Skip to main content

2019 | OriginalPaper | Buchkapitel

Graphene-Based Nanomaterials for Hydrogen Storage

verfasst von : Ayşenur Aygün, Esra Atalay, Shukria Yassin, Anish Khan, Fatih Şen

Erschienen in: Graphene Functionalization Strategies

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene, which was discovered in the last ten years, has attracted considerable attention in the field of material science and has been one of the most important materials. Graphene has a two-dimensional structure, and this structure gives the structural, electronic, and optical properties characteristic of the graphene. Thanks to these characteristics, many graphene-based materials have been synthesized for use in many potential applications, such as electronics, energy storage, catalysis, gas absorption, separation, and detection. The function, surface area and porosity, adjustable for energy-based materials and stable graphene are of great importance to these applications. The most important feature that makes the graphene a very useful nanoparticle is its electronic feature. Also, graphene is used as an electrode in solar cells with unprecedented transparency and conductivity. Moreover, a certain amount of graphene can store energy. In this chapter, we outline the structure, properties of graphene, and developments in energy storage systems, and graphene-based hydrogen storage systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abergel, D.S.L., Apalkov, V., Berashevich, J., et al.: Properties of graphene: a theoretical perspective. Adv. Phys. 59, 261–482 (2010)CrossRef Abergel, D.S.L., Apalkov, V., Berashevich, J., et al.: Properties of graphene: a theoretical perspective. Adv. Phys. 59, 261–482 (2010)CrossRef
2.
Zurück zum Zitat Abrahamson, J.T., Sen, F., Sempere, B., et al.: Excess thermopower and the theory of thermopower waves. ACS Nano 7(8), 6533–6544 (2013)CrossRef Abrahamson, J.T., Sen, F., Sempere, B., et al.: Excess thermopower and the theory of thermopower waves. ACS Nano 7(8), 6533–6544 (2013)CrossRef
3.
Zurück zum Zitat Aday, B., Pamuk, H., Kaya, M., et al.: Graphene oxide as highly effective and readily recyclable catalyst using for the one-pot synthesis of 1,8-dioxoacridine derivatives. J. Nanosci. Nanotechnol. 16, 6498–6504 (2016)CrossRef Aday, B., Pamuk, H., Kaya, M., et al.: Graphene oxide as highly effective and readily recyclable catalyst using for the one-pot synthesis of 1,8-dioxoacridine derivatives. J. Nanosci. Nanotechnol. 16, 6498–6504 (2016)CrossRef
4.
Zurück zum Zitat Aday, B., Yildiz, Y., Ulus, R., et al.: One-pot, efficient and green synthesis of acridinedione derivatives using highly monodisperse platinum nanoparticles supported with reduced graphene oxide. New J. Chem. 40, 748–754 (2016)CrossRef Aday, B., Yildiz, Y., Ulus, R., et al.: One-pot, efficient and green synthesis of acridinedione derivatives using highly monodisperse platinum nanoparticles supported with reduced graphene oxide. New J. Chem. 40, 748–754 (2016)CrossRef
5.
Zurück zum Zitat Akocak, S., Sen, B., Lolak, N., et al.: One-pot three-component synthesis of 2-amino-4H-chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as highly efficient and recyclable catalyst. Nano-Struct. Nano-Objects 11, 25–31 (2017)CrossRef Akocak, S., Sen, B., Lolak, N., et al.: One-pot three-component synthesis of 2-amino-4H-chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as highly efficient and recyclable catalyst. Nano-Struct. Nano-Objects 11, 25–31 (2017)CrossRef
6.
Zurück zum Zitat Alizadeh, T., Zare, M., Ganjali, M.R., et al.: A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2,4,6-trinitrotoluene (TNT) in natural waters and soil samples. Biosens. Bioelectron. 25, 1166–1172 (2010)CrossRef Alizadeh, T., Zare, M., Ganjali, M.R., et al.: A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2,4,6-trinitrotoluene (TNT) in natural waters and soil samples. Biosens. Bioelectron. 25, 1166–1172 (2010)CrossRef
7.
Zurück zum Zitat Anderson, R., McNicholas, T.P., Kleinhammes, A., et al.: NMR methods for characterizing the pore structures and hydrogen storage properties of microporous carbons. J. Am. Chem. Soc. 132, 8618 (2010)CrossRef Anderson, R., McNicholas, T.P., Kleinhammes, A., et al.: NMR methods for characterizing the pore structures and hydrogen storage properties of microporous carbons. J. Am. Chem. Soc. 132, 8618 (2010)CrossRef
8.
Zurück zum Zitat Ao, Z.M., Jiang, Q., Zhang, R.Q., et al.: Al doped graphene: a promising material for hydrogen storage at room temperature. J. Appl. Phys. 105, 074307 (2009)CrossRef Ao, Z.M., Jiang, Q., Zhang, R.Q., et al.: Al doped graphene: a promising material for hydrogen storage at room temperature. J. Appl. Phys. 105, 074307 (2009)CrossRef
9.
Zurück zum Zitat Ayranci, R., Baskaya, G., Guzel, M., et al.: Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: a comparative investigation. Nano-Struct. Nano-Objects 11, 13–19 (2017)CrossRef Ayranci, R., Baskaya, G., Guzel, M., et al.: Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: a comparative investigation. Nano-Struct. Nano-Objects 11, 13–19 (2017)CrossRef
10.
Zurück zum Zitat Ayranci, R., Baskaya, G., Guzel, M., et al.: Carbon-based nanomaterials for high-performance optoelectrochemical systems. ChemistrySelect 2(4), 1548–1555 (2017)CrossRef Ayranci, R., Baskaya, G., Guzel, M., et al.: Carbon-based nanomaterials for high-performance optoelectrochemical systems. ChemistrySelect 2(4), 1548–1555 (2017)CrossRef
11.
Zurück zum Zitat Balog, R., Jorgensen, B., Wells, J., et al.: Atomic hydrogen adsorbate structures on graphene. J. Am. Chem. Soc. 131, 8744–8745 (2009)CrossRef Balog, R., Jorgensen, B., Wells, J., et al.: Atomic hydrogen adsorbate structures on graphene. J. Am. Chem. Soc. 131, 8744–8745 (2009)CrossRef
12.
Zurück zum Zitat Bai, H., Li, C., Shi, G.: Functional composite materials based on chemically converted graphene. Adv. Mater. 23, 1089–1115 (2011)CrossRef Bai, H., Li, C., Shi, G.: Functional composite materials based on chemically converted graphene. Adv. Mater. 23, 1089–1115 (2011)CrossRef
13.
Zurück zum Zitat Bai, S., Shen, X.: Graphene-inorganic nanocomposites. RSC Adv. 2, 64–98 (2012)CrossRef Bai, S., Shen, X.: Graphene-inorganic nanocomposites. RSC Adv. 2, 64–98 (2012)CrossRef
14.
Zurück zum Zitat Balandin, A.A., Ghosh, S., Bao, W., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)CrossRef Balandin, A.A., Ghosh, S., Bao, W., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)CrossRef
15.
Zurück zum Zitat Baskaya, G., Esirden, I., Erken, E., et al.: Synthesis of 5-substituted-1H-tetrazole derivatives using monodisperse carbon black decorated Pt nanoparticles as heterogeneous nanocatalysts. J. Nanosci. Nanotechnol. 17, 1992–1999 (2017)CrossRef Baskaya, G., Esirden, I., Erken, E., et al.: Synthesis of 5-substituted-1H-tetrazole derivatives using monodisperse carbon black decorated Pt nanoparticles as heterogeneous nanocatalysts. J. Nanosci. Nanotechnol. 17, 1992–1999 (2017)CrossRef
16.
Zurück zum Zitat Baskaya, G., Yıldız, Y., Savk, A., et al.: Rapid, sensitive, and reusable detection of glucose by highly monodisperse nickel nanoparticles decorated functionalized multi-walled carbon nanotubes. Biosens. Bioelectron. 91, 728–733 (2017)CrossRef Baskaya, G., Yıldız, Y., Savk, A., et al.: Rapid, sensitive, and reusable detection of glucose by highly monodisperse nickel nanoparticles decorated functionalized multi-walled carbon nanotubes. Biosens. Bioelectron. 91, 728–733 (2017)CrossRef
17.
Zurück zum Zitat Basu, S., Bhattacharyya, P.: Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuators B 173, 1–21 (2012)CrossRef Basu, S., Bhattacharyya, P.: Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuators B 173, 1–21 (2012)CrossRef
18.
Zurück zum Zitat Bolotin, K.I., Sikes, K.J., Jiang, Z., et al.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)CrossRef Bolotin, K.I., Sikes, K.J., Jiang, Z., et al.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)CrossRef
19.
