Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 1/2024

20.04.2022 | Original Article

Growth and hydrogen production by Escherichia coli during utilization of sole and mixture of sugar beet, alcohol, and beer production waste

verfasst von: Kairat Bekbayev, Satenik Mirzoyan, Akerke Toleugazykyzy, Dinara Tlevlessova, Anait Vassilian, Anna Poladyan, Karen Trchounian

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Escherichia coli anaerobically utilize various carbon sources and produce hydrogen (H2) as fermentation end product. Twofold diluted mixture of 10% distiller’s grains (DG), 4% brewer’s spent grains (BSG), and 10% sugar beet molasses (SB) are favorable for enhanced H2 production compared to the single wastes. In wild type cells, H2 production was prolonged till ~ 120 h compared to single waste while in multiple mutant H2 production was determined till ~ 192 h. Specific growth rate was highest in wild type cells in single but not mixed carbon sources reaching to 0.723 h−1 with 20-fold dilution of SB utilization. Cumulative H2 production was ~ 2.7-fold higher in multiple mutant when twofold diluted mixed waste of SB, BSG, and DG was applied compared to wild type reaching to 215 mL. The obtained data can be applied in utilization of agro-industrial waste for production of biomass and bio-H2.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ahmad T, Zhang D (2020) A critical review of comparative global historical energy consumption and future demand: the story told so far. Energy Rep 6:1973–1991CrossRef Ahmad T, Zhang D (2020) A critical review of comparative global historical energy consumption and future demand: the story told so far. Energy Rep 6:1973–1991CrossRef
2.
Zurück zum Zitat Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008 Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008
3.
Zurück zum Zitat Belyea RL, Rausch KD, Tumbleson ME (2004) Composition of corn and distillers dried grains with solubles from dry grind ethanol processing. Bioresour Technol 94:293–298CrossRef Belyea RL, Rausch KD, Tumbleson ME (2004) Composition of corn and distillers dried grains with solubles from dry grind ethanol processing. Bioresour Technol 94:293–298CrossRef
4.
Zurück zum Zitat Buffington J (2014) The economic potential of brewer’s spent grain (BSG) as a biomass feedstock. Adv Chem Engin Sci 4:308–318CrossRef Buffington J (2014) The economic potential of brewer’s spent grain (BSG) as a biomass feedstock. Adv Chem Engin Sci 4:308–318CrossRef
5.
Zurück zum Zitat Carvalho JL, Nogueirol RC, Menandro LM, Bordonal RD, Borges CD, Cantarella H, Franco HC (2017) Agronomic and environmental implications of sugarcane straw removal: a major review. GCB Bioenergy 9:1181–1195CrossRef Carvalho JL, Nogueirol RC, Menandro LM, Bordonal RD, Borges CD, Cantarella H, Franco HC (2017) Agronomic and environmental implications of sugarcane straw removal: a major review. GCB Bioenergy 9:1181–1195CrossRef
6.
Zurück zum Zitat Chatzifragkou A, Kosik O, Prabhakumari PC, Lovegrove A, Frazier RA, Shewry PR, Charalampopoulos D (2015) Biorefinery strategies for upgrading distillers’ dried grains with solubles (DDGS). Proc Biochem 50:2194–2207CrossRef Chatzifragkou A, Kosik O, Prabhakumari PC, Lovegrove A, Frazier RA, Shewry PR, Charalampopoulos D (2015) Biorefinery strategies for upgrading distillers’ dried grains with solubles (DDGS). Proc Biochem 50:2194–2207CrossRef
7.
Zurück zum Zitat Chetrariu A, Dabija A (2020) Brewer’s spent grains: possibilities of valorization, a review. Appl Sci 10:5619CrossRef Chetrariu A, Dabija A (2020) Brewer’s spent grains: possibilities of valorization, a review. Appl Sci 10:5619CrossRef
8.
