Skip to main content
Erschienen in: Physics of Metals and Metallography 12/2021

01.12.2021 | ELECTRICAL AND MAGNETIC PROPERTIES

Half-Metallic Ferromagnets, Spin Gapless Semiconductors, and Topological Semimetals Based on Heusler Alloys: Theory and Experiment

verfasst von: V. V. Marchenkov, V. Yu. Irkhin

Erschienen in: Physics of Metals and Metallography | Ausgabe 12/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper presents a review of theoretical and experimental studies of the electronic structure and electronic and magnetic properties of various systems of Heusler alloys in the states of a half-metallic ferromagnet, spin gapless semiconductor, and topological semimetal. These substances have unusual magnetic and electronic characteristics and are highly sensitive to external effects, due to the presence of energy gaps and exotic excitations in them. Peculiarities of the behavior and evolution of the electronic structure and properties in each of these states and upon the transition between them are considered. The possibility of purposeful control of the properties of such materials opens up prospects for their practical application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. Yu. Irkhin and M. I. Katsnelson, “Half-metallic ferromagnets,” Phys.-Usp. 37, 659–676 (1994).CrossRef V. Yu. Irkhin and M. I. Katsnelson, “Half-metallic ferromagnets,” Phys.-Usp. 37, 659–676 (1994).CrossRef
2.
Zurück zum Zitat M. I. Katsnelson, V. Yu. Irkhin, L. Chioncel, A. I. Lichtenstein, and R. A. de Groot, “Half-metallic ferromagnets: from band structure to many-body effects,” Rev. Mod. Phys. 80, No. 2, 315–378 (2008).CrossRef M. I. Katsnelson, V. Yu. Irkhin, L. Chioncel, A. I. Lichtenstein, and R. A. de Groot, “Half-metallic ferromagnets: from band structure to many-body effects,” Rev. Mod. Phys. 80, No. 2, 315–378 (2008).CrossRef
3.
Zurück zum Zitat T. Graf, C. Felser, and S. S. P. Parkin, “Simple rules for the understanding of Heusler compounds,” Prog. Solid State Chem. 39, 1–50 (2011).CrossRef T. Graf, C. Felser, and S. S. P. Parkin, “Simple rules for the understanding of Heusler compounds,” Prog. Solid State Chem. 39, 1–50 (2011).CrossRef
4.
Zurück zum Zitat R. A. de Groot, F. M. Mueller, P. G. Mueller, P. G. van Engen, and K. H. J. Buschow, “New class of materials: half-metallic ferromagnets,” Phys. Rev. Lett. 50, 2024–2027 (1983).CrossRef R. A. de Groot, F. M. Mueller, P. G. Mueller, P. G. van Engen, and K. H. J. Buschow, “New class of materials: half-metallic ferromagnets,” Phys. Rev. Lett. 50, 2024–2027 (1983).CrossRef
5.
Zurück zum Zitat T. Guan, C. J. Lin, C. L. Yang, Y. G. Shi, C. Ren, Y. Q. Li, H. M. Weng, X. Dai, Z. Fang, S. S. Yan, and P. Xiong, “Evidence for half-metallicity in n-type HgCr2Se4,” Phys. Rev. Lett. 115, 087002 (2015).CrossRef T. Guan, C. J. Lin, C. L. Yang, Y. G. Shi, C. Ren, Y. Q. Li, H. M. Weng, X. Dai, Z. Fang, S. S. Yan, and P. Xiong, “Evidence for half-metallicity in n-type HgCr2Se4,” Phys. Rev. Lett. 115, 087002 (2015).CrossRef
6.
Zurück zum Zitat X. L. Wang, “Proposal for a new class of materials: spin gapless semiconductors,” Phys. Rev. Lett. 100, 156404 (2008).CrossRef X. L. Wang, “Proposal for a new class of materials: spin gapless semiconductors,” Phys. Rev. Lett. 100, 156404 (2008).CrossRef
7.