Zurück zum Zitat Bonaccorso, F., Sun, Z., Hasan, T., et al.: Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010)CrossRef Bonaccorso, F., Sun, Z., Hasan, T., et al.: Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010)CrossRef
20.
Zurück zum Zitat Booth, T.J., Blake, P., Nair, R.R., et al.: Macroscopic graphene membranes and their extraordinary stiffness. Nano Lett. 8, 2442–2446 (2008)CrossRef Booth, T.J., Blake, P., Nair, R.R., et al.: Macroscopic graphene membranes and their extraordinary stiffness. Nano Lett. 8, 2442–2446 (2008)CrossRef
21.
Zurück zum Zitat Bozkurt, S., Tosun, B., Sen, B., et al.: A hydrogen peroxide sensor based on TNM functionalized reduced graphene oxide grafted with highly monodisperse Pd nanoparticles. Anal. Chim. Acta 989C, 88–94 (2017)CrossRef Bozkurt, S., Tosun, B., Sen, B., et al.: A hydrogen peroxide sensor based on TNM functionalized reduced graphene oxide grafted with highly monodisperse Pd nanoparticles. Anal. Chim. Acta 989C, 88–94 (2017)CrossRef
22.
Zurück zum Zitat Brodie, B.C.: On the atomic weight of graphite. Philos. Trans. R Soc. 149, 249–259 (1859)CrossRef Brodie, B.C.: On the atomic weight of graphite. Philos. Trans. R Soc. 149, 249–259 (1859)CrossRef
23.
Zurück zum Zitat Burress, J.W., Gadipelli, S., Ford, J., et al.: Graphene oxide framework materials: theoretical predictions and experimental results. Angew. Chem. Int. Ed. 49, 8902 (2010)CrossRef Burress, J.W., Gadipelli, S., Ford, J., et al.: Graphene oxide framework materials: theoretical predictions and experimental results. Angew. Chem. Int. Ed. 49, 8902 (2010)CrossRef
24.
Zurück zum Zitat Celik, B., Baskaya, G., Karatepe, O., et al.: Monodisperse Pt(0)/DPA@GO nanoparticles as highly active catalysts for alcohol oxidation and dehydrogenation of DMAB. Int. J. Hydrogen Energy 41, 5661–5669 (2016)CrossRef Celik, B., Baskaya, G., Karatepe, O., et al.: Monodisperse Pt(0)/DPA@GO nanoparticles as highly active catalysts for alcohol oxidation and dehydrogenation of DMAB. Int. J. Hydrogen Energy 41, 5661–5669 (2016)CrossRef
25.
Zurück zum Zitat Celik, B., Erken, E., Eris, S., et al.: Highly monodisperse Pt(0)@AC NPs as highly efficient and reusable catalysts: the effect of the surfactant on their catalytic activities in room temperature dehydrocoupling of DMAB. Catal. Sci. Technol. 6, 1685–1692 (2016)CrossRef Celik, B., Erken, E., Eris, S., et al.: Highly monodisperse Pt(0)@AC NPs as highly efficient and reusable catalysts: the effect of the surfactant on their catalytic activities in room temperature dehydrocoupling of DMAB. Catal. Sci. Technol. 6, 1685–1692 (2016)CrossRef
26.
Zurück zum Zitat Celik, B., Kuzu, S., Erken, E., et al.: Nearly monodisperse carbon nanotube furnished nanocatalysts as highly efficient and reusable catalyst for dehydrocoupling of DMAB and C1 to C3 alcohol oxidation. Int. J. Hydrogen Energy 41, 3093–3101 (2016)CrossRef Celik, B., Kuzu, S., Erken, E., et al.: Nearly monodisperse carbon nanotube furnished nanocatalysts as highly efficient and reusable catalyst for dehydrocoupling of DMAB and C1 to C3 alcohol oxidation. Int. J. Hydrogen Energy 41, 3093–3101 (2016)CrossRef
27.
Zurück zum Zitat Celik, B., Yildiz, Y., Erken, E., et al.: Monodisperse palladium-cobalt alloy nanoparticles assembled on poly (N-vinyl-pyrrolidone) (PVP) as highly effective catalyst for the dimethylamine borane (DMAB) dehydrocoupling. RSC Adv. 6, 24097–24102 (2016)CrossRef Celik, B., Yildiz, Y., Erken, E., et al.: Monodisperse palladium-cobalt alloy nanoparticles assembled on poly (N-vinyl-pyrrolidone) (PVP) as highly effective catalyst for the dimethylamine borane (DMAB) dehydrocoupling. RSC Adv. 6, 24097–24102 (2016)CrossRef
28.
Zurück zum Zitat Chae, H.K., Siberio-Perez, D.Y., Kim, J., et al.: A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004)CrossRef Chae, H.K., Siberio-Perez, D.Y., Kim, J., et al.: A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004)CrossRef
29.
Zurück zum Zitat Chen, D., Feng, H., Li, J.: Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027–6053 (2012)CrossRef Chen, D., Feng, H., Li, J.: Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027–6053 (2012)CrossRef
30.
Zurück zum Zitat Chen, L., Hernandez, Y., Feng, X., et al.: From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew. Chem. Int. Ed. 51, 7640–7654 (2012)CrossRef Chen, L., Hernandez, Y., Feng, X., et al.: From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew. Chem. Int. Ed. 51, 7640–7654 (2012)CrossRef
31.
Zurück zum Zitat Chen, Y., Zhang, B., Liu, G., et al.: Graphene and its derivatives: switching ON and OFF. Chem. Soc. Rev. 41, 4688–4707 (2012)CrossRef Chen, Y., Zhang, B., Liu, G., et al.: Graphene and its derivatives: switching ON and OFF. Chem. Soc. Rev. 41, 4688–4707 (2012)CrossRef
32.
Zurück zum Zitat Choi, H.J., Jung, S.M., Seo, J.M., et al.: Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1, 534–551 (2012)CrossRef Choi, H.J., Jung, S.M., Seo, J.M., et al.: Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1, 534–551 (2012)CrossRef
33.
Zurück zum Zitat Dai, L., Chang, D.W., Baek, J.B., et al.: Carbon nanomaterials for advanced energy conversion and storage. Small 8, 1130–1166 (2012)CrossRef Dai, L., Chang, D.W., Baek, J.B., et al.: Carbon nanomaterials for advanced energy conversion and storage. Small 8, 1130–1166 (2012)CrossRef
34.
Zurück zum Zitat Dasdelen, Z., Yıldız, Y., Eris, S., et al.: Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP hybrid material for methanol oxidation reaction. Appl. Catal. B 219C, 511–516 (2017)CrossRef Dasdelen, Z., Yıldız, Y., Eris, S., et al.: Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP hybrid material for methanol oxidation reaction. Appl. Catal. B 219C, 511–516 (2017)CrossRef
35.
Zurück zum Zitat Demirci, T., Celik, B., Yıldız, Y., et al.: One-pot synthesis of Hantzsch dihydropyridines using highly efficient and stable PdRuNi@GO catalyst. RSC Adv. 6, 76948–76956 (2016)CrossRef Demirci, T., Celik, B., Yıldız, Y., et al.: One-pot synthesis of Hantzsch dihydropyridines using highly efficient and stable PdRuNi@GO catalyst. RSC Adv. 6, 76948–76956 (2016)CrossRef
36.
Zurück zum Zitat Demir, E., Savk, A., Sen, B., et al.: A novel monodisperse metal nanoparticles anchored graphene oxide as counter electrode for dye-sensitized solar cells. Nano-Struct. Nano-Objects 12, 41–45 (2017)CrossRef Demir, E., Savk, A., Sen, B., et al.: A novel monodisperse metal nanoparticles anchored graphene oxide as counter electrode for dye-sensitized solar cells. Nano-Struct. Nano-Objects 12, 41–45 (2017)CrossRef
37.
Zurück zum Zitat Demir, E., Sen, B., Sen, F.: Highly efficient nanoparticles and f-MWCNT nanocomposites based counter electrodes for dye-sensitized solar cells. Nano-Struct. Nano-Objects 11, 39–45 (2017)CrossRef Demir, E., Sen, B., Sen, F.: Highly efficient nanoparticles and f-MWCNT nanocomposites based counter electrodes for dye-sensitized solar cells. Nano-Struct. Nano-Objects 11, 39–45 (2017)CrossRef
38.