Zurück zum Zitat Chuang YS, Huang CY, Lay CH, Chen CC, Sen B, Lin CY (2012) Fermentative bioenergy production from distillers grains using mixed microflora. Int J Hydrogen Energy 37:15547–15555CrossRef Chuang YS, Huang CY, Lay CH, Chen CC, Sen B, Lin CY (2012) Fermentative bioenergy production from distillers grains using mixed microflora. Int J Hydrogen Energy 37:15547–15555CrossRef
9.
Zurück zum Zitat Dincer I, Acar C (2015) Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrogen Energy 40:11094–11111CrossRef Dincer I, Acar C (2015) Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrogen Energy 40:11094–11111CrossRef
10.
Zurück zum Zitat Eker S, Erkul B (2018) Biohydrogen production by extracted fermentation from sugar beet. Int J Hydrogen Energy 43:10645–10654CrossRef Eker S, Erkul B (2018) Biohydrogen production by extracted fermentation from sugar beet. Int J Hydrogen Energy 43:10645–10654CrossRef
11.
Zurück zum Zitat Fernandez VM (1983) An electrochemical cell for reduction of biochemical: its application to the study of the effect pf pH and redox potential on the activity of hydrogenases. Anal Biochem 130:54–59CrossRef Fernandez VM (1983) An electrochemical cell for reduction of biochemical: its application to the study of the effect pf pH and redox potential on the activity of hydrogenases. Anal Biochem 130:54–59CrossRef
12.
Zurück zum Zitat Gámez S, González-Cabriales JJ, Ramírez JA, Garrote G, Vázquez M (2006) Study of the hydrolysis of sugar cane bagasse using phosphoric acid. J Food Eng 74:78–88CrossRef Gámez S, González-Cabriales JJ, Ramírez JA, Garrote G, Vázquez M (2006) Study of the hydrolysis of sugar cane bagasse using phosphoric acid. J Food Eng 74:78–88CrossRef
13.
Zurück zum Zitat Gevorgyan H, Khalatyan S, Vassilian A, Trchounian K (2021) The role of Escherichia coli FhlA transcriptional activator in generation of proton motive force and FOF1-ATPase activity at pH 7.5. IUBMB Life 73:883–892CrossRef Gevorgyan H, Khalatyan S, Vassilian A, Trchounian K (2021) The role of Escherichia coli FhlA transcriptional activator in generation of proton motive force and FOF1-ATPase activity at pH 7.5. IUBMB Life 73:883–892CrossRef
14.
Zurück zum Zitat Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sustain Energy Rev 41:550–567CrossRef Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sustain Energy Rev 41:550–567CrossRef
15.
Zurück zum Zitat Hoang TD, Nghiem N (2021) Recent developments and current status of commercial production of fuel ethanol. Fermentation 7:314CrossRef Hoang TD, Nghiem N (2021) Recent developments and current status of commercial production of fuel ethanol. Fermentation 7:314CrossRef
16.
Zurück zum Zitat Kothari R, Kumar V, Pathak VV, Ahmad S, Aoyi O, Tyagi VV (2017) A critical review on factors influencing fermentative hydrogen production. Front Biosci 22:1195–1220CrossRef Kothari R, Kumar V, Pathak VV, Ahmad S, Aoyi O, Tyagi VV (2017) A critical review on factors influencing fermentative hydrogen production. Front Biosci 22:1195–1220CrossRef
17.
Zurück zum Zitat Kucharska K, Rybarczyk P, Hołowacz I, Łukajtis R, Glinka M, Kamiński M (2018) Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 23:2937CrossRef Kucharska K, Rybarczyk P, Hołowacz I, Łukajtis R, Glinka M, Kamiński M (2018) Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 23:2937CrossRef
18.
Zurück zum Zitat Lenihan P, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Walker GM (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156:395–403CrossRef Lenihan P, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Walker GM (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156:395–403CrossRef
19.
Zurück zum Zitat Liu K (2011) Chemical composition of distillers grains, a review. J Agricul Food Chem 59:1508–1526CrossRef Liu K (2011) Chemical composition of distillers grains, a review. J Agricul Food Chem 59:1508–1526CrossRef
20.