Zurück zum Zitat I. M. Tsidilkovski, G. I. Harus, and N. G. Shelushinina, “Impurity states and electron transport in gapless semiconductors,” Adv. Phys. 34, 43–174 (1985).CrossRef I. M. Tsidilkovski, G. I. Harus, and N. G. Shelushinina, “Impurity states and electron transport in gapless semiconductors,” Adv. Phys. 34, 43–174 (1985).CrossRef
8.
Zurück zum Zitat L. A. Chernozatonskii and A. A. Artyukh, “Quasi-two-dimensional transition metal dichalcogenides: structure, synthesis, properties, and applications,” Phys.-Usp. 61, 2–28 (2018).CrossRef L. A. Chernozatonskii and A. A. Artyukh, “Quasi-two-dimensional transition metal dichalcogenides: structure, synthesis, properties, and applications,” Phys.-Usp. 61, 2–28 (2018).CrossRef
9.
Zurück zum Zitat K. Manna, Y. Sun, L. Muechler, J. Kübler, and C. Felser, “Heusler, Weyl and Berry,” Nat. Rev. Mater. 3, 244–256 (2018).CrossRef K. Manna, Y. Sun, L. Muechler, J. Kübler, and C. Felser, “Heusler, Weyl and Berry,” Nat. Rev. Mater. 3, 244–256 (2018).CrossRef
10.
Zurück zum Zitat X. L. Wang, “Dirac spin gapless semiconductors: promising platforms for massless and dissipationless spintronics and new (quantum) anomalous spin Hall effects,” Natl. Sci. Rev. 4, 252–257 (2017).CrossRef X. L. Wang, “Dirac spin gapless semiconductors: promising platforms for massless and dissipationless spintronics and new (quantum) anomalous spin Hall effects,” Natl. Sci. Rev. 4, 252–257 (2017).CrossRef
11.
Zurück zum Zitat S. Ouardi, G. H. Fecher, C. Felser, and J. Kubler, “Realization of spin gapless semiconductors: the Heusler compound Mn2CoAl,” Phys. Rev. Lett. 110, 100401 (2013).CrossRef S. Ouardi, G. H. Fecher, C. Felser, and J. Kubler, “Realization of spin gapless semiconductors: the Heusler compound Mn2CoAl,” Phys. Rev. Lett. 110, 100401 (2013).CrossRef
12.
Zurück zum Zitat F. Heusler, “Ueber magnetische Manganlegierungen [German],” Verh. Dtsch. Phys. Ges. 5, 219 (1903). F. Heusler, “Ueber magnetische Manganlegierungen [German],” Verh. Dtsch. Phys. Ges. 5, 219 (1903).
13.
Zurück zum Zitat A. N. Vasil’ev, V. D. Buchel’nikov, T. Tagaki, V. V. Khovailo, and E. I. Estrin, “Shape memory ferromagnets,” Phys.-Usp. 46, 559–588 (2003).CrossRef A. N. Vasil’ev, V. D. Buchel’nikov, T. Tagaki, V. V. Khovailo, and E. I. Estrin, “Shape memory ferromagnets,” Phys.-Usp. 46, 559–588 (2003).CrossRef
14.
Zurück zum Zitat P. Entel, V. D. Buchelnikov, V. V. Khovailo, A. T. Zayak, W. A. Adeagbo, M. E. Gruner, H. C. Herper, and E. F. Wassermann, “Modelling the phase diagram of magnetic shape memory Heusler alloys,” J. Phys. D: Appl. Phys. 39, 865–889 (2006).CrossRef P. Entel, V. D. Buchelnikov, V. V. Khovailo, A. T. Zayak, W. A. Adeagbo, M. E. Gruner, H. C. Herper, and E. F. Wassermann, “Modelling the phase diagram of magnetic shape memory Heusler alloys,” J. Phys. D: Appl. Phys. 39, 865–889 (2006).CrossRef
15.