Zurück zum Zitat Dreyer, D.R., Ruoff, R.S., Bielawski, C.W.: From conception to realization: an historial account of graphene and some perspectives for its future. Angew. Chem. Int. Ed. 51, 7640–7654 (2012)CrossRef Dreyer, D.R., Ruoff, R.S., Bielawski, C.W.: From conception to realization: an historial account of graphene and some perspectives for its future. Angew. Chem. Int. Ed. 51, 7640–7654 (2012)CrossRef
39.
Zurück zum Zitat Dong, L.X., Chen, Q.: Properties, synthesis, and characterization of graphene. Front. Mater. Sci. China 4, 45–51 (2010)CrossRef Dong, L.X., Chen, Q.: Properties, synthesis, and characterization of graphene. Front. Mater. Sci. China 4, 45–51 (2010)CrossRef
40.
Zurück zum Zitat Du, X., Skachko, I., Barker, A., et al.: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008)CrossRef Du, X., Skachko, I., Barker, A., et al.: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008)CrossRef
41.
Zurück zum Zitat Eda, G., Chhowalla, M.: Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22, 2392–2415 (2010)CrossRef Eda, G., Chhowalla, M.: Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22, 2392–2415 (2010)CrossRef
42.
Zurück zum Zitat Erken, E., Esirden, I., Kaya, M., et al.: A rapid and novel method for the synthesis of 5-substituted 1H-tetrazole catalyzed by exceptional reusable monodisperse Pt NPs@AC under the microwave irradiation. RSC Adv. 5, 68558–68564 (2015)CrossRef Erken, E., Esirden, I., Kaya, M., et al.: A rapid and novel method for the synthesis of 5-substituted 1H-tetrazole catalyzed by exceptional reusable monodisperse Pt NPs@AC under the microwave irradiation. RSC Adv. 5, 68558–68564 (2015)CrossRef
43.
Zurück zum Zitat Erken, E., Pamuk, H., Karatepe, O., et al.: New Pt(0) nanoparticles as highly active and reusable catalysts in the C1–C3 alcohol oxidation and the room temperature dehydrocoupling of dimethylamine-borane (DMAB). J. Cluster Sci. 27, 9–23 (2016)CrossRef Erken, E., Pamuk, H., Karatepe, O., et al.: New Pt(0) nanoparticles as highly active and reusable catalysts in the C1–C3 alcohol oxidation and the room temperature dehydrocoupling of dimethylamine-borane (DMAB). J. Cluster Sci. 27, 9–23 (2016)CrossRef
44.
Zurück zum Zitat Erken, E., Yildiz, Y., Kilbas, B., et al.: Synthesis and characterization of nearly monodisperse Pt nanoparticles for C1 to C3 alcohol oxidation and dehydrogenation of dimethylamine-borane (DMAB). J. Nanosci. Nanotechnol. 16, 5944–5950 (2016)CrossRef Erken, E., Yildiz, Y., Kilbas, B., et al.: Synthesis and characterization of nearly monodisperse Pt nanoparticles for C1 to C3 alcohol oxidation and dehydrogenation of dimethylamine-borane (DMAB). J. Nanosci. Nanotechnol. 16, 5944–5950 (2016)CrossRef
45.
Zurück zum Zitat Eris, S., Dasdelen, Z., Sen, F., et al.: Investigation of electrocatalytic activity and stability of Pt@f-VC catalyst prepared by in-situ synthesis for Methanol electrooxidation. Int. J. Hydrogen Energy 43(1), 385–390 (2018)CrossRef Eris, S., Dasdelen, Z., Sen, F., et al.: Investigation of electrocatalytic activity and stability of Pt@f-VC catalyst prepared by in-situ synthesis for Methanol electrooxidation. Int. J. Hydrogen Energy 43(1), 385–390 (2018)CrossRef
46.
Zurück zum Zitat Eris, S., Dasdelen, Z., Sen, F.: Enhanced electrocatalytic activity and stability of monodisperse Pt nanocomposites for direct methanol fuel cells. J. Colloid Interface Sci. 513, 767–773 (2018)CrossRef Eris, S., Dasdelen, Z., Sen, F.: Enhanced electrocatalytic activity and stability of monodisperse Pt nanocomposites for direct methanol fuel cells. J. Colloid Interface Sci. 513, 767–773 (2018)CrossRef
47.
Zurück zum Zitat Eris, S., Dasdelen, Z., Yildiz, Y., et al.: Nanostructured polyaniline-rGO decorated platinum catalyst with enhanced activity and durability for methanol oxidation. Int. J. Hydrogen Energy 43(3), 1337–1343 (2018)CrossRef Eris, S., Dasdelen, Z., Yildiz, Y., et al.: Nanostructured polyaniline-rGO decorated platinum catalyst with enhanced activity and durability for methanol oxidation. Int. J. Hydrogen Energy 43(3), 1337–1343 (2018)CrossRef
48.
Zurück zum Zitat Esirden, I., Erken, E., Kaya, M., et al.: Monodisperse Pt NPs@rGO as highly efficient and reusable heterogeneous catalysts for the synthesis of 5-substituted 1H-tetrazole derivatives. Catal. Sci. Technol. 5, 4452–4457 (2015)CrossRef Esirden, I., Erken, E., Kaya, M., et al.: Monodisperse Pt NPs@rGO as highly efficient and reusable heterogeneous catalysts for the synthesis of 5-substituted 1H-tetrazole derivatives. Catal. Sci. Technol. 5, 4452–4457 (2015)CrossRef
50.
Zurück zum Zitat Gadipelli, S., Guo, Z.X.: Graphene-based materials: synthesis and gas sorption, storage and separation. Prog. Mater. Sci. 69, 1–60 (2015)CrossRef Gadipelli, S., Guo, Z.X.: Graphene-based materials: synthesis and gas sorption, storage and separation. Prog. Mater. Sci. 69, 1–60 (2015)CrossRef
51.
Zurück zum Zitat Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef
52.
Zurück zum Zitat Georgakilas, V., Otyepka, M., Bourlinos, A.B., et al.: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156–6214 (2012)CrossRef Georgakilas, V., Otyepka, M., Bourlinos, A.B., et al.: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156–6214 (2012)CrossRef
53.
Zurück zum Zitat Giraldo, J.P., Landry, M.P., Faltermeier, S.M., et al.: A nanobionic approach to augment plant photosynthesis and biochemical sensing using targeted nanoparticles. Nat. Mater. 13, 400–408 (2014)CrossRef Giraldo, J.P., Landry, M.P., Faltermeier, S.M., et al.: A nanobionic approach to augment plant photosynthesis and biochemical sensing using targeted nanoparticles. Nat. Mater. 13, 400–408 (2014)CrossRef
54.
Zurück zum Zitat Goksu, H., Celik, B., Yildiz, Y., et al.: Superior monodisperse CNT-supported CoPd (CoPd@CNT) nanoparticles for selective reduction of nitro compounds to primary amines with NaBH4 in an aqueous medium. ChemistrySelect 1(10), 2366–2372 (2016)CrossRef Goksu, H., Celik, B., Yildiz, Y., et al.: Superior monodisperse CNT-supported CoPd (CoPd@CNT) nanoparticles for selective reduction of nitro compounds to primary amines with NaBH4 in an aqueous medium. ChemistrySelect 1(10), 2366–2372 (2016)CrossRef
55.
Zurück zum Zitat Goksu, H., Kilbas, B., Sen, F.: Recent advances in the reduction of nitro compounds by heterogenous catalysts. Curr. Org. Chem. 21(9), 794–820 (2017)CrossRef Goksu, H., Kilbas, B., Sen, F.: Recent advances in the reduction of nitro compounds by heterogenous catalysts. Curr. Org. Chem. 21(9), 794–820 (2017)CrossRef
56.
Zurück zum Zitat Goksu, H., Yildiz, Y., Celik, B., et al.: Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of reduced graphene oxide furnished platinum nanocatalyst. Catal. Sci. Technol. 6, 2318–2324 (2016)CrossRef Goksu, H., Yildiz, Y., Celik, B., et al.: Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of reduced graphene oxide furnished platinum nanocatalyst. Catal. Sci. Technol. 6, 2318–2324 (2016)CrossRef
57.
Zurück zum Zitat Goksu, H., Yildiz, Y., Celik, B., et al.: Highly efficient and monodisperse graphene oxide furnished Ru/Pd nanoparticles for the dehalogenation of aryl halides via ammonia borane. ChemistrySelect 1(5), 953–958 (2016)CrossRef Goksu, H., Yildiz, Y., Celik, B., et al.: Highly efficient and monodisperse graphene oxide furnished Ru/Pd nanoparticles for the dehalogenation of aryl halides via ammonia borane. ChemistrySelect 1(5), 953–958 (2016)CrossRef
58.