Zurück zum Zitat Liu K, Rosentrater KA (2016) Distillers grains: production, properties, and utilization. CRC PressCrossRef Liu K, Rosentrater KA (2016) Distillers grains: production, properties, and utilization. CRC PressCrossRef
21.
Zurück zum Zitat Long CP, Gonzalez JE, Feist AM, Palsson BO, Antoniewicz MR (2018) Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in Escherichia coli. Proc Natl Acad Sci USA 115:222–227CrossRef Long CP, Gonzalez JE, Feist AM, Palsson BO, Antoniewicz MR (2018) Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in Escherichia coli. Proc Natl Acad Sci USA 115:222–227CrossRef
22.
Zurück zum Zitat Lynch KM, Steffen EJ, Arendt EK (2016) Brewers’ spent grain: a review with an emphasis on food and health. J Inst Brew 122:553–568CrossRef Lynch KM, Steffen EJ, Arendt EK (2016) Brewers’ spent grain: a review with an emphasis on food and health. J Inst Brew 122:553–568CrossRef
23.
Zurück zum Zitat Maeda T, Sanchez-Torres V, Wood TK (2007) Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77:879–890CrossRef Maeda T, Sanchez-Torres V, Wood TK (2007) Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77:879–890CrossRef
24.
Zurück zum Zitat Marzo C, Díaz AB, Caro I, Blandino A (2019) Status and perspectives in bioethanol production from sugar beet. In Bioethanol production from food crops pp. 61–79. Academic Press. Marzo C, Díaz AB, Caro I, Blandino A (2019) Status and perspectives in bioethanol production from sugar beet. In Bioethanol production from food crops pp. 61–79. Academic Press.
25.
Zurück zum Zitat McGlade C, Ekins P (2015) The geographical distribution of fossil fuels unused when limiting global warming to 2 C. Nature 517:187–190CrossRef McGlade C, Ekins P (2015) The geographical distribution of fossil fuels unused when limiting global warming to 2 C. Nature 517:187–190CrossRef
26.
Zurück zum Zitat Mechery J, Thomas DM, Kumar CS, Joseph L, Sylas VP (2021) Biohydrogen production from acidic and alkaline hydrolysates of paddy straw using locally isolated facultative bacteria through dark fermentation. Biomass Conv Bioref 11:1263–1272CrossRef Mechery J, Thomas DM, Kumar CS, Joseph L, Sylas VP (2021) Biohydrogen production from acidic and alkaline hydrolysates of paddy straw using locally isolated facultative bacteria through dark fermentation. Biomass Conv Bioref 11:1263–1272CrossRef
27.
Zurück zum Zitat Mirzoyan S, Toleugazykyzy A, Bekbayev K, Trchounian A, Trchounian K (2020) Enhanced hydrogen gas production from mixture of beer spent grains (BSG) and distiller’s grains (DG) with glycerol by Escherichia coli. Int J Hydrogen Energy 45:17233–17240CrossRef Mirzoyan S, Toleugazykyzy A, Bekbayev K, Trchounian A, Trchounian K (2020) Enhanced hydrogen gas production from mixture of beer spent grains (BSG) and distiller’s grains (DG) with glycerol by Escherichia coli. Int J Hydrogen Energy 45:17233–17240CrossRef
28.
Zurück zum Zitat Mirzoyan S, Trchounian A, Trchounian K (2019) Hydrogen production by Escherichia coli during anaerobic utilization of mixture of lactose and glycerol: enhanced rate and yield, prolonged production. Int J Hydrogen Energy 44:9272–9281CrossRef Mirzoyan S, Trchounian A, Trchounian K (2019) Hydrogen production by Escherichia coli during anaerobic utilization of mixture of lactose and glycerol: enhanced rate and yield, prolonged production. Int J Hydrogen Energy 44:9272–9281CrossRef
29.
Zurück zum Zitat Mussatto SI (2014) Brewer’s spent grain: a valuable feedstock for industrial applications. J Sci Food Agriculture 94:1264–1275CrossRef Mussatto SI (2014) Brewer’s spent grain: a valuable feedstock for industrial applications. J Sci Food Agriculture 94:1264–1275CrossRef
30.
