Skip to main content
Erschienen in: Wireless Networks 5/2020

06.02.2020

Grey Wolf based compressive sensing scheme for data gathering in IoT based heterogeneous WSNs

verfasst von: Ahmed Aziz, Walid Osamy, Ahmed M. Khedr, Ahmed A. El-Sawy, Karan Singh

Erschienen in: Wireless Networks | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sensor node energy constraint is considered as an impediment in the further development of the Internet of Things (IoT) technology. One of the most efficient solution is to combine between compressive sensing (CS) and routing techniques. However, this combination faces many challenges that makes it an attractive point for research. This paper proposes an Efficient Multi-hop Cluster-based Aggregation scheme using Hybrid CS (EMCA-CS) for IoT based heterogeneous wireless sensor networks (WSNs). EMCA-CS efficiently combines between CS and routing protocols to extend the network lifetime and reduces the reconstruction error. EMCA-CS includes the following: a new algorithm to partition the field into various hexagonal cells (clusters) and based on multiple criteria, selects a node from each cluster as cluster head (CH). Each CH will then compress its cluster data using hybrid CS method. Also, a new Grey Wolf based algorithm to create optimal path for CHs to deliver the compressed data to base station (BS) and a CSMO-GWO algorithm to optimize the CS matrix construction process is introduced. Moreover, a new Grey Wolf and reversible Greedy based Reconstruction Algorithm is proposed to recover the actual data. The simulation results indicate that the performance of the proposed work exceeds the existing baseline techniques in terms of prolonging WSN lifetime, reducing the power consumption and reducing normalized mean square error.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Cands, E. J. (2006). Compressive sampling. In Proceedings of the international congress of mathematicians (Vol. III, pp. 1433–1452). Madrid, Spain. Cands, E. J. (2006). Compressive sampling. In Proceedings of the international congress of mathematicians (Vol. III, pp. 1433–1452). Madrid, Spain.
3.
Zurück zum Zitat Meenu, R., Sanjay, B., & Dhok, R. B. (2018). DeshmukhA systematic review of compressive sensing: Concepts, implementations and applications. IEEE Access, 6, 4875–4894.CrossRef Meenu, R., Sanjay, B., & Dhok, R. B. (2018). DeshmukhA systematic review of compressive sensing: Concepts, implementations and applications. IEEE Access, 6, 4875–4894.CrossRef
4.
Zurück zum Zitat Lv, C., Wang, Q., Yan, W., & Shen, Y. (2016). Energy-balanced compressive data gathering in wireless sensor networks. Journal of Network and Computer Applications, 61, 102–114.CrossRef Lv, C., Wang, Q., Yan, W., & Shen, Y. (2016). Energy-balanced compressive data gathering in wireless sensor networks. Journal of Network and Computer Applications, 61, 102–114.CrossRef
5.
Zurück zum Zitat Khedr, A. M. (2015). Effective data acquisition protocol for multi-hop heterogeneous wireless sensor networks using compressive sensing. Algorithms, 8(4), 910–928.MATHCrossRef Khedr, A. M. (2015). Effective data acquisition protocol for multi-hop heterogeneous wireless sensor networks using compressive sensing. Algorithms, 8(4), 910–928.MATHCrossRef
6.
Zurück zum Zitat Omar, D. M., Khedr, A. M., & Agrawal, Dharma P. (2017). Optimized clustering protocol for balancing energy in wireless sensor networks. International Journal of Communication Networks and Information Security (IJCNIS), 9(3), 367–375. Omar, D. M., Khedr, A. M., & Agrawal, Dharma P. (2017). Optimized clustering protocol for balancing energy in wireless sensor networks. International Journal of Communication Networks and Information Security (IJCNIS), 9(3), 367–375.
7.
Zurück zum Zitat Khedr, A. M., & Omar, Dina M. (2015). SEP-CS: Effective routing protocol for heterogeneous wireless sensor networks. Ad Hoc and Sensor Wireless Networks, 26, 211–232. Khedr, A. M., & Omar, Dina M. (2015). SEP-CS: Effective routing protocol for heterogeneous wireless sensor networks. Ad Hoc and Sensor Wireless Networks, 26, 211–232.