Zurück zum Zitat Goksu, H., Zengin, N., Karaosman, N., et al.: Highly active and reusable Pd/AlO(OH) nanoparticles for the Suzuki cross-coupling reaction. Curr. Organocatal. 5, 1–8 (2018)CrossRef Goksu, H., Zengin, N., Karaosman, N., et al.: Highly active and reusable Pd/AlO(OH) nanoparticles for the Suzuki cross-coupling reaction. Curr. Organocatal. 5, 1–8 (2018)CrossRef
59.
Zurück zum Zitat Gulcin, I., Taslimi, P., Aygün, A., et al.: Antidiabetic and antiparasitic potentials: inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes. Int. J. Biol. Macromol. 119, 741–746 (2018)CrossRef Gulcin, I., Taslimi, P., Aygün, A., et al.: Antidiabetic and antiparasitic potentials: inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes. Int. J. Biol. Macromol. 119, 741–746 (2018)CrossRef
61.
Zurück zum Zitat Hou, J., Yang, C., Cheng, H., et al.: Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production. Phys. Chem. Chem. Phys. 15, 15660 (2013)CrossRef Hou, J., Yang, C., Cheng, H., et al.: Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production. Phys. Chem. Chem. Phys. 15, 15660 (2013)CrossRef
62.
Zurück zum Zitat Huang, X., Qi, X., Boey, F., et al.: Graphene-based composites. Chem. Soc. Rev. 41, 666–686 (2012)CrossRef Huang, X., Qi, X., Boey, F., et al.: Graphene-based composites. Chem. Soc. Rev. 41, 666–686 (2012)CrossRef
63.
Zurück zum Zitat Huang, X., Yin, Z., Wu, S., et al.: Graphene-based materials: synthesis, characterization, properties, and applications. Small 7, 1876–1902 (2011)CrossRef Huang, X., Yin, Z., Wu, S., et al.: Graphene-based materials: synthesis, characterization, properties, and applications. Small 7, 1876–1902 (2011)CrossRef
64.
Zurück zum Zitat Huang, X., Zeng, Z., Fan, Z., et al.: Graphene-based electrodes. Adv. Mater. 24, 5979–6004 (2012)CrossRef Huang, X., Zeng, Z., Fan, Z., et al.: Graphene-based electrodes. Adv. Mater. 24, 5979–6004 (2012)CrossRef
65.
Zurück zum Zitat Iverson, N.M., Barone, P.W., Sen, F., et al.: In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat. Nanotechnol. 11, 873–880 (2013)CrossRef Iverson, N.M., Barone, P.W., Sen, F., et al.: In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat. Nanotechnol. 11, 873–880 (2013)CrossRef
66.
Zurück zum Zitat Jiang, Z., Henriksen, E., Tung, L., et al.: Infrared spectroscopy of Landau levels of graphene. Phys. Rev. Lett. 98, 197403 (2007)CrossRef Jiang, Z., Henriksen, E., Tung, L., et al.: Infrared spectroscopy of Landau levels of graphene. Phys. Rev. Lett. 98, 197403 (2007)CrossRef
67.
Zurück zum Zitat Jiao, L., Zhang, L., Wang, X., et al.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009)CrossRef Jiao, L., Zhang, L., Wang, X., et al.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009)CrossRef
68.
Zurück zum Zitat Karatepe, O., Yildiz, Y., Pamuk, H., et al.: Enhanced electrocatalytic activity and durability of highly monodisperse Pt@PPy-PANI nanocomposites as a novel catalyst for electro-oxidation of methanol. RSC Adv. 6, 50851–50857 (2016)CrossRef Karatepe, O., Yildiz, Y., Pamuk, H., et al.: Enhanced electrocatalytic activity and durability of highly monodisperse Pt@PPy-PANI nanocomposites as a novel catalyst for electro-oxidation of methanol. RSC Adv. 6, 50851–50857 (2016)CrossRef
69.
Zurück zum Zitat Kim, G., Jhi, S.H., Park, N., et al.: Optimization of metal dispersion in doped graphitic materials for hydrogen storage. Phys. Rev. B: Condens. Matter 78, 085408 (2008)CrossRef Kim, G., Jhi, S.H., Park, N., et al.: Optimization of metal dispersion in doped graphitic materials for hydrogen storage. Phys. Rev. B: Condens. Matter 78, 085408 (2008)CrossRef
70.
Zurück zum Zitat Kim, K., Choi, J.Y., Kim, T., et al.: A role for graphene in silicon-based semiconductor devices. Nature 479, 338–344 (2011)CrossRef Kim, K., Choi, J.Y., Kim, T., et al.: A role for graphene in silicon-based semiconductor devices. Nature 479, 338–344 (2011)CrossRef
71.
Zurück zum Zitat Koskun, Y., Şavk, A., Şen, B., et al.: Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites. Anal. Chim. Acta 1010, 37–43 (2018)CrossRef Koskun, Y., Şavk, A., Şen, B., et al.: Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites. Anal. Chim. Acta 1010, 37–43 (2018)CrossRef
72.
Zurück zum Zitat Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., et al.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)CrossRef Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., et al.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)CrossRef
73.
Zurück zum Zitat Kuila, T., Bose, S., Mishra, A.K., et al.: Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 57, 1061–1105 (2012)CrossRef Kuila, T., Bose, S., Mishra, A.K., et al.: Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 57, 1061–1105 (2012)CrossRef
74.
Zurück zum Zitat Kwon, S.Y., Ciobanu, C.V., Petrova, V., et al.: Growth of semiconducting graphene on palladium. Nano Lett. 9, 3985–3990 (2009)CrossRef Kwon, S.Y., Ciobanu, C.V., Petrova, V., et al.: Growth of semiconducting graphene on palladium. Nano Lett. 9, 3985–3990 (2009)CrossRef
75.
Zurück zum Zitat Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRef Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRef
76.
Zurück zum Zitat Li, J.R., Kuppler, R.J., Zhou, H.C.: Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009)CrossRef Li, J.R., Kuppler, R.J., Zhou, H.C.: Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009)CrossRef
77.
Zurück zum Zitat Liu, J., Cao, G., Yang, Z., et al.: Oriented nanostructures for energy conversion and storage. Chemsuschem 1, 676–697 (2008)CrossRef Liu, J., Cao, G., Yang, Z., et al.: Oriented nanostructures for energy conversion and storage. Chemsuschem 1, 676–697 (2008)CrossRef
78.
Zurück zum Zitat Liu, C., Li, F., Ma, L.P., Cheng, H.M.: Advanced materials for energy storage. Adv. Mater. 22, E28–E62 (2010)CrossRef Liu, C., Li, F., Ma, L.P., Cheng, H.M.: Advanced materials for energy storage. Adv. Mater. 22, E28–E62 (2010)CrossRef
79.
Zurück zum Zitat Lueking, A.D., Gutierrez, H.R., Fenseca, D.A., et al.: Combined hydrogen production and storage with subsequent carbon crystallization. J. Am. Chem. Soc. 128, 7758 (2006)CrossRef Lueking, A.D., Gutierrez, H.R., Fenseca, D.A., et al.: Combined hydrogen production and storage with subsequent carbon crystallization. J. Am. Chem. Soc. 128, 7758 (2006)CrossRef
80.
Zurück zum Zitat Luo, B., Liu, S., Zhi, L.: Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small 8, 630–646 (2012)CrossRef Luo, B., Liu, S., Zhi, L.: Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small 8, 630–646 (2012)CrossRef
81.
Zurück zum Zitat Machado, B.F., Serp, P.: Graphene-based materials for catalysis. Catal. Sci. Technol. 2, 54–75 (2012)CrossRef Machado, B.F., Serp, P.: Graphene-based materials for catalysis. Catal. Sci. Technol. 2, 54–75 (2012)CrossRef
82.
Zurück zum Zitat Malig, J., Jux, N., Guldi, D.M.: Toward multifunctional wet chemically functionalized graphene-integration of oligomeric, molecular, and particulate building blocks that reveal photoactivity and redox activity. Acc. Chem. Res. 46, 53–64 (2013)CrossRef Malig, J., Jux, N., Guldi, D.M.: Toward multifunctional wet chemically functionalized graphene-integration of oligomeric, molecular, and particulate building blocks that reveal photoactivity and redox activity. Acc. Chem. Res. 46, 53–64 (2013)CrossRef
83.
Zurück zum Zitat Mao, S., Pu, H., Chen, J.: Graphene oxide and its reduction: modeling and experimental progress. RSC Adv. 2, 2643–2662 (2012)CrossRef Mao, S., Pu, H., Chen, J.: Graphene oxide and its reduction: modeling and experimental progress. RSC Adv. 2, 2643–2662 (2012)CrossRef
84.