Zurück zum Zitat Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell: a molecular approach. Sunderland: Sinauer. Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell: a molecular approach. Sunderland: Sinauer.
31.
Zurück zum Zitat Noguchi K, Riggins DP, Eldahan KC, Kitko RD, Slonczewski JL (2010) Hydrogenase-3 contributes to anaerboc acid resistance of Escherichia coli. PLoS ONE 5:10132CrossRef Noguchi K, Riggins DP, Eldahan KC, Kitko RD, Slonczewski JL (2010) Hydrogenase-3 contributes to anaerboc acid resistance of Escherichia coli. PLoS ONE 5:10132CrossRef
32.
Zurück zum Zitat Nyachoti CM, House JD, Slominski BA, Seddon IR (2005) Energy and nutrient digestibilities in wheat dried distillers’ grains with solubles fed to growing pigs. J Sci Food Agriculture 85:2581–2586CrossRef Nyachoti CM, House JD, Slominski BA, Seddon IR (2005) Energy and nutrient digestibilities in wheat dried distillers’ grains with solubles fed to growing pigs. J Sci Food Agriculture 85:2581–2586CrossRef
33.
Zurück zum Zitat Ohnishi A, Hasegawa Y, Fujimoto N, Suzuki M (2022) Biohydrogen production by mixed culture of Megasphaeraelsdenii with lactic acid bacteria as lactate-driven dark fermentation. Bioresour Technol 343:126076CrossRef Ohnishi A, Hasegawa Y, Fujimoto N, Suzuki M (2022) Biohydrogen production by mixed culture of Megasphaeraelsdenii with lactic acid bacteria as lactate-driven dark fermentation. Bioresour Technol 343:126076CrossRef
34.
Zurück zum Zitat Osman AI, Deka TJ, Baruah DC, Rooney DW (2020) Critical challenges in biohydrogen production processes from the organic feedstocks. Biomass Conver Bioref 20:1–9 Osman AI, Deka TJ, Baruah DC, Rooney DW (2020) Critical challenges in biohydrogen production processes from the organic feedstocks. Biomass Conver Bioref 20:1–9
35.
Zurück zum Zitat Palmonari A, Cavallini D, Sniffen CJ, Fernandes L, Holder P, Fagioli L, Fusaro I, Biagi G, Formigoni A, Mammi L (2020) Characterization of molasses chemical composition. J Dairy Sci 103:6244–6249CrossRef Palmonari A, Cavallini D, Sniffen CJ, Fernandes L, Holder P, Fagioli L, Fusaro I, Biagi G, Formigoni A, Mammi L (2020) Characterization of molasses chemical composition. J Dairy Sci 103:6244–6249CrossRef
36.
Zurück zum Zitat Patel SK, Lee JK, Kalia VC (2017) Dark-fermentative biological hydrogen production from mixed biowastes using defined mixed cultures. Ind J Microbiol 57:171–176CrossRef Patel SK, Lee JK, Kalia VC (2017) Dark-fermentative biological hydrogen production from mixed biowastes using defined mixed cultures. Ind J Microbiol 57:171–176CrossRef
37.
Zurück zum Zitat Petrosyan H, Vanyan L, Mirzoyan S, Trchounian A, Trchounian K (2020) Roasted coffee wastes as a substrate for Escherichia coli to grow and produce hydrogen. FEMS Microbiol Lett 367:fnaa088CrossRef Petrosyan H, Vanyan L, Mirzoyan S, Trchounian A, Trchounian K (2020) Roasted coffee wastes as a substrate for Escherichia coli to grow and produce hydrogen. FEMS Microbiol Lett 367:fnaa088CrossRef
38.