8.
Zurück zum Zitat Omar, D. M., & Khedr, A. M. (2018). ERPLBC: Energy efficient routing protocol for load balanced clustering in wireless sensor networks. Ad Hoc and Sensor Wireless Networks, 42, 145–169. Omar, D. M., & Khedr, A. M. (2018). ERPLBC: Energy efficient routing protocol for load balanced clustering in wireless sensor networks. Ad Hoc and Sensor Wireless Networks, 42, 145–169.
10.
Zurück zum Zitat Aziz, A., & Singh, K. (2018). Lightweight security scheme for Internet of Things. Wireless Personal Communications, 104(2), 577–593.CrossRef Aziz, A., & Singh, K. (2018). Lightweight security scheme for Internet of Things. Wireless Personal Communications, 104(2), 577–593.CrossRef
11.
Zurück zum Zitat Singh, K., Singh, K., Le, H. S., & Aziz, A. (2018). Congestion control in wireless sensor networks by hybrid multi-objective optimization algorithm. Computer Networks, 138, 90–107.CrossRef Singh, K., Singh, K., Le, H. S., & Aziz, A. (2018). Congestion control in wireless sensor networks by hybrid multi-objective optimization algorithm. Computer Networks, 138, 90–107.CrossRef
12.
Zurück zum Zitat Osamy, W., Khder, A. M., Aziz, A., & Elsawy, A. (2018). Cluster-tree routing based entropy scheme for data gathering in wireless sensor networks. IEEE Access, 6, 77372–77387.CrossRef Osamy, W., Khder, A. M., Aziz, A., & Elsawy, A. (2018). Cluster-tree routing based entropy scheme for data gathering in wireless sensor networks. IEEE Access, 6, 77372–77387.CrossRef
13.
Zurück zum Zitat Aziz, A., Singh, K., Osamy, W., & Khedr, A. M. (2019). Effective algorithm for optimizing compressive sensing in IoT and periodic monitoring applications. Journal of Network and Computer Applications, 126, 12–28.CrossRef Aziz, A., Singh, K., Osamy, W., & Khedr, A. M. (2019). Effective algorithm for optimizing compressive sensing in IoT and periodic monitoring applications. Journal of Network and Computer Applications, 126, 12–28.CrossRef
14.
Zurück zum Zitat Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2000). Energy efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference (pp. 3005–3014). Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2000). Energy efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference (pp. 3005–3014).
15.
Zurück zum Zitat Luo, C., Wu, F., & Sun, J. (2013). An efficient compressive data gathering routing scheme for large-scale wireless sensor networks. Computers and Electrical Engineering, 39(6), 1935–1946.CrossRef Luo, C., Wu, F., & Sun, J. (2013). An efficient compressive data gathering routing scheme for large-scale wireless sensor networks. Computers and Electrical Engineering, 39(6), 1935–1946.CrossRef
16.
Zurück zum Zitat Nguyen, M. T., Teague, K. A., & Rahnavard, N. (2016). CCS: Energy-efficient data collection in clustered wireless sensor networks utilizing block-wise compressive sensing. Computer Networks, 106, 171–185.CrossRef Nguyen, M. T., Teague, K. A., & Rahnavard, N. (2016). CCS: Energy-efficient data collection in clustered wireless sensor networks utilizing block-wise compressive sensing. Computer Networks, 106, 171–185.CrossRef
17.
Zurück zum Zitat Chen, S., Zhao, C., Wu, M., Sun, Z., Zhang, H., & Leung, V. C. M. (2016). Compressive network coding for wireless sensor networks: Spatio-temporal coding and optimization design. Computer Networks, 108, 345–356.CrossRef Chen, S., Zhao, C., Wu, M., Sun, Z., Zhang, H., & Leung, V. C. M. (2016). Compressive network coding for wireless sensor networks: Spatio-temporal coding and optimization design. Computer Networks, 108, 345–356.CrossRef
18.