Zurück zum Zitat A. Planes, L. Manosa, and M. Acet, “Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys,” J. Phys. Condens. Matter 21, No. 23, 233201 (2009).CrossRef A. Planes, L. Manosa, and M. Acet, “Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys,” J. Phys. Condens. Matter 21, No. 23, 233201 (2009).CrossRef
16.
Zurück zum Zitat V. D. Buchelnikov, S. V. Taskaev, A. M. Aliev, A. B. Batdalov, A. M. Gamzatov, A. V. Korolyov, N. I. Kourov, V. G. Pushin, V. V. Koledov, V. V. Khovailo, V. G. Shavrov, and R. M. Grechishkin, “Magnetocaloric effect in Ni2.19Mn0.81Ga Heusler alloys,” Int. J. Appl. Electromagn. Mech. 23, 65–69 (2006).CrossRef V. D. Buchelnikov, S. V. Taskaev, A. M. Aliev, A. B. Batdalov, A. M. Gamzatov, A. V. Korolyov, N. I. Kourov, V. G. Pushin, V. V. Koledov, V. V. Khovailo, V. G. Shavrov, and R. M. Grechishkin, “Magnetocaloric effect in Ni2.19Mn0.81Ga Heusler alloys,” Int. J. Appl. Electromagn. Mech. 23, 65–69 (2006).CrossRef
17.
Zurück zum Zitat O. Gutfleisch, T. Gottschall, M. Fries, D. Benke, I. Radulov, K. P. Skokov, H. Wende, M. Gruner, M. Acet, P. Entel, and M. Farle, “Mastering hysteresis in magnetocaloric materials,” Philos. Trans. R. Soc. A 374, 20150308 (2016).CrossRef O. Gutfleisch, T. Gottschall, M. Fries, D. Benke, I. Radulov, K. P. Skokov, H. Wende, M. Gruner, M. Acet, P. Entel, and M. Farle, “Mastering hysteresis in magnetocaloric materials,” Philos. Trans. R. Soc. A 374, 20150308 (2016).CrossRef
18.
Zurück zum Zitat Y. Nishino, M. Kato, S. Asano, K. Soda, M. Hayasaki, and U. Mizutani, “Semiconductorlike behavior of electrical resistivity in Heusler-type Fe2VAl compound,” Phys. Rev. Lett. 79, 1909 (1997).CrossRef Y. Nishino, M. Kato, S. Asano, K. Soda, M. Hayasaki, and U. Mizutani, “Semiconductorlike behavior of electrical resistivity in Heusler-type Fe2VAl compound,” Phys. Rev. Lett. 79, 1909 (1997).CrossRef
19.
Zurück zum Zitat Y. Nishino, Thermoelectric Energy Conversion. Theories and Mechanisms, Materials, Devices, and Applications (Woodhead Publishing Series in Electronic and Optical Materials, 2021), pp. 143–156. Y. Nishino, Thermoelectric Energy Conversion. Theories and Mechanisms, Materials, Devices, and Applications (Woodhead Publishing Series in Electronic and Optical Materials, 2021), pp. 143–156.
20.
Zurück zum Zitat V. I. Okulov, A. T. Lonchakov, and V. V. Marchenkov, “Semiconductor-like behavior of electric transport in Fe–V–Al-based metallic alloys and their uncommon magnetic properties,” Phys. Met. Metallogr. 119, 1325–1328 (2018).CrossRef V. I. Okulov, A. T. Lonchakov, and V. V. Marchenkov, “Semiconductor-like behavior of electric transport in Fe–V–Al-based metallic alloys and their uncommon magnetic properties,” Phys. Met. Metallogr. 119, 1325–1328 (2018).CrossRef
21.
Zurück zum Zitat S. M. Podgornykh, A. D. Svyazin, E. I. Schreder, V. V. Marchenkov, and V. P. Dyakina, “Low-temperature electron properties of Heusler alloys Fe2VAl and Fe2CrAl: Effect of annealing,” J. Exp. Theor. Phys. 105, 42–45 (2007).CrossRef S. M. Podgornykh, A. D. Svyazin, E. I. Schreder, V. V. Marchenkov, and V. P. Dyakina, “Low-temperature electron properties of Heusler alloys Fe2VAl and Fe2CrAl: Effect of annealing,” J. Exp. Theor. Phys. 105, 42–45 (2007).CrossRef
22.