Zurück zum Zitat Petrosyan H, Vanyan L, Trchounian A, Trchounian K (2020) Defining the roles of the hydrogenase 3 and 4 subunits in hydrogen production during glucose fermentation: a new model of a H2-producing hydrogenase complex. Int J Hydrogen Energy 45:5192–5201CrossRef Petrosyan H, Vanyan L, Trchounian A, Trchounian K (2020) Defining the roles of the hydrogenase 3 and 4 subunits in hydrogen production during glucose fermentation: a new model of a H2-producing hydrogenase complex. Int J Hydrogen Energy 45:5192–5201CrossRef
39.
Zurück zum Zitat Pinske C, Jaroschinsky M, Linek S, Kelly CL, Sargent F, Sawers RG (2015) Physiology and bioenergetics of [NiFe]-hydrogenase 2-catalyzed H2-consuming and H2-producing reactions in Escherichia coli. J Bacteriol 197:296–306CrossRef Pinske C, Jaroschinsky M, Linek S, Kelly CL, Sargent F, Sawers RG (2015) Physiology and bioenergetics of [NiFe]-hydrogenase 2-catalyzed H2-consuming and H2-producing reactions in Escherichia coli. J Bacteriol 197:296–306CrossRef
40.
Zurück zum Zitat Piskarev IM, Ushkanov VA, Aristova NA, Likhachev PP, Myslivets TS (2010) Establishment of the redox potential of water saturated with hydrogen. Biophysics 55:13–17CrossRef Piskarev IM, Ushkanov VA, Aristova NA, Likhachev PP, Myslivets TS (2010) Establishment of the redox potential of water saturated with hydrogen. Biophysics 55:13–17CrossRef
41.
Zurück zum Zitat Poladyan A, Trchounian K, Vassilian A, Trchounian A (2018) Hydrogen production by Escherichia coli using brewery waste: optimal pretreatment of waste and role of different hydrogenases. Renew Energy 115:931–936CrossRef Poladyan A, Trchounian K, Vassilian A, Trchounian A (2018) Hydrogen production by Escherichia coli using brewery waste: optimal pretreatment of waste and role of different hydrogenases. Renew Energy 115:931–936CrossRef
42.
Zurück zum Zitat Rossmann R, Sawers G, Böck A (1991) Mechanism of regulation of the formate-hydrogenlyase pathway by oxygen, nitrate, and pH: definition of the formate regulon. Mol Microbiol 5:2807–2814CrossRef Rossmann R, Sawers G, Böck A (1991) Mechanism of regulation of the formate-hydrogenlyase pathway by oxygen, nitrate, and pH: definition of the formate regulon. Mol Microbiol 5:2807–2814CrossRef
43.
Zurück zum Zitat Sargsyan H, Trchounian K, Gabrielyan L, Trchounian A (2016) Novel approach of ethanol waste utilization: biohydrogen production by mixed cultures of dark-and photo-fermentative bacteria using distillers grains. Int J Hydrogen Energy 41:2377–2382CrossRef Sargsyan H, Trchounian K, Gabrielyan L, Trchounian A (2016) Novel approach of ethanol waste utilization: biohydrogen production by mixed cultures of dark-and photo-fermentative bacteria using distillers grains. Int J Hydrogen Energy 41:2377–2382CrossRef
44.
Zurück zum Zitat Sarkar O, Rova U, Christakopoulos P, Matsakas L (2021) Influence of initial uncontrolled pH on acidogenic fermentation of brewery spent grains to biohydrogen and volatile fatty acids production: optimization and scale-up. Bioresour Technol 319:124233CrossRef Sarkar O, Rova U, Christakopoulos P, Matsakas L (2021) Influence of initial uncontrolled pH on acidogenic fermentation of brewery spent grains to biohydrogen and volatile fatty acids production: optimization and scale-up. Bioresour Technol 319:124233CrossRef
45.
Zurück zum Zitat Soares JF, Confortin TC, Todero I, Mayer FD, Mazutti MA (2020) Dark fermentative biohydrogen production from lignocellulosic biomass: technological challenges and future prospects. Renew Sustain Energy Rev 117:109484CrossRef Soares JF, Confortin TC, Todero I, Mayer FD, Mazutti MA (2020) Dark fermentative biohydrogen production from lignocellulosic biomass: technological challenges and future prospects. Renew Sustain Energy Rev 117:109484CrossRef
46.