Zurück zum Zitat Luo, J., Xiang, L., & Rosenberg, C. (2010). Does compressed sensing improve the throughput of wireless sensor networks? In IEEE International Conference on Communications (ICC) (pp. 1–6). Luo, J., Xiang, L., & Rosenberg, C. (2010). Does compressed sensing improve the throughput of wireless sensor networks? In IEEE International Conference on Communications (ICC) (pp. 1–6).
19.
Zurück zum Zitat Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In 2011 8th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (Vol. 11, pp. 46–54). Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In 2011 8th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (Vol. 11, pp. 46–54).
20.
Zurück zum Zitat Mardani, A., Jusoh, A., Nor, K., Khalifah, Z., Zakwan, N., & Valipour, A. (2015). Multiple criteria decision-making techniques and their applications–a review of the literature from 2000 to 2014. Economic Research-Ekonomska Istraživanja, 28(1), 516–571.CrossRef Mardani, A., Jusoh, A., Nor, K., Khalifah, Z., Zakwan, N., & Valipour, A. (2015). Multiple criteria decision-making techniques and their applications–a review of the literature from 2000 to 2014. Economic Research-Ekonomska Istraživanja, 28(1), 516–571.CrossRef
21.
Zurück zum Zitat Heinzelman, W. B. (2000). Application-specific protocol architectures for wireless networks, Microsystems Technology Laboratories. Cambridge: Massachusetts Institute of Technology. Heinzelman, W. B. (2000). Application-specific protocol architectures for wireless networks, Microsystems Technology Laboratories. Cambridge: Massachusetts Institute of Technology.
22.
Zurück zum Zitat Jerbi, W., Guermazi, A., & Trabelsi, H. (2016). O-LEACH of routing protocol for wireless sensor networks. In 2016 13th International Conference on Computer Graphics, Imagin and Visualization (CGiV), Beni Mellal (pp. 399–404). Jerbi, W., Guermazi, A., & Trabelsi, H. (2016). O-LEACH of routing protocol for wireless sensor networks. In 2016 13th International Conference on Computer Graphics, Imagin and Visualization (CGiV), Beni Mellal (pp. 399–404).
23.
Zurück zum Zitat Aderohunmu, F. A., Deng, J. D., & Purvis, M. K. (2011). A deterministic energy-efficient clustering protocol for wireless sensor networks. In Proceedings of seventh IEEE international conference on intelligent sensors, sensor networks and information processing (pp. 341–346). Aderohunmu, F. A., Deng, J. D., & Purvis, M. K. (2011). A deterministic energy-efficient clustering protocol for wireless sensor networks. In Proceedings of seventh IEEE international conference on intelligent sensors, sensor networks and information processing (pp. 341–346).
24.
Zurück zum Zitat Salim, A., Osamy, W., & Khedr, A. (2014). IBLEACH: Intra-balanced LEACH protocol for wireless sensor networks. Wireless Network, 20(6), 1515–1525.CrossRef Salim, A., Osamy, W., & Khedr, A. (2014). IBLEACH: Intra-balanced LEACH protocol for wireless sensor networks. Wireless Network, 20(6), 1515–1525.CrossRef
25.
Zurück zum Zitat Al-Zubaidi, A., Ariffin, A., & Al-Qadhi, A. (2018). Enhancing the stability of the improved-LEACH routing protocol for WSNs. Journal of ICT Research and Applications, 12(1), 1–13.CrossRef Al-Zubaidi, A., Ariffin, A., & Al-Qadhi, A. (2018). Enhancing the stability of the improved-LEACH routing protocol for WSNs. Journal of ICT Research and Applications, 12(1), 1–13.CrossRef
26.
Zurück zum Zitat Smaragdakis, G., Matta, I., & Bestavros, A. (2004). SEP: A stable election protocol for clustered heterogeneous wireless sensor networks In Proceeding of the international workshop on SANPA. Smaragdakis, G., Matta, I., & Bestavros, A. (2004). SEP: A stable election protocol for clustered heterogeneous wireless sensor networks In Proceeding of the international workshop on SANPA.