Zurück zum Zitat A. T. Lonchakov, V. V. Marchenkov, V. I. Okulov, K. A. Okulova, T. E. Govorkova, and S. M. Podgornykh, “New manifestations of a pseudogap state and electron spin scattering in the low-temperature thermal properties of near-stoichiometric iron-vanadium-aluminum alloys,” Low Temp. Phys. 41, 150–153 (2015). A. T. Lonchakov, V. V. Marchenkov, V. I. Okulov, K. A. Okulova, T. E. Govorkova, and S. M. Podgornykh, “New manifestations of a pseudogap state and electron spin scattering in the low-temperature thermal properties of near-stoichiometric iron-vanadium-aluminum alloys,” Low Temp. Phys. 41, 150–153 (2015).
23.
Zurück zum Zitat V. I. Okulov, V. E. Arkhipov, T. E. Govorkova, A. V. Korolev, K. A. Okulova, E. I. Shreder, V. V. Marchenkov, and H. W. Weber, “Experimental validation of the anomalies in the electron density of states in semiconductor iron–vanadium–aluminum alloys,” Low Temp. Phys. 33, 692–698 (2007).CrossRef V. I. Okulov, V. E. Arkhipov, T. E. Govorkova, A. V. Korolev, K. A. Okulova, E. I. Shreder, V. V. Marchenkov, and H. W. Weber, “Experimental validation of the anomalies in the electron density of states in semiconductor iron–vanadium–aluminum alloys,” Low Temp. Phys. 33, 692–698 (2007).CrossRef
24.
Zurück zum Zitat M. E. Jamer, B. Wilfong, V. D. Buchelnikov, et al., “Superconducting and antiferromagnetic properties of dual-phase V3Ga,” Appl. Phys. Lett. 117, 062401 (2020).CrossRef M. E. Jamer, B. Wilfong, V. D. Buchelnikov, et al., “Superconducting and antiferromagnetic properties of dual-phase V3Ga,” Appl. Phys. Lett. 117, 062401 (2020).CrossRef
25.
Zurück zum Zitat K. Gornicka, G. Kuderowicz, E. M. Carnicom, et al., “Soft-mode enhanced type-I superconductivity in LiPd2Ge,” Phys. Rev. B 102, 024507 (2020).CrossRef K. Gornicka, G. Kuderowicz, E. M. Carnicom, et al., “Soft-mode enhanced type-I superconductivity in LiPd2Ge,” Phys. Rev. B 102, 024507 (2020).CrossRef
26.
Zurück zum Zitat B. Q. Lv, T. Qian, and H. Ding, “Experimental perspective on three-dimensional topological semimetals,” Rev. Mod. Phys. 93, 025002 (2021).CrossRef B. Q. Lv, T. Qian, and H. Ding, “Experimental perspective on three-dimensional topological semimetals,” Rev. Mod. Phys. 93, 025002 (2021).CrossRef
27.
Zurück zum Zitat R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, “Half-metallic ferromagnets and their magneto-optical properties,” J. Appl. Phys. 55, No. 6, 2151 (1984).CrossRef R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, “Half-metallic ferromagnets and their magneto-optical properties,” J. Appl. Phys. 55, No. 6, 2151 (1984).CrossRef
28.
Zurück zum Zitat R. A. de Groot and K. H. J. Buschow, “Recent developments in half-metallic magnetism,” J. Magn. Magn. Mater. 54–57, 1377–1380 (1986). R. A. de Groot and K. H. J. Buschow, “Recent developments in half-metallic magnetism,” J. Magn. Magn. Mater.  5457, 1377–1380 (1986).
29.
Zurück zum Zitat J. Kuebler, “First principle theory of metallic magnetism,” Phys. B + C 127, 257–263 (1984). J. Kuebler, “First principle theory of metallic magnetism,” Phys. B + C 127, 257–263 (1984).