Zurück zum Zitat Sołowski G, Konkol I, Cenian A (2020) Production of hydrogen and methane from lignocellulose waste by fermentation. A review of chemical pretreatment for enhancing the efficiency of the digestion process. J Clean Prod 267:121721CrossRef Sołowski G, Konkol I, Cenian A (2020) Production of hydrogen and methane from lignocellulose waste by fermentation. A review of chemical pretreatment for enhancing the efficiency of the digestion process. J Clean Prod 267:121721CrossRef
48.
Zurück zum Zitat Stichnothe H, Azapagic A (2009) Bioethanol from waste: life cycle estimation of the greenhouse gas saving potential. Resour Conserv Recycl 53:624–630CrossRef Stichnothe H, Azapagic A (2009) Bioethanol from waste: life cycle estimation of the greenhouse gas saving potential. Resour Conserv Recycl 53:624–630CrossRef
49.
Zurück zum Zitat Trchounian K, Gevorgyan H, Sawers G, Trchounian A (2021) Interdependence of Escherichia coli formate dehydrogenase and hydrogen-producing hydrogenases during mixed carbon sources fermentation at different pHs. Int J Hydrogen Energy 46:5085–5099CrossRef Trchounian K, Gevorgyan H, Sawers G, Trchounian A (2021) Interdependence of Escherichia coli formate dehydrogenase and hydrogen-producing hydrogenases during mixed carbon sources fermentation at different pHs. Int J Hydrogen Energy 46:5085–5099CrossRef
50.
Zurück zum Zitat Trchounian K, Pinske C, Sawers RG, Trchounian A (2012) Characterization of Escherichia coli [NiFe]-hydrogenase distribution during fermentative growth at different pHs. Cell Biochem Biophys 62:433–440CrossRef Trchounian K, Pinske C, Sawers RG, Trchounian A (2012) Characterization of Escherichia coli [NiFe]-hydrogenase distribution during fermentative growth at different pHs. Cell Biochem Biophys 62:433–440CrossRef
51.
Zurück zum Zitat Trchounian K, Poladyan A, Trchounian A (2016) Optimizing strategy for Escherichia coli growth and hydrogen production during glycerol fermentation in batch culture: effects of some heavy metal ions and their mixtures. Appl Energy 177:335–340CrossRef Trchounian K, Poladyan A, Trchounian A (2016) Optimizing strategy for Escherichia coli growth and hydrogen production during glycerol fermentation in batch culture: effects of some heavy metal ions and their mixtures. Appl Energy 177:335–340CrossRef
52.
Zurück zum Zitat Trchounian K, Poladyan A, Vassilian A, Trchounian A (2012) Multiple and reversible hydrogenases for hydrogen production by Escherichia coli: dependence on fermentation substrate, pH and the FOF1-ATPase. Crit Rev Biochem Mol Biol 47:236–249CrossRef Trchounian K, Poladyan A, Vassilian A, Trchounian A (2012) Multiple and reversible hydrogenases for hydrogen production by Escherichia coli: dependence on fermentation substrate, pH and the FOF1-ATPase. Crit Rev Biochem Mol Biol 47:236–249CrossRef
53.
Zurück zum Zitat Trchounian K, Sanchez-Torres V, Wood TK, Trchounian A (2011) Escherichia coli hydrogenase activity and H2 production under glycerol fermentation at a low pH. Int J Hydrogen Energy 36:4323–4331CrossRef Trchounian K, Sanchez-Torres V, Wood TK, Trchounian A (2011) Escherichia coli hydrogenase activity and H2 production under glycerol fermentation at a low pH. Int J Hydrogen Energy 36:4323–4331CrossRef
54.