27.
Zurück zum Zitat Mittal, N., Singh, U., & Singh Sohi, B. (2017). A stable energy efficient clustering protocol for wireless sensor networks. Wireless Networks, 23, 809–1821.CrossRef Mittal, N., Singh, U., & Singh Sohi, B. (2017). A stable energy efficient clustering protocol for wireless sensor networks. Wireless Networks, 23, 809–1821.CrossRef
28.
Zurück zum Zitat Kumar, S., Kant, S., & Kumar, A. (2015). Enhanced threshold sensitive stable election protocol for heterogeneous wireless sensor network. Wireless Personal Communications, 85, 2643–2656.CrossRef Kumar, S., Kant, S., & Kumar, A. (2015). Enhanced threshold sensitive stable election protocol for heterogeneous wireless sensor network. Wireless Personal Communications, 85, 2643–2656.CrossRef
29.
Zurück zum Zitat Aziz, A., Salim, A., & Osamy, W. (2013). Adaptive and efficient compressive sensing based technique for routing in wireless sensor networks. In Proceedings of INTHITEN (IoT and its Enablers) conference (pp. 3–4). Aziz, A., Salim, A., & Osamy, W. (2013). Adaptive and efficient compressive sensing based technique for routing in wireless sensor networks. In Proceedings of INTHITEN (IoT and its Enablers) conference (pp. 3–4).
30.
Zurück zum Zitat Chong, L., Feng, W., Jun, S., & Chang, C. (2009). Compressive data gathering for large-scale wireless sensor networks. In Proceedings of the 15th annual international conference on mobile computing and networking, MobiCom ’09 (pp. 145–156), New York, NY, USA. Chong, L., Feng, W., Jun, S., & Chang, C. (2009). Compressive data gathering for large-scale wireless sensor networks. In Proceedings of the 15th annual international conference on mobile computing and networking, MobiCom ’09 (pp. 145–156), New York, NY, USA.
31.
Zurück zum Zitat Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In 2011 8th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (pp. 46–54). Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In 2011 8th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (pp. 46–54).
32.
Zurück zum Zitat Haupt, J., Bajwa, W., & Rabbat, M. (2012). Compressed sensing for networked data. IEEE Signal Processing Magazine, 25, 603–611. Haupt, J., Bajwa, W., & Rabbat, M. (2012). Compressed sensing for networked data. IEEE Signal Processing Magazine, 25, 603–611.
33.
Zurück zum Zitat Duarte, M., Sarvotham, S., Wakin, M., Baron, D., & Baraniuk, R. (2005). Joint sparsity models for distributed compressed sensing. In Proceedings of the workshop on signal processing with adaptative sparse structured representations (SPARS). Duarte, M., Sarvotham, S., Wakin, M., Baron, D., & Baraniuk, R. (2005). Joint sparsity models for distributed compressed sensing. In Proceedings of the workshop on signal processing with adaptative sparse structured representations (SPARS).
34.
Zurück zum Zitat Jin, W., ShaoJie, T., Baocai, Y., & Yang, X. (2013). Data gathering in wireless sensor networks through intelligent compressive sensing. Digital Signal Processing, 23, 1539–1548.MathSciNetCrossRef Jin, W., ShaoJie, T., Baocai, Y., & Yang, X. (2013). Data gathering in wireless sensor networks through intelligent compressive sensing. Digital Signal Processing, 23, 1539–1548.MathSciNetCrossRef
35.
Zurück zum Zitat Luo, C., Wu, F., & Sun, J. (2010). Efficient measurement generation and pervasive sparsity for compressive data gathering. IEEE Transactions on Wireless Communications, 9(12), 3728–3738.CrossRef Luo, C., Wu, F., & Sun, J. (2010). Efficient measurement generation and pervasive sparsity for compressive data gathering. IEEE Transactions on Wireless Communications, 9(12), 3728–3738.CrossRef
36.