30.
Zurück zum Zitat R. A. de Groot, A. M. van der Kraan, and K. H. J. Buschow, “FeMnSb: A half-metallic ferrimagnet,” J. Magn. Magn. Mater. 61, 330–336 (1986).CrossRef R. A. de Groot, A. M. van der Kraan, and K. H. J. Buschow, “FeMnSb: A half-metallic ferrimagnet,” J. Magn. Magn. Mater. 61, 330–336 (1986).CrossRef
31.
Zurück zum Zitat E. Shreder, S. V. Streltsov, A. Svyazhin, A. Makhnev, V. V. Marchenkov, A. Lukoyanov, and H. W. Weber, “Evolution of the electronic structure and physical properties of Fe2MeAl (Me = Ti, V, Cr) Heusler alloys,” J. Phys. Condens. Matter 20, 045212 (2008).CrossRef E. Shreder, S. V. Streltsov, A. Svyazhin, A. Makhnev, V. V. Marchenkov, A. Lukoyanov, and H. W. Weber, “Evolution of the electronic structure and physical properties of Fe2MeAl (Me = Ti, V, Cr) Heusler alloys,” J. Phys. Condens. Matter 20, 045212 (2008).CrossRef
32.
Zurück zum Zitat K. A. Fomina, V. V. Marchenkov, E. I. Shreder, and H. W. Weber, “Electrical and optical properties of X2YZ (X = Co, Fe; Y = Cr, Mn, Ti; Z = Ga, Al, Si) Heusler alloys,” Solid State Phenom. 168–169, 545–548 (2011). K. A. Fomina, V. V. Marchenkov, E. I. Shreder, and H. W. Weber, “Electrical and optical properties of X2YZ (X = Co, Fe; Y = Cr, Mn, Ti; Z = Ga, Al, Si) Heusler alloys,” Solid State Phenom. 168169, 545–548 (2011).
33.
Zurück zum Zitat E. I. Shreder, A. A. Makhnev, A. V. Lukoyanov, and K. G. Suresh, “Optical properties and the electronic structure of Co2TiGe and Co2TiSn Heusler alloys,” Phys. Met. Metallogr. 118, 1012–1016 (2017).CrossRef E. I. Shreder, A. A. Makhnev, A. V. Lukoyanov, and K. G. Suresh, “Optical properties and the electronic structure of Co2TiGe and Co2TiSn Heusler alloys,” Phys. Met. Metallogr. 118, 1012–1016 (2017).CrossRef
34.
Zurück zum Zitat C. Lidig, et al., “Surface resonance of thin films of the Heusler half-metal Co2MnSi probed by soft X-ray angular resolved photoemission spectroscopy,” Phys. Rev. B 99, 174432 (2019).CrossRef C. Lidig, et al., “Surface resonance of thin films of the Heusler half-metal Co2MnSi probed by soft X-ray angular resolved photoemission spectroscopy,” Phys. Rev. B 99, 174432 (2019).CrossRef
35.
Zurück zum Zitat M. Jourdan, et al., “Direct observation of half-metallicity in the Heusler compound Co2MnSi,” Nat. Commun. 5, 3974 (2014).CrossRef M. Jourdan, et al., “Direct observation of half-metallicity in the Heusler compound Co2MnSi,” Nat. Commun. 5, 3974 (2014).CrossRef
36.
Zurück zum Zitat V. Yu. Irkhin, M. I. Katsnelson, and A. I. Lichtenstein, “Non-quasiparticle effects in half -metallic ferromagnets,” J. Phys. Condens. Matter 19, 315201 (2007).CrossRef V. Yu. Irkhin, M. I. Katsnelson, and A. I. Lichtenstein, “Non-quasiparticle effects in half -metallic ferromagnets,” J. Phys. Condens. Matter 19, 315201 (2007).CrossRef
37.