Zurück zum Zitat Neto, A.H.C., Guinea, F., Peres, N., et al.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)CrossRef Neto, A.H.C., Guinea, F., Peres, N., et al.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)CrossRef
85.
Zurück zum Zitat Novoselov, K.S., Falko, V.I., Colombo, L., et al.: A roadmap for graphene. Nature 490, 192–200 (2012)CrossRef Novoselov, K.S., Falko, V.I., Colombo, L., et al.: A roadmap for graphene. Nature 490, 192–200 (2012)CrossRef
86.
Zurück zum Zitat Novoselov, K.S., Geim, A.K., Morozov, S.V., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef Novoselov, K.S., Geim, A.K., Morozov, S.V., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef
87.
Zurück zum Zitat Novoselov, K.S., Geim, A., Morozov, S.V., et al.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)CrossRef Novoselov, K.S., Geim, A., Morozov, S.V., et al.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)CrossRef
88.
Zurück zum Zitat Pamuk, H., Aday, B., Kaya, M., et al.: Pt Nps@GO as highly efficient and reusable catalyst for one-pot synthesis of acridinedione derivatives. RSC Adv. 5, 49295–49300 (2015)CrossRef Pamuk, H., Aday, B., Kaya, M., et al.: Pt Nps@GO as highly efficient and reusable catalyst for one-pot synthesis of acridinedione derivatives. RSC Adv. 5, 49295–49300 (2015)CrossRef
89.
Zurück zum Zitat Park, C., Anderson, P.E., Chambers, A., et al.: Further studies of the interaction of hydrogen with graphite nanofibers. J. Phys. Chem. B 103, 10572–10581 (1999)CrossRef Park, C., Anderson, P.E., Chambers, A., et al.: Further studies of the interaction of hydrogen with graphite nanofibers. J. Phys. Chem. B 103, 10572–10581 (1999)CrossRef
90.
Zurück zum Zitat Patchkovskii, S., Tse, J.S., Yurchenko, S.N., et al.: Graphene nanostructures as tunable storage media for molecular hydrogen. Proc. Natl. Acad. Sci. USA 102, 10439–10444 (2005)CrossRef Patchkovskii, S., Tse, J.S., Yurchenko, S.N., et al.: Graphene nanostructures as tunable storage media for molecular hydrogen. Proc. Natl. Acad. Sci. USA 102, 10439–10444 (2005)CrossRef
91.
Zurück zum Zitat Pierson, H.O.: Handbook of Carbon, Graphite, Diamond and Fullerenes. New Jersey (1993) Pierson, H.O.: Handbook of Carbon, Graphite, Diamond and Fullerenes. New Jersey (1993)
92.
Zurück zum Zitat Pumera, M.: Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets. Langmuir 23, 6453–6458 (2007)CrossRef Pumera, M.: Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets. Langmuir 23, 6453–6458 (2007)CrossRef
93.
Zurück zum Zitat Pumera, M.: The electrochemistry of carbon nanotubes: fundamentals and applications. Chem. Eur. J. 15, 4970–4978 (2009)CrossRef Pumera, M.: The electrochemistry of carbon nanotubes: fundamentals and applications. Chem. Eur. J. 15, 4970–4978 (2009)CrossRef
94.
Zurück zum Zitat Pumera, M.: Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4, 668–674 (2011)CrossRef Pumera, M.: Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4, 668–674 (2011)CrossRef
95.
Zurück zum Zitat Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S.: Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752–7757 (2009)CrossRef Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S.: Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752–7757 (2009)CrossRef
96.
Zurück zum Zitat Rozhkov, A.V., Giavaras, G., Bliokh, Y.P., et al.: Electronic properties of mesoscopic graphene structures: charge confinement and control of spin and charge transport. Phys. Rep. 503, 77–114 (2011)CrossRef Rozhkov, A.V., Giavaras, G., Bliokh, Y.P., et al.: Electronic properties of mesoscopic graphene structures: charge confinement and control of spin and charge transport. Phys. Rep. 503, 77–114 (2011)CrossRef
97.
Zurück zum Zitat Sahin, B., Aygun, A., Gunduz, H., et al.: Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids Surf. B 163, 119–124 (2018)CrossRef Sahin, B., Aygun, A., Gunduz, H., et al.: Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids Surf. B 163, 119–124 (2018)CrossRef
98.
Zurück zum Zitat Sahin, B., Demir, E., Aygun, A., et al.: Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line. J. Biotechnol. 260C, 79–83 (2017)CrossRef Sahin, B., Demir, E., Aygun, A., et al.: Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line. J. Biotechnol. 260C, 79–83 (2017)CrossRef
99.
Zurück zum Zitat Sahoo, N.G., Pan, Y., Li, L., et al.: Graphene-based materials for energy conversion. Adv. Mater. 24, 4203–4210 (2012)CrossRef Sahoo, N.G., Pan, Y., Li, L., et al.: Graphene-based materials for energy conversion. Adv. Mater. 24, 4203–4210 (2012)CrossRef
100.
Zurück zum Zitat Sarma, S.D., Adam, S., Hwang, E.H., et al.: Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011)CrossRef Sarma, S.D., Adam, S., Hwang, E.H., et al.: Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011)CrossRef
101.
Zurück zum Zitat Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010)CrossRef Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010)CrossRef
102.
Zurück zum Zitat Sen, B., Akdere, E.H., Savk, A., et al.: A novel thiocarbamide functionalized graphene oxide supported bimetallic monodisperse Rh-Pt nanoparticles (RhPt/TC@GO NPs) for Knoevenagel condensation of aryl aldehydes together with malononitrile. Appl. Catal. B 225(5), 148–153 (2018)CrossRef Sen, B., Akdere, E.H., Savk, A., et al.: A novel thiocarbamide functionalized graphene oxide supported bimetallic monodisperse Rh-Pt nanoparticles (RhPt/TC@GO NPs) for Knoevenagel condensation of aryl aldehydes together with malononitrile. Appl. Catal. B 225(5), 148–153 (2018)CrossRef
105.
Zurück zum Zitat Sen, B., Demirkan, B., Savk, A., et al.: Trimetallic PdRuNi nanocomposites decorated on graphene oxide: a superior catalyst for the hydrogen evolution reaction. Int. J. Hydrogen Energy 43, 17984–17992 (2018)CrossRef Sen, B., Demirkan, B., Savk, A., et al.: Trimetallic PdRuNi nanocomposites decorated on graphene oxide: a superior catalyst for the hydrogen evolution reaction. Int. J. Hydrogen Energy 43, 17984–17992 (2018)CrossRef
106.
Zurück zum Zitat Sen, B., Demirkan, B., Simsek, B., et al.: Monodisperse palladium nanocatalysts for dehydrocoupling of dimethylamineborane. Nano-Struct. Nano-Objects 16, 209–214 (2018)CrossRef Sen, B., Demirkan, B., Simsek, B., et al.: Monodisperse palladium nanocatalysts for dehydrocoupling of dimethylamineborane. Nano-Struct. Nano-Objects 16, 209–214 (2018)CrossRef
107.
Zurück zum Zitat Sen, B., Kuyuldar, E., Demirkan, B., et al.: Highly efficient polymer supported monodisperse ruthenium-nickel nanocomposites for dehydrocoupling of dimethylamine borane. J. Colloid Interface Sci. 526, 480–486 (2018)CrossRef Sen, B., Kuyuldar, E., Demirkan, B., et al.: Highly efficient polymer supported monodisperse ruthenium-nickel nanocomposites for dehydrocoupling of dimethylamine borane. J. Colloid Interface Sci. 526, 480–486 (2018)CrossRef
108.
Zurück zum Zitat Sen, B., Kuzu, S., Demir, E., et al.: Highly efficient catalytic dehydrogenation of dimethyl ammonia borane via monodisperse palladium-nickel alloy nanoparticles assembled on PEDOT. Int. J. Hydrogen Energy 42(36), 23307–23314 (2017)CrossRef Sen, B., Kuzu, S., Demir, E., et al.: Highly efficient catalytic dehydrogenation of dimethyl ammonia borane via monodisperse palladium-nickel alloy nanoparticles assembled on PEDOT. Int. J. Hydrogen Energy 42(36), 23307–23314 (2017)CrossRef
109.
Zurück zum Zitat Sen, B., Kuzu, S., Demir, E., et al.: Highly monodisperse RuCo nanoparticles decorated on functionalized multiwalled carbon nanotube with the highest observed catalytic activity in the dehydrogenation of dimethylamine borane. Int. J. Hydrogen Energy 42(36), 23292–23298 (2017)CrossRef Sen, B., Kuzu, S., Demir, E., et al.: Highly monodisperse RuCo nanoparticles decorated on functionalized multiwalled carbon nanotube with the highest observed catalytic activity in the dehydrogenation of dimethylamine borane. Int. J. Hydrogen Energy 42(36), 23292–23298 (2017)CrossRef
110.