Zurück zum Zitat Xie, R., & Jia, X. (2014). Transmission-efficient clustering method for wireless sensor networks using compressive sensing. IEEE Transactions on Parallel and Distributed Systems, 25(3), 806–815.CrossRef Xie, R., & Jia, X. (2014). Transmission-efficient clustering method for wireless sensor networks using compressive sensing. IEEE Transactions on Parallel and Distributed Systems, 25(3), 806–815.CrossRef
37.
Zurück zum Zitat Nguyen, M. T. (2013). Minimizing energy consumption in random walk routing for Wireless Sensor Networks utilizing compressed sensing. In Proceedings of the 2013 8th international conference on system of systems engineering, Maui, HI (Vol. 2–6, pp. 297–301). New York: IEEE. Nguyen, M. T. (2013). Minimizing energy consumption in random walk routing for Wireless Sensor Networks utilizing compressed sensing. In Proceedings of the 2013 8th international conference on system of systems engineering, Maui, HI (Vol. 2–6, pp. 297–301). New York: IEEE.
38.
Zurück zum Zitat Salim, A., & Osamy, W. (2015). Distributed multi chain compressive sensing based routing algorithm for wireless sensor networks. Wireless Networks, 21, 1379–1390.CrossRef Salim, A., & Osamy, W. (2015). Distributed multi chain compressive sensing based routing algorithm for wireless sensor networks. Wireless Networks, 21, 1379–1390.CrossRef
39.
Zurück zum Zitat Ejaz, A., Yaqoob, I., Gani, A., Imran, M., Guizani, M., Rabbat, M., et al. (2016). CInternet-of-things-based smart environments: state of the art, taxonomy, and open research challenges. IEEE Wireless Communications, 23, 10–16. Ejaz, A., Yaqoob, I., Gani, A., Imran, M., Guizani, M., Rabbat, M., et al. (2016). CInternet-of-things-based smart environments: state of the art, taxonomy, and open research challenges. IEEE Wireless Communications, 23, 10–16.
40.
Zurück zum Zitat Mirjalili, S., Mirjalili, S., & Lewis, A. (2014). Grey Wolf optimizer. Advances in Engineering Software, 69, 46–61.CrossRef Mirjalili, S., Mirjalili, S., & Lewis, A. (2014). Grey Wolf optimizer. Advances in Engineering Software, 69, 46–61.CrossRef
41.
Zurück zum Zitat Liu, H., Hua, G., Yin, H., & Xu, Y. (2018). An intelligent grey Wolf optimizer algorithm for distributed compressed sensing. Computational Intelligence and Neuroscience, 20(6), 1–10. Liu, H., Hua, G., Yin, H., & Xu, Y. (2018). An intelligent grey Wolf optimizer algorithm for distributed compressed sensing. Computational Intelligence and Neuroscience, 20(6), 1–10.
42.
Zurück zum Zitat Kumara, V., Kumara, V., Sandeep, D., Yadava, S., Barikb, R., Tripathic, R., et al. (2018). Multi-hop communication based optimal clustering in hexagon and voronoi cell structured WSNs. International Journal of Electronics and Communications, 93, 305–316.CrossRef Kumara, V., Kumara, V., Sandeep, D., Yadava, S., Barikb, R., Tripathic, R., et al. (2018). Multi-hop communication based optimal clustering in hexagon and voronoi cell structured WSNs. International Journal of Electronics and Communications, 93, 305–316.CrossRef
43.
Zurück zum Zitat Houy, N., & Tadenuma, K. (2009). Lexicographic compositions of multiple criteria for decision making. Journal of Economic Theory, 144, 1770–1782.MathSciNetMATHCrossRef Houy, N., & Tadenuma, K. (2009). Lexicographic compositions of multiple criteria for decision making. Journal of Economic Theory, 144, 1770–1782.MathSciNetMATHCrossRef
44.
