13(8):995–1006MATHCrossRef Rubin S (1975) Improved component-mode representation for structural dynamic analysis. AIAA J 13(8):995–1006MATHCrossRef
38.
Zurück zum Zitat Markovic D, Park K, Ibrahimbegovic A (2007) Reduction of substructural interface degrees of freedom in flexibility-based component mode synthesis. Int J Numer Methods Eng 70(2):163–180MATHCrossRef Markovic D, Park K, Ibrahimbegovic A (2007) Reduction of substructural interface degrees of freedom in flexibility-based component mode synthesis. Int J Numer Methods Eng 70(2):163–180MATHCrossRef
39.
Zurück zum Zitat Ohayon R, Sampaio R, Soize C (1997) Dynamic substructuring of damped structures using singular value decomposition. J Appl Mech ASME 64(2):292–298MATHCrossRef Ohayon R, Sampaio R, Soize C (1997) Dynamic substructuring of damped structures using singular value decomposition. J Appl Mech ASME 64(2):292–298MATHCrossRef
43.
Zurück zum Zitat Ibrahim R (1985) Parametric random vibration. Wiley, New YorkMATH Ibrahim R (1985) Parametric random vibration. Wiley, New YorkMATH
44.
Zurück zum Zitat Beck J, Katafygiotis L (1998) Updating models and their uncertainties—I: Bayesian statistical framework. J Eng Mech ASCE 124(4):455–461CrossRef Beck J, Katafygiotis L (1998) Updating models and their uncertainties—I: Bayesian statistical framework. J Eng Mech ASCE 124(4):455–461CrossRef
45.
Zurück zum Zitat Mace R, Worden W, Manson G (2005) Uncertainty in structural dynamics. J Sound Vib 288(3):431–790CrossRef Mace R, Worden W, Manson G (2005) Uncertainty in structural dynamics. J Sound Vib 288(3):431–790CrossRef
46.
Zurück zum Zitat Schuëller G, Pradlwarter H (2009) Uncertain linear systems in dynamics: retrospective and recent developments by stochastic approaches. Eng Struct 31(11):2507–2517CrossRef Schuëller G, Pradlwarter H (2009) Uncertain linear systems in dynamics: retrospective and recent developments by stochastic approaches. Eng Struct 31(11):2507–2517CrossRef
48.
Zurück zum Zitat Schuëller G (2005) Computational methods in stochastic mechanics and reliability analysis. Comput Methods Appl Mech Eng 194(12–16):1251–1795 Schuëller G (2005) Computational methods in stochastic mechanics and reliability analysis. Comput Methods Appl Mech Eng 194(12–16):1251–1795
49.
Zurück zum Zitat Schuëller G (2005) Uncertainties in structural mechanics and analysis—computational methods. Comput Struct 83(14):1031–1150CrossRef Schuëller G (2005) Uncertainties in structural mechanics and analysis—computational methods. Comput Struct 83(14):1031–1150CrossRef
50.
Zurück zum Zitat Schuëller G (2006) Developments in stochastic structural mechanics. Arch Appl Mech 75(10–12):755–773MATHCrossRef Schuëller G (2006) Developments in stochastic structural mechanics. Arch Appl Mech 75(10–12):755–773MATHCrossRef
51.
Zurück zum Zitat Deodatis G, Spanos P (2008) Computational stochastic mechanics. Probab Eng Mech 23(2–3):103–346CrossRef Deodatis G, Spanos P (2008) Computational stochastic mechanics. Probab Eng Mech 23(2–3):103–346CrossRef
52.
Zurück zum Zitat Ghanem R (1991) Stochastic finite elements: a spectral approach, Revised. Dover Publications, New YorkMATHCrossRef Ghanem R (1991) Stochastic finite elements: a spectral approach, Revised. Dover Publications, New YorkMATHCrossRef
54.
Zurück zum Zitat Le Maitre O, Knio O (2010) Spectral methods for uncerainty quantification with applications to computational fluid dynamics. Springer, HeidelbergMATH Le Maitre O, Knio O (2010) Spectral methods for uncerainty quantification with applications to computational fluid dynamics. Springer, HeidelbergMATH
55.
Zurück zum Zitat Ghanem R, Higdon D, Owhadi H (2017) Handbook of uncertainty quantification. Springer, Cham Ghanem R, Higdon D, Owhadi H (2017) Handbook of uncertainty quantification. Springer, Cham
56.
Zurück zum Zitat Bui-Thanh T, Willcox K, Ghattas O (2008) Parametric reduced-order models for probabilistic analysis of unsteady aerodynamic applications. AIAA J 46(10):2520–2529CrossRef Bui-Thanh T, Willcox K, Ghattas O (2008) Parametric reduced-order models for probabilistic analysis of unsteady aerodynamic applications. AIAA J 46(10):2520–2529CrossRef
57.
Zurück zum Zitat Degroote J, Vierendeels J, Willcox K (2010) Interpolation among reduced-order matrices to obtain parameterized models for design, optimization and probabilistic analysis. Int J Numer Methods Eng 63(2):207–230MathSciNetMATH Degroote J, Vierendeels J, Willcox K (2010) Interpolation among reduced-order matrices to obtain parameterized models for design, optimization and probabilistic analysis. Int J Numer Methods Eng 63(2):207–230MathSciNetMATH
58.