Zurück zum Zitat Sen, B., Kuzu, S., Demir, E., et al.: Hydrogen liberation from the dehydrocoupling of dimethylamine-borane at room temperature by using novel and highly monodispersed RuPtNi nanocatalysts decorated with graphene oxide. Int. J. Hydrogen Energy 42(36), 23299–23306 (2017)CrossRef Sen, B., Kuzu, S., Demir, E., et al.: Hydrogen liberation from the dehydrocoupling of dimethylamine-borane at room temperature by using novel and highly monodispersed RuPtNi nanocatalysts decorated with graphene oxide. Int. J. Hydrogen Energy 42(36), 23299–23306 (2017)CrossRef
111.
Zurück zum Zitat Sen, B., Kuzu, S., Demir, E., et al.: Monodisperse palladium-nickel alloy nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine-borane. Int. J. Hydrogen Energy 42(36), 23276–23283 (2017)CrossRef Sen, B., Kuzu, S., Demir, E., et al.: Monodisperse palladium-nickel alloy nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine-borane. Int. J. Hydrogen Energy 42(36), 23276–23283 (2017)CrossRef
112.
Zurück zum Zitat Sen, B., Kuzu, S., Demir, E., et al.: Polymer-graphene hybrid decorated Pt nanoparticles as highly efficient and reusable catalyst for the dehydrogenation of dimethylamine-borane at room temperature. Int. J. Hydrogen Energy 42(36), 23284–23291 (2017)CrossRef Sen, B., Kuzu, S., Demir, E., et al.: Polymer-graphene hybrid decorated Pt nanoparticles as highly efficient and reusable catalyst for the dehydrogenation of dimethylamine-borane at room temperature. Int. J. Hydrogen Energy 42(36), 23284–23291 (2017)CrossRef
113.
Zurück zum Zitat Sen, B., Lolak, N., Paralı, O., et al.: Bimetallic PdRu/graphene oxide based catalysts for the one-pot three-component synthesis of 2-amino-4H-chromene derivatives. Nano-Struct. Nano-Objects 12, 33–40 (2017)CrossRef Sen, B., Lolak, N., Paralı, O., et al.: Bimetallic PdRu/graphene oxide based catalysts for the one-pot three-component synthesis of 2-amino-4H-chromene derivatives. Nano-Struct. Nano-Objects 12, 33–40 (2017)CrossRef
114.
Zurück zum Zitat Sen, B., Savk, A., Kuyuldar, E., et al.: Hydrogen liberation from the hydrolytic dehydrogenation of hydrazine borane in acidic media. Int. J. Hydrogen Energy 43, 17978–17983 (2018)CrossRef Sen, B., Savk, A., Kuyuldar, E., et al.: Hydrogen liberation from the hydrolytic dehydrogenation of hydrazine borane in acidic media. Int. J. Hydrogen Energy 43, 17978–17983 (2018)CrossRef
115.
Zurück zum Zitat Sen, B., Savk, A., Sen, F.: Highly efficient monodisperse nanoparticles confined in the carbon black hybrid material for hydrogen liberation. J. Colloid Interface Sci. 520, 112–118 (2018)CrossRef Sen, B., Savk, A., Sen, F.: Highly efficient monodisperse nanoparticles confined in the carbon black hybrid material for hydrogen liberation. J. Colloid Interface Sci. 520, 112–118 (2018)CrossRef
116.
Zurück zum Zitat Sen, F., Boghossian, A.A., Sen, S., et al.: Observation of oscillatory surface reactions of riboflavin, trolox, and singlet oxygen using single carbon nanotube fluorescence spectroscopy. ACS Nano 6(12), 10632–10645 (2012)CrossRef Sen, F., Boghossian, A.A., Sen, S., et al.: Observation of oscillatory surface reactions of riboflavin, trolox, and singlet oxygen using single carbon nanotube fluorescence spectroscopy. ACS Nano 6(12), 10632–10645 (2012)CrossRef
117.
Zurück zum Zitat Sen, F., Boghossian, A.A., Sen, S., et al.: Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting. Adv. Energy Mater. 3(7), 881–893 (2013)CrossRef Sen, F., Boghossian, A.A., Sen, S., et al.: Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting. Adv. Energy Mater. 3(7), 881–893 (2013)CrossRef
118.
Zurück zum Zitat Sen, F., Gokagac, G.: Different sized platinum nanoparticles supported on carbon: an XPS study on these methanol oxidation catalysts. J. Phys. Chem. C 111, 5715–5720 (2007)CrossRef Sen, F., Gokagac, G.: Different sized platinum nanoparticles supported on carbon: an XPS study on these methanol oxidation catalysts. J. Phys. Chem. C 111, 5715–5720 (2007)CrossRef
119.
Zurück zum Zitat Sen, F., Gokagac, G., et al.: The activity of carbon supported platinum nanoparticles towards methanol oxidation reaction—the role of the metal precursor and a new surfactant, tert-octanethiol. J. Phys. Chem. C 111, 1467–1473 (2007)CrossRef Sen, F., Gokagac, G., et al.: The activity of carbon supported platinum nanoparticles towards methanol oxidation reaction—the role of the metal precursor and a new surfactant, tert-octanethiol. J. Phys. Chem. C 111, 1467–1473 (2007)CrossRef
120.
Zurück zum Zitat Sen, F., Gokagac, G.: Improving catalytic efficiency in the methanol oxidation reaction by inserting Ru in face-centered cubic Pt nanoparticles prepared by a new surfactant, tert-octanethiol. Energy Fuels 22(3), 1858–1864 (2008)CrossRef Sen, F., Gokagac, G.: Improving catalytic efficiency in the methanol oxidation reaction by inserting Ru in face-centered cubic Pt nanoparticles prepared by a new surfactant, tert-octanethiol. Energy Fuels 22(3), 1858–1864 (2008)CrossRef
121.
Zurück zum Zitat Sen, F., Gokagac, G.: Pt nanoparticles synthesized with new surfactants: improvement in C1–C3 alcohol oxidation catalytic activity. J. Appl. Electrochem. 44(1), 199–207 (2014)CrossRef Sen, F., Gokagac, G.: Pt nanoparticles synthesized with new surfactants: improvement in C1–C3 alcohol oxidation catalytic activity. J. Appl. Electrochem. 44(1), 199–207 (2014)CrossRef
122.
Zurück zum Zitat Sen, F., Ertan, S., Sen, S., et al.: Platinum nanocatalysts prepared with different surfactants for C1 to C3 alcohol oxidations and their surface morphologies by AFM. J. Nanopart. Res. 14, 922–926 (2012)CrossRef Sen, F., Ertan, S., Sen, S., et al.: Platinum nanocatalysts prepared with different surfactants for C1 to C3 alcohol oxidations and their surface morphologies by AFM. J. Nanopart. Res. 14, 922–926 (2012)CrossRef
123.
Zurück zum Zitat Sen, F., Karatas, Y., Gülcan, M., et al.: Amylamine stabilized platinum (0) nanoparticles: active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine-borane. RSC Adv. 4(4), 1526–1531 (2014)CrossRef Sen, F., Karatas, Y., Gülcan, M., et al.: Amylamine stabilized platinum (0) nanoparticles: active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine-borane. RSC Adv. 4(4), 1526–1531 (2014)CrossRef
124.
Zurück zum Zitat Sen, F., Ozturk, Z., Sen, S., et al.: The preparation and characterization of nano-sized Pt-Pd alloy catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation. J. Mater. Sci. 47, 8134–8144 (2012)CrossRef Sen, F., Ozturk, Z., Sen, S., et al.: The preparation and characterization of nano-sized Pt-Pd alloy catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation. J. Mater. Sci. 47, 8134–8144 (2012)CrossRef
125.
Zurück zum Zitat Sen, S., Sen, F., Boghossian, A.A., et al.: The effect of reductive dithiothreitol and trolox on nitric oxide quenching of single-walled carbon nanotubes. J. Phys. Chem. C 117(1), 593–602 (2013)CrossRef Sen, S., Sen, F., Boghossian, A.A., et al.: The effect of reductive dithiothreitol and trolox on nitric oxide quenching of single-walled carbon nanotubes. J. Phys. Chem. C 117(1), 593–602 (2013)CrossRef
126.