Zurück zum Zitat Trchounian K, Sargsyan H, Trchounian A (2014) Hydrogen production by Escherichia coli depends on glucose concentration and its combination with glycerol at different pHs. Int J Hydrogen Energy 39:6419–6423CrossRef Trchounian K, Sargsyan H, Trchounian A (2014) Hydrogen production by Escherichia coli depends on glucose concentration and its combination with glycerol at different pHs. Int J Hydrogen Energy 39:6419–6423CrossRef
55.
Zurück zum Zitat Trchounian K, Sawers RG, Trchounian A (2017) Improving biohydrogen productivity by microbial dark-and photo-fermentations: novel data and future approaches. Renew Sustain Energy Rev 80:1201–1216CrossRef Trchounian K, Sawers RG, Trchounian A (2017) Improving biohydrogen productivity by microbial dark-and photo-fermentations: novel data and future approaches. Renew Sustain Energy Rev 80:1201–1216CrossRef
56.
Zurück zum Zitat Trchounian K, Trchounian A (2015) Escherichia coli hydrogen gas production from glycerol: effects of external formate. Renew Energy 83:345–351CrossRef Trchounian K, Trchounian A (2015) Escherichia coli hydrogen gas production from glycerol: effects of external formate. Renew Energy 83:345–351CrossRef
57.
Zurück zum Zitat Trchounian K, Trchounian A (2013) Escherichia coli multiple [Ni–Fe]-hydrogenases are sensitive to osmotic stress during glycerol fermentation but at different pHs. FEBS Lett 587:3562–3566CrossRef Trchounian K, Trchounian A (2013) Escherichia coli multiple [Ni–Fe]-hydrogenases are sensitive to osmotic stress during glycerol fermentation but at different pHs. FEBS Lett 587:3562–3566CrossRef
58.
Zurück zum Zitat Trchounian K, Trchounian A (2009) Hydrogenase 2 is most and hydrogenase 1 is less responsible for H2 production by Escherichia coli under glycerol fermentation at neutral and slightly alkaline pH. Int J Hydrogen Energy 34:8839–8845CrossRef Trchounian K, Trchounian A (2009) Hydrogenase 2 is most and hydrogenase 1 is less responsible for H2 production by Escherichia coli under glycerol fermentation at neutral and slightly alkaline pH. Int J Hydrogen Energy 34:8839–8845CrossRef
59.
Zurück zum Zitat Trchounian K, Trchounian A (2014) Hydrogen producing activity by Escherichia coli hydrogenase 4 (hyf) depends on glucose concentration. Int J Hydrogen Energy 39:16914–16918CrossRef Trchounian K, Trchounian A (2014) Hydrogen producing activity by Escherichia coli hydrogenase 4 (hyf) depends on glucose concentration. Int J Hydrogen Energy 39:16914–16918CrossRef
60.
Zurück zum Zitat Zhang J, Fan C, Zang L (2017) Improvement of hydrogen production from glucose by ferrous iron and biochar. Bioresour Technol 245:98–105CrossRef Zhang J, Fan C, Zang L (2017) Improvement of hydrogen production from glucose by ferrous iron and biochar. Bioresour Technol 245:98–105CrossRef
61.
Zurück zum Zitat Zhang J, Zang L (2016) Enhancement of biohydrogen production from brewers’ spent grain by calcined-red mud pretreatment. Bioresour Technol 209:73–79CrossRef Zhang J, Zang L (2016) Enhancement of biohydrogen production from brewers’ spent grain by calcined-red mud pretreatment. Bioresour Technol 209:73–79CrossRef
Metadaten
Titel
Growth and hydrogen production by Escherichia coli during utilization of sole and mixture of sugar beet, alcohol, and beer production waste
verfasst von
Kairat Bekbayev
Satenik Mirzoyan
Akerke Toleugazykyzy
Dinara Tlevlessova
Anait Vassilian
Anna Poladyan
Karen Trchounian
Publikationsdatum
20.04.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 1/2024
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-022-02692-x

Weitere Artikel der Ausgabe 1/2024

Biomass Conversion and Biorefinery 1/2024 Zur Ausgabe