Zurück zum Zitat V. Yu. Irkhin, “Non-quasiparticle states in a half-metallic ferromagnet with antiferromagnetic s–d(f) interaction,” J. Phys.: Condens. Matter 27, 155602 (2015). V. Yu. Irkhin, “Non-quasiparticle states in a half-metallic ferromagnet with antiferromagnetic sd(f) interaction,” J. Phys.: Condens. Matter 27, 155602 (2015).
38.
Zurück zum Zitat D. M. Edwards and J. A. Hertz, “Electron-magnon interactions in itinerant ferromagnetism. II. Strong ferromagnetism,” J. Phys. F: Met. Phys. 3, 2191 (1973).CrossRef D. M. Edwards and J. A. Hertz, “Electron-magnon interactions in itinerant ferromagnetism. II. Strong ferromagnetism,” J. Phys. F: Met. Phys. 3, 2191 (1973).CrossRef
39.
Zurück zum Zitat V. Yu. Irkhin and M. I. Katsnel’son, “Charge carriers in the narrow-band Hubbard ferromagnet in the spin-wave temperature range,” Sov. Phys.—Solid State 25, 1947 (1983); V. Yu. Irkhin, M. I. Katsnelson, J. Phys. C 18, 4173 (1985). V. Yu. Irkhin and M. I. Katsnel’son, “Charge carriers in the narrow-band Hubbard ferromagnet in the spin-wave temperature range,” Sov. Phys.—Solid State 25, 1947 (1983); V. Yu. Irkhin, M. I. Katsnelson, J. Phys. C 18, 4173 (1985).
40.
Zurück zum Zitat M. I. Auslender and V. Yu. Irkhin, “Electron states in the s-f exchange model of a ferromagnetic semiconductor in the spin-wave region. II. Degenerate semiconductors,” J. Phys. C: Solid State Phys. 18, 3533–3545 (1985).CrossRef M. I. Auslender and V. Yu. Irkhin, “Electron states in the s-f exchange model of a ferromagnetic semiconductor in the spin-wave region. II. Degenerate semiconductors,” J. Phys. C: Solid State Phys. 18, 3533–3545 (1985).CrossRef
41.
Zurück zum Zitat V. Yu. Irkhin and M. I. Katsnelson, “Ground state and electron-magnon interaction in an itinerant ferromagnet: half-metallic ferromagnets,” J. Phys.: Condens. Matter 2, 7151 (1990). V. Yu. Irkhin and M. I. Katsnelson, “Ground state and electron-magnon interaction in an itinerant ferromagnet: half-metallic ferromagnets,” J. Phys.: Condens. Matter 2, 7151 (1990).
42.
Zurück zum Zitat V. Yu. Irkhin, M. I. Katsnelson, and A. V. Trefilov, “On the reconstruction of the conduction electron spectrum in metal-oxide superconductors owing to the interaction with coherent atomic displacements,” Phys. C 160, 397–410 (1989).CrossRef V. Yu. Irkhin, M. I. Katsnelson, and A. V. Trefilov, “On the reconstruction of the conduction electron spectrum in metal-oxide superconductors owing to the interaction with coherent atomic displacements,” Phys. C 160, 397–410 (1989).CrossRef
43.
Zurück zum Zitat M. I. Katsnelson and D. M. Edwards, “Correlation effects at the surface of an itinerant electron ferromagnet,” J. Phys.: Condens. Matter 4, 3289 (1992). M. I. Katsnelson and D. M. Edwards, “Correlation effects at the surface of an itinerant electron ferromagnet,” J. Phys.: Condens. Matter 4, 3289 (1992).
44.
Zurück zum Zitat S. D. Kevan, Angle-Resolved Photoemission: Theory and Current Applications (Elsevier, Amsterdam, 1992). S. D. Kevan, Angle-Resolved Photoemission: Theory and Current Applications (Elsevier, Amsterdam, 1992).
45.
Zurück zum Zitat R. Wiesendanger, H.-J. Guentherodt, G. Guentherodt, R. J. Cambino, and R. Ruf, “Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope,” Phys. Rev. Lett. 65, 247 (1990).CrossRef R. Wiesendanger, H.-J. Guentherodt, G. Guentherodt, R. J. Cambino, and R. Ruf, “Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope,” Phys. Rev. Lett. 65, 247 (1990).CrossRef
46.