Zurück zum Zitat Marzouk Y, Najm H, Rahn L (2007) Stochastic spectral methods for efficient Bayesian solution of inverse problems. J Comput Phys 224(2):560–586MathSciNetMATHCrossRef Marzouk Y, Najm H, Rahn L (2007) Stochastic spectral methods for efficient Bayesian solution of inverse problems. J Comput Phys 224(2):560–586MathSciNetMATHCrossRef
59.
Zurück zum Zitat Galbally D, Fidkowski K, Willcox K, Ghattas O (2010) Non-linear model reduction for uncertainty quantification in large scale inverse problems. Int J Numer Methods Eng 81(12):1581–1608MathSciNetMATH Galbally D, Fidkowski K, Willcox K, Ghattas O (2010) Non-linear model reduction for uncertainty quantification in large scale inverse problems. Int J Numer Methods Eng 81(12):1581–1608MathSciNetMATH
60.
Zurück zum Zitat Lieberman C, Willcox K, Ghattas O (2010) Parameter and state model reduction for large scale statistical inverse problems. SIAM J Sci Comput 32(5):2523–2542MathSciNetMATHCrossRef Lieberman C, Willcox K, Ghattas O (2010) Parameter and state model reduction for large scale statistical inverse problems. SIAM J Sci Comput 32(5):2523–2542MathSciNetMATHCrossRef
62.
Zurück zum Zitat Cui T, Marzouk Y, Willcox K (2015) Data-driven model reduction for the Bayesian solution of inverse problems. Int J Numer Methods Eng 102(5):966–990MathSciNetMATHCrossRef Cui T, Marzouk Y, Willcox K (2015) Data-driven model reduction for the Bayesian solution of inverse problems. Int J Numer Methods Eng 102(5):966–990MathSciNetMATHCrossRef
63.
Zurück zum Zitat Soize C (2017) Random vectors and random fields in high dimension: parametric model-based representation, identification from data, and inverse problems. In: Ghanem R, Higdon D, Owhadi H (eds) Handbook of uncertainty quantification, vol 2, Springer, Cham, Ch. 26, pp 883–936. https://doi.org/10.1007/978-3-319-11259-6_30-1 Soize C (2017) Random vectors and random fields in high dimension: parametric model-based representation, identification from data, and inverse problems. In: Ghanem R, Higdon D, Owhadi H (eds) Handbook of uncertainty quantification, vol 2, Springer, Cham, Ch. 26, pp 883–936. https://​doi.​org/​10.​1007/​978-3-319-11259-6_​30-1
70.
Zurück zum Zitat Capillon R, Desceliers C, Soize C (2016) Uncertainty quantification in computational linear structural dynamics for viscoelastic composite structures. Comput Methods Appl Mech Eng 305:154–172MathSciNetMATHCrossRef Capillon R, Desceliers C, Soize C (2016) Uncertainty quantification in computational linear structural dynamics for viscoelastic composite structures. Comput Methods Appl Mech Eng 305:154–172MathSciNetMATHCrossRef
73.
Zurück zum Zitat Arnst M, Clouteau D, Chebli H, Othman R, Degrande G (2006) A non-parametric probabilistic model for ground-borne vibrations in buildings. Probab Eng Mech 21(1):18–34CrossRef Arnst M, Clouteau D, Chebli H, Othman R, Degrande G (2006) A non-parametric probabilistic model for ground-borne vibrations in buildings. Probab Eng Mech 21(1):18–34CrossRef
74.
Zurück zum Zitat Ohayon RCS (2014) Advanced computational vibroacoustics—reduced-order models and uncertainty quantification. Cambridge University Press, New York Ohayon RCS (2014) Advanced computational vibroacoustics—reduced-order models and uncertainty quantification. Cambridge University Press, New York
78.
Zurück zum Zitat Capiez-Lernout E, Soize C, MP M (2014) Post-buckling nonlinear static and dynamical analyses of uncertain cylindrical shells and experimental validation. Comput Methods Appl Mech Eng 271(1):210–230MathSciNetMATHCrossRef Capiez-Lernout E, Soize C, MP M (2014) Post-buckling nonlinear static and dynamical analyses of uncertain cylindrical shells and experimental validation. Comput Methods Appl Mech Eng 271(1):210–230MathSciNetMATHCrossRef
79.
Zurück zum Zitat Soize C, Farhat C (2016) Uncertainty quantification of modeling errors for nonlinear reduced-order computational models using a nonparametric probabilistic approach. Int J Numer Methods Eng 30(2016):96 Soize C, Farhat C (2016) Uncertainty quantification of modeling errors for nonlinear reduced-order computational models using a nonparametric probabilistic approach. Int J Numer Methods Eng 30(2016):96
82.
Zurück zum Zitat Ohayon R, Soize C (1998) Structural acoustics and vibration. Academic Press, San DiegoMATH Ohayon R, Soize C (1998) Structural acoustics and vibration. Academic Press, San DiegoMATH
Metadaten
Titel
Multi-frequency model reduction for uncertainty quantification in computational vibroacoutics
verfasst von
J. Reyes
C. Desceliers
C. Soize
L. Gagliardini
Publikationsdatum
03.01.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 3/2022
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-021-02109-y

Weitere Artikel der Ausgabe 3/2022

Computational Mechanics 3/2022 Zur Ausgabe

Neuer Inhalt