Zurück zum Zitat Sen, F., Sen, S., Gokagac, G., et al.: Efficiency enhancement in the methanol/ethanol oxidation reactions on Pt nanoparticles prepared by a new surfactant, 1,1-dimethyl heptanethiol, and surface morphology by AFM. Phys. Chem. Chem. Phys. 13, 1676–1684 (2011)CrossRef Sen, F., Sen, S., Gokagac, G., et al.: Efficiency enhancement in the methanol/ethanol oxidation reactions on Pt nanoparticles prepared by a new surfactant, 1,1-dimethyl heptanethiol, and surface morphology by AFM. Phys. Chem. Chem. Phys. 13, 1676–1684 (2011)CrossRef
127.
Zurück zum Zitat Sen, S., Sen, F., Gokagac, G.: Preparation and characterization of nano-sized Pt–Ru/C catalysts and their superior catalytic activities for methanol and ethanol oxidation. Phys. Chem. Chem. Phys. 13, 6784–6792 (2011)CrossRef Sen, S., Sen, F., Gokagac, G.: Preparation and characterization of nano-sized Pt–Ru/C catalysts and their superior catalytic activities for methanol and ethanol oxidation. Phys. Chem. Chem. Phys. 13, 6784–6792 (2011)CrossRef
128.
Zurück zum Zitat Sen, F., Sen, S., Gokagac, G.: High-performance Pt nanoparticles prepared by new surfactants for C1 to C3 alcohol oxidation reactions. J. Nanopart. Res. 15, 1979 (2013)CrossRef Sen, F., Sen, S., Gokagac, G.: High-performance Pt nanoparticles prepared by new surfactants for C1 to C3 alcohol oxidation reactions. J. Nanopart. Res. 15, 1979 (2013)CrossRef
129.
Zurück zum Zitat Sen, F., Ulissi, Z.W., Gong, X., et al.: Spatiotemporal intracellular nitric oxide signaling captured using internalized, near-infrared fluorescent carbon nanotube nanosensors. Nano Lett. 14(8), 4887–4894 (2014)CrossRef Sen, F., Ulissi, Z.W., Gong, X., et al.: Spatiotemporal intracellular nitric oxide signaling captured using internalized, near-infrared fluorescent carbon nanotube nanosensors. Nano Lett. 14(8), 4887–4894 (2014)CrossRef
130.
Zurück zum Zitat Shang, N.G., Papakonstantinou, P., McMullan, M., et al.: Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater. 18, 3506–3514 (2008)CrossRef Shang, N.G., Papakonstantinou, P., McMullan, M., et al.: Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater. 18, 3506–3514 (2008)CrossRef
131.
Zurück zum Zitat Shao, Y., Wang, J., Wu, H., et al.: Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22, 1027–1036 (2010)CrossRef Shao, Y., Wang, J., Wu, H., et al.: Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22, 1027–1036 (2010)CrossRef
132.
Zurück zum Zitat Singh, V., Joung, D., Zhai, L., et al.: Graphene based materials: past, present and future. Prog. Mater Sci. 56, 1178–1271 (2011)CrossRef Singh, V., Joung, D., Zhai, L., et al.: Graphene based materials: past, present and future. Prog. Mater Sci. 56, 1178–1271 (2011)CrossRef
133.
Zurück zum Zitat Slonczewski, J.C., Weiss, P.R.: Band structure of graphite. Phys. Rev. 109, 272 (1958)CrossRef Slonczewski, J.C., Weiss, P.R.: Band structure of graphite. Phys. Rev. 109, 272 (1958)CrossRef
134.
Zurück zum Zitat Soldano, C., Mahmood, A., Dujardin, E.: Production, properties and potential of graphene. Carbon 48, 2127–2150 (2010)CrossRef Soldano, C., Mahmood, A., Dujardin, E.: Production, properties and potential of graphene. Carbon 48, 2127–2150 (2010)CrossRef
135.
Zurück zum Zitat Soodchomshom, B.: Switching effect in a gapped graphene d-wave superconductor structure. Phys. B 405, 1383–1387 (2010)CrossRef Soodchomshom, B.: Switching effect in a gapped graphene d-wave superconductor structure. Phys. B 405, 1383–1387 (2010)CrossRef
136.
Zurück zum Zitat Sun, Z., James, D.K., Tour, J.M.: Graphene chemistry: synthesis and manipulation. J. Phys. Chem. Lett. 2, 2425–2432 (2011)CrossRef Sun, Z., James, D.K., Tour, J.M.: Graphene chemistry: synthesis and manipulation. J. Phys. Chem. Lett. 2, 2425–2432 (2011)CrossRef
137.
Zurück zum Zitat Stoller, M.D., Park, S., Zhu, Y., et al.: Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)CrossRef Stoller, M.D., Park, S., Zhu, Y., et al.: Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)CrossRef
138.
Zurück zum Zitat Thayer, A.M.: Anticipating new commercial applications, producers increase capacity. Chem. Eng. News 85, 29–35 (2007)CrossRef Thayer, A.M.: Anticipating new commercial applications, producers increase capacity. Chem. Eng. News 85, 29–35 (2007)CrossRef
139.
Zurück zum Zitat Terrones, M., Botello-Mendez, A.R., Campos-Delgado, J., et al.: Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5, 351–372 (2010)CrossRef Terrones, M., Botello-Mendez, A.R., Campos-Delgado, J., et al.: Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5, 351–372 (2010)CrossRef
140.
Zurück zum Zitat Wang, H., et al.: Three dimensional graphene based materials: synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation. Adv. Colloid Interface. Sci. 221, 41–59 (2015)CrossRef Wang, H., et al.: Three dimensional graphene based materials: synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation. Adv. Colloid Interface. Sci. 221, 41–59 (2015)CrossRef
141.
Zurück zum Zitat Wang, H., Maiyalagan, T., Wang, X.: Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2, 781–794 (2012)CrossRef Wang, H., Maiyalagan, T., Wang, X.: Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2, 781–794 (2012)CrossRef
142.
Zurück zum Zitat Wang, L., Lee, K., Sun, Y.Y., et al.: Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 3, 2995–3000 (2009)CrossRef Wang, L., Lee, K., Sun, Y.Y., et al.: Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 3, 2995–3000 (2009)CrossRef
143.
Zurück zum Zitat Wang, Y., Wang, K., Guan, C., et al.: Surface functionalization-enhanced spillover effect on hydrogen storage of Ni–B nanoalloy-doped activated carbon. Int. J. Hydrogen Energy 36, 13663–13668 (2011)CrossRef Wang, Y., Wang, K., Guan, C., et al.: Surface functionalization-enhanced spillover effect on hydrogen storage of Ni–B nanoalloy-doped activated carbon. Int. J. Hydrogen Energy 36, 13663–13668 (2011)CrossRef
144.
Zurück zum Zitat Wei, D., Liu, Y.: Controllable synthesis of graphene and its applications. Adv. Mater. 22, 3225–3241 (2010)CrossRef Wei, D., Liu, Y.: Controllable synthesis of graphene and its applications. Adv. Mater. 22, 3225–3241 (2010)CrossRef
145.
Zurück zum Zitat Wei, W., Qu, X.: Extraordinary physical properties of functionalized graphene. Small 8, 2138–2151 (2012)CrossRef Wei, W., Qu, X.: Extraordinary physical properties of functionalized graphene. Small 8, 2138–2151 (2012)CrossRef
146.
Zurück zum Zitat Weiss, N.O., Zhou, H., Liao, L., et al.: Graphene: an emerging electronic material. Adv. Mater. 24, 5782–5825 (2012)CrossRef Weiss, N.O., Zhou, H., Liao, L., et al.: Graphene: an emerging electronic material. Adv. Mater. 24, 5782–5825 (2012)CrossRef
147.
Zurück zum Zitat Wu, C.D., Fang, T.H., Lo, J.Y.: Effects of pressure, temperature, and geometric structure of pillared graphene on hydrogen storage capacity. Int. J. Hydrogen Energy 37, 14211–14216 (2012)CrossRef Wu, C.D., Fang, T.H., Lo, J.Y.: Effects of pressure, temperature, and geometric structure of pillared graphene on hydrogen storage capacity. Int. J. Hydrogen Energy 37, 14211–14216 (2012)CrossRef
148.
Zurück zum Zitat Xiang, Q., Yu, J., Jaroniec, M.: Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41, 782–796 (2012)CrossRef Xiang, Q., Yu, J., Jaroniec, M.: Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41, 782–796 (2012)CrossRef
149.
Zurück zum Zitat Xu, C., Xu, B., Gu, Y., et al.: Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 6, 1388 (2013)CrossRef Xu, C., Xu, B., Gu, Y., et al.: Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 6, 1388 (2013)CrossRef
150.