Zurück zum Zitat Needell, D., & Tropp, J. A. (2009). COSAMP: Iterative signal re-covery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 26(3), 301–321.MathSciNetMATHCrossRef Needell, D., & Tropp, J. A. (2009). COSAMP: Iterative signal re-covery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 26(3), 301–321.MathSciNetMATHCrossRef
45.
Zurück zum Zitat Wei, D., & Olgica, M. (2009). Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 55(5), 2230–2249.MathSciNetMATHCrossRef Wei, D., & Olgica, M. (2009). Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 55(5), 2230–2249.MathSciNetMATHCrossRef
46.
Zurück zum Zitat Du, X., Cheng, L., & Chen, D. (2014). A simulated annealing algorithm for sparse recovery by \(l_0\) minimization. Neurocomputing, 131, 98–104.CrossRef Du, X., Cheng, L., & Chen, D. (2014). A simulated annealing algorithm for sparse recovery by \(l_0\) minimization. Neurocomputing, 131, 98–104.CrossRef
47.
Zurück zum Zitat Tropp, J., & Gilber, A. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(14), 4655–4666.MathSciNetMATHCrossRef Tropp, J., & Gilber, A. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(14), 4655–4666.MathSciNetMATHCrossRef
48.
Zurück zum Zitat Burak, N., & Erdogan, H. (2013). Compressed sensing signal recovery via forward-backward pursuit. Digital Signal Processing, 23, 1539–1548.MathSciNetCrossRef Burak, N., & Erdogan, H. (2013). Compressed sensing signal recovery via forward-backward pursuit. Digital Signal Processing, 23, 1539–1548.MathSciNetCrossRef
49.
Zurück zum Zitat Chartrand, R., & Yin, W. (2008). Iteratively reweighted algorithms for compressive sensing. In IEEE international conference on acoustics (pp. 3869–3872). Las Vegas, NV: Speech and Signal Processing. Chartrand, R., & Yin, W. (2008). Iteratively reweighted algorithms for compressive sensing. In IEEE international conference on acoustics (pp. 3869–3872). Las Vegas, NV: Speech and Signal Processing.
52.
Zurück zum Zitat Duarte-Carvajalino, J. M., & Sapiro, G. (2009). Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Transactions on Image Processing, 18(7), 1395–1408.MathSciNetMATHCrossRef Duarte-Carvajalino, J. M., & Sapiro, G. (2009). Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Transactions on Image Processing, 18(7), 1395–1408.MathSciNetMATHCrossRef
53.
Zurück zum Zitat Abolghasemi, V., Jarchi, D., & Sanei, S. (2010). A robust approach for optimization of the measurement matrix in compressed sensing. In 2010 2nd international workshop on cognitive information processing (pp. 388–392). Elba, Italy. Abolghasemi, V., Jarchi, D., & Sanei, S. (2010). A robust approach for optimization of the measurement matrix in compressed sensing. In 2010 2nd international workshop on cognitive information processing (pp. 388–392). Elba, Italy.
54.
Zurück zum Zitat Abolghasemi, V., Ferdowsi, S., Makkiabadi, B., & Sanei, S. (2010). On optimization of the measurement matrix for compressive sensing. In 18th European signal processing conference (pp. 427–431), Aalborg. Abolghasemi, V., Ferdowsi, S., Makkiabadi, B., & Sanei, S. (2010). On optimization of the measurement matrix for compressive sensing. In 18th European signal processing conference (pp. 427–431), Aalborg.
55.
Zurück zum Zitat Tropp, J., & Gilber, A. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(14), 4655–4666.MathSciNetMATHCrossRef Tropp, J., & Gilber, A. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(14), 4655–4666.MathSciNetMATHCrossRef
Metadaten
Titel
Grey Wolf based compressive sensing scheme for data gathering in IoT based heterogeneous WSNs
verfasst von
Ahmed Aziz
Walid Osamy
Ahmed M. Khedr
Ahmed A. El-Sawy
Karan Singh
Publikationsdatum
06.02.2020
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 5/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02265-8

Weitere Artikel der Ausgabe 5/2020

Wireless Networks 5/2020 Zur Ausgabe

Neuer Inhalt