Zurück zum Zitat L. Chioncel, M. I. Katsnelson, R. A. de Groot, and A. I. Lichtenstein, “Nonquasiparticle states in the half-metallic ferromagnet NiMnSb,” Phys. Rev. B 68, 144425 (2003).CrossRef L. Chioncel, M. I. Katsnelson, R. A. de Groot, and A. I. Lichtenstein, “Nonquasiparticle states in the half-metallic ferromagnet NiMnSb,” Phys. Rev. B 68, 144425 (2003).CrossRef
47.
Zurück zum Zitat H. Fujiwara, et al., “Observation of intrinsic half-metallic behavior of CrO2(100) epitaxial films by bulk-sensitive spin-resolved PES,” J. Electron Spectrosc. Relat. Phenom. 220, 46–49 (2017).CrossRef H. Fujiwara, et al., “Observation of intrinsic half-metallic behavior of CrO2(100) epitaxial films by bulk-sensitive spin-resolved PES,” J. Electron Spectrosc. Relat. Phenom. 220, 46–49 (2017).CrossRef
48.
Zurück zum Zitat Y. Ohnuma, M. Matsuo, and S. Maekawa, “Spin transport in half-metallic ferromagnets,” Phys. Rev. B 94, 184405 (2016) .CrossRef Y. Ohnuma, M. Matsuo, and S. Maekawa, “Spin transport in half-metallic ferromagnets,” Phys. Rev. B 94, 184405 (2016) .CrossRef
49.
Zurück zum Zitat N. I. Kourov, V. V. Marchenkov, A. V. Korolev, K. A. Belozerova, and H. W. Weber, “Peculiarities of the electronic transport in Co2CrAl and Co2CrGa half-metallic ferromagnets,” Curr. Appl. Phys. 15, 839–843 (2015).CrossRef N. I. Kourov, V. V. Marchenkov, A. V. Korolev, K. A. Belozerova, and H. W. Weber, “Peculiarities of the electronic transport in Co2CrAl and Co2CrGa half-metallic ferromagnets,” Curr. Appl. Phys. 15, 839–843 (2015).CrossRef
50.
Zurück zum Zitat N. I. Kourov, V. V. Marchenkov, V. G. Pushin, and K. A. Belozerova, “Electrical properties of ferromagnetic Ni2MnGa and Co2CrGa Heusler alloys,” J. Exp. Theor. Phys. 117, 121–125 (2013).CrossRef N. I. Kourov, V. V. Marchenkov, V. G. Pushin, and K. A. Belozerova, “Electrical properties of ferromagnetic Ni2MnGa and Co2CrGa Heusler alloys,” J. Exp. Theor. Phys. 117, 121–125 (2013).CrossRef
51.
Zurück zum Zitat C. Felser and G.H. Fecher, Spintronics: from Materials to Devices (Springer, New York, 2013).CrossRef C. Felser and G.H. Fecher, Spintronics: from Materials to Devices (Springer, New York, 2013).CrossRef
52.
Zurück zum Zitat C. Felser and B. Hillebrands, “New materials with high spin polarization: half-metallic Heusler compounds,” J. of Physics D: Appl. Phys. 40, No. 6, E01 (2007).CrossRef C. Felser and B. Hillebrands, “New materials with high spin polarization: half-metallic Heusler compounds,” J. of Physics D: Appl. Phys. 40, No. 6, E01 (2007).CrossRef
53.
Zurück zum Zitat D. Bombor, C. G. F. Blum, O. Volkonskiy, S. Rodan, S. Wurmehl, C. Hess, and B. Buchner, “Half-metallic ferromagnetism with unexpectedly small spin splitting in the Heusler compound Co2FeSi,” Phys. Rev. Lett. 110, 066601 (2013).CrossRef D. Bombor, C. G. F. Blum, O. Volkonskiy, S. Rodan, S. Wurmehl, C. Hess, and B. Buchner, “Half-metallic ferromagnetism with unexpectedly small spin splitting in the Heusler compound Co2FeSi,” Phys. Rev. Lett. 110, 066601 (2013).CrossRef
54.
Zurück zum Zitat T. Block, C. Felser, G. Jakob, et al., “Large negative magnetoresistance effects in Co2Cr0.6Fe0.4Al,” J. Solid State Chem. 176, No. 2, 646–651 (2003).CrossRef T. Block, C. Felser, G. Jakob, et al., “Large negative magnetoresistance effects in Co2Cr0.6Fe0.4Al,” J. Solid State Chem. 176, No. 2, 646–651 (2003).CrossRef
55.
Zurück zum Zitat C. Felser, B. Heitkamp, F. Kronast, et al., “Investigation of a novel material for magnetoelectronics: Co2Cr0.6Fe0.4Al,” J. Phys.: Condens. Matter 15, No. 41, 7019–7027 (2003). C. Felser, B. Heitkamp, F. Kronast, et al., “Investigation of a novel material for magnetoelectronics: Co2Cr0.6Fe0.4Al,” J. Phys.: Condens. Matter 15, No. 41, 7019–7027 (2003).
56.
Zurück zum Zitat V. Irkhin and M. Katsnelson, “Temperature dependences of resistivity and magnetoresistivity for half-metallic ferromagnets,” Eur. Phys. J. B. 30, 481–486 (2002).CrossRef V. Irkhin and M. Katsnelson, “Temperature dependences of resistivity and magnetoresistivity for half-metallic ferromagnets,” Eur. Phys. J. B. 30, 481–486 (2002).CrossRef
57.
Zurück zum Zitat K. Srinivas, M.M. Raja, and S. V. Kamat, “Effect of partial substitution of silicon by other sp-valent elements on structure, magnetic properties and electrical resistivity of Co2FeSi Heusler alloys,” J. Alloys Compd. 619, 177–185 (2015).CrossRef K. Srinivas, M.M. Raja, and S. V. Kamat, “Effect of partial substitution of silicon by other sp-valent elements on structure, magnetic properties and electrical resistivity of Co2FeSi Heusler alloys,” J. Alloys Compd. 619, 177–185 (2015).CrossRef
58.
Zurück zum Zitat V. V. Marchenkov, N. I. Kourov, and V. Yu. Irkhin, “Half-metallic ferromagnets and spin gapless semiconductors,” Phys. Met. Metallogr. 119, 1321–1324 (2018).CrossRef V. V. Marchenkov, N. I. Kourov, and V. Yu. Irkhin, “Half-metallic ferromagnets and spin gapless semiconductors,” Phys. Met. Metallogr. 119, 1321–1324 (2018).CrossRef
59.
Zurück zum Zitat N. I. Kourov, V. V. Marchenkov, K. A. Belozerova, and H. W. Weber, “Galvanomagnetic properties of Fe2YZ (Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Si) Heusler alloys,” J. Exp. Theor. Phys. 121, No. 5, 844–852 (2015).CrossRef N. I. Kourov, V. V. Marchenkov, K. A. Belozerova, and H. W. Weber, “Galvanomagnetic properties of Fe2YZ (Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Si) Heusler alloys,” J. Exp. Theor. Phys. 121, No. 5, 844–852 (2015).CrossRef
60.
Zurück zum Zitat N. I. Kourov, V. V. Marchenkov, Yu. A. Perevozchikova, and H. W. Weber, “Galvanomagnetic properties of Heusler alloy Co2YAl (Y = Ti, V, Cr, Mn, Fe, Ni), Phys. Solid State 59, 63–69 (2017).CrossRef N. I. Kourov, V. V. Marchenkov, Yu. A. Perevozchikova, and H. W. Weber, “Galvanomagnetic properties of Heusler alloy Co2YAl (Y = Ti, V, Cr, Mn, Fe, Ni), Phys. Solid State 