Zurück zum Zitat Yao, J., Sun, Y., Yang, M., Duan, Y.: Chemistry, physics and biology of graphene-based nanomaterials: new horizons for sensing, imaging and medicine. J. Mater. Chem. 22, 14313–14329 (2012)CrossRef Yao, J., Sun, Y., Yang, M., Duan, Y.: Chemistry, physics and biology of graphene-based nanomaterials: new horizons for sensing, imaging and medicine. J. Mater. Chem. 22, 14313–14329 (2012)CrossRef
151.
Zurück zum Zitat Yavari, F., Koratkar, N.: Graphene-based chemical sensors. J. Phys. Chem. Lett. 3, 1746–1753 (2012)CrossRef Yavari, F., Koratkar, N.: Graphene-based chemical sensors. J. Phys. Chem. Lett. 3, 1746–1753 (2012)CrossRef
152.
Zurück zum Zitat Yildiz, Y., Erken, E., Pamuk, H., et al.: Monodisperse Pt nanoparticles assembled on reduced graphene oxide: highly efficient and reusable catalyst for methanol oxidation and dehydrocoupling of dimethylamine-borane (DMAB). J. Nanosci. Nanotechnol. 16, 5951–5958 (2016)CrossRef Yildiz, Y., Erken, E., Pamuk, H., et al.: Monodisperse Pt nanoparticles assembled on reduced graphene oxide: highly efficient and reusable catalyst for methanol oxidation and dehydrocoupling of dimethylamine-borane (DMAB). J. Nanosci. Nanotechnol. 16, 5951–5958 (2016)CrossRef
153.
Zurück zum Zitat Yildiz, Y., Esirden, I., Erken, E., et al.: Microwave (Mw)-assisted synthesis of 5-substituted 1H-tetrazoles via [3 + 2] cycloaddition catalyzed by Mw-Pd/Co nanoparticles decorated on multi-walled carbon nanotubes. ChemistrySelect 1(8), 1695–1701 (2016)CrossRef Yildiz, Y., Esirden, I., Erken, E., et al.: Microwave (Mw)-assisted synthesis of 5-substituted 1H-tetrazoles via [3 + 2] cycloaddition catalyzed by Mw-Pd/Co nanoparticles decorated on multi-walled carbon nanotubes. ChemistrySelect 1(8), 1695–1701 (2016)CrossRef
154.
Zurück zum Zitat Yildiz, Y., Kuzu, S., Sen, B., et al.: Different ligand based monodispersed metal nanoparticles decorated with rGO as highly active and reusable catalysts for the methanol oxidation. Int. J. Hydrogen Energy 42(18), 13061–13069 (2017)CrossRef Yildiz, Y., Kuzu, S., Sen, B., et al.: Different ligand based monodispersed metal nanoparticles decorated with rGO as highly active and reusable catalysts for the methanol oxidation. Int. J. Hydrogen Energy 42(18), 13061–13069 (2017)CrossRef
155.
Zurück zum Zitat Yildiz, Y., Okyay, T.O., Gezer, B., et al.: Monodisperse Mw-Pt NPs@VC as highly efficient and reusable adsorbents for methylene blue removal. J. Cluster Sci. 27, 1953–1962 (2016)CrossRef Yildiz, Y., Okyay, T.O., Gezer, B., et al.: Monodisperse Mw-Pt NPs@VC as highly efficient and reusable adsorbents for methylene blue removal. J. Cluster Sci. 27, 1953–1962 (2016)CrossRef
156.
Zurück zum Zitat Yildiz, Y., Okyay, T.O., Sen, B., et al.: Activated carbon furnished monodisperse Pt nanocomposites as a superior adsorbent for methylene blue removal from aqueous solutions. J. Nanosci. Nanotechnol. 17, 4799–4804 (2017)CrossRef Yildiz, Y., Okyay, T.O., Sen, B., et al.: Activated carbon furnished monodisperse Pt nanocomposites as a superior adsorbent for methylene blue removal from aqueous solutions. J. Nanosci. Nanotechnol. 17, 4799–4804 (2017)CrossRef
157.
Zurück zum Zitat Yildiz, Y., Okyay, T.O., Sen, B., et al.: Highly monodisperse Pt/Rh nanoparticles confined in the graphene oxide for highly efficient and reusable sorbents for methylene blue removal from aqueous solutions. ChemistrySelect 2(2), 697–701 (2017)CrossRef Yildiz, Y., Okyay, T.O., Sen, B., et al.: Highly monodisperse Pt/Rh nanoparticles confined in the graphene oxide for highly efficient and reusable sorbents for methylene blue removal from aqueous solutions. ChemistrySelect 2(2), 697–701 (2017)CrossRef
158.
Zurück zum Zitat Yildiz, Y., Pamuk, H., Karatepe, O., et al.: Carbon black hybrid material furnished monodisperse platinum nanoparticles as highly efficient and reusable electrocatalysts for formic acid electro-oxidation. RSC Adv. 6, 32858–32862 (2016)CrossRef Yildiz, Y., Pamuk, H., Karatepe, O., et al.: Carbon black hybrid material furnished monodisperse platinum nanoparticles as highly efficient and reusable electrocatalysts for formic acid electro-oxidation. RSC Adv. 6, 32858–32862 (2016)CrossRef
159.
Zurück zum Zitat Yildiz, Y., Ulus, R., Eris, S., et al.: Functionalized multi-walled carbon nanotubes (f-MWCNT) as highly efficient and reusable heterogeneous catalysts for the synthesis of acridinedione derivatives. ChemistrySelect 1(13), 3861–3865 (2016)CrossRef Yildiz, Y., Ulus, R., Eris, S., et al.: Functionalized multi-walled carbon nanotubes (f-MWCNT) as highly efficient and reusable heterogeneous catalysts for the synthesis of acridinedione derivatives. ChemistrySelect 1(13), 3861–3865 (2016)CrossRef
160.
Zurück zum Zitat Yildirim, T., Ciraci, S.: Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Phys. Rev. Lett. 94, 175501 (2005)CrossRef Yildirim, T., Ciraci, S.: Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Phys. Rev. Lett. 94, 175501 (2005)CrossRef
161.
Zurück zum Zitat Yu, A., Ramesh, P., Itkis, M.E., et al.: Graphite nanoplatelet–epoxy composite thermal interface materials. J. Phys. Chem. C 111, 7565–7569 (2007)CrossRef Yu, A., Ramesh, P., Itkis, M.E., et al.: Graphite nanoplatelet–epoxy composite thermal interface materials. J. Phys. Chem. C 111, 7565–7569 (2007)CrossRef
162.
Zurück zum Zitat Zhang, Y., Zhang, L., Zhou, C.: Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46, 2329–2339 (2013)CrossRef Zhang, Y., Zhang, L., Zhou, C.: Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46, 2329–2339 (2013)CrossRef
163.
Zurück zum Zitat Zhang, N., Zhang, Y., Xu, Y.J.: Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4, 5792–5813 (2012)CrossRef Zhang, N., Zhang, Y., Xu, Y.J.: Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4, 5792–5813 (2012)CrossRef
164.
Zurück zum Zitat Zhao, G., Wen, T., Chen, C., et al.: Synthesis of graphene-based nanomaterials and their application in energy related and environmental-related areas. RSC Adv. 2, 9286–9303 (2012)CrossRef Zhao, G., Wen, T., Chen, C., et al.: Synthesis of graphene-based nanomaterials and their application in energy related and environmental-related areas. RSC Adv. 2, 9286–9303 (2012)CrossRef
165.
Zurück zum Zitat Zhou, Y.G., Zu, X.T., Gao, F., et al.: Adsorption of hydrogen on boron-doped graphene: a first-principles prediction. J. Appl. Phys. 105, 014309 (2009)CrossRef Zhou, Y.G., Zu, X.T., Gao, F., et al.: Adsorption of hydrogen on boron-doped graphene: a first-principles prediction. J. Appl. Phys. 105, 014309 (2009)CrossRef
166.
Zurück zum Zitat Zhu, Y., Murali, S., Cai, W., et al.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)CrossRef Zhu, Y., Murali, S., Cai, W., et al.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)CrossRef
167.
Zurück zum Zitat Zhu, Y., James, D.K., Tour, J.M.: New routes to graphene, graphene oxide and their related applications. Adv. Mater. 24, 4924–4955 (2012)CrossRef Zhu, Y., James, D.K., Tour, J.M.: New routes to graphene, graphene oxide and their related applications. Adv. Mater. 24, 4924–4955 (2012)CrossRef
Metadaten
Titel
Graphene-Based Nanomaterials for Hydrogen Storage
verfasst von
Ayşenur Aygün
Esra Atalay
Shukria Yassin
Anish Khan
Fatih Şen
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9057-0_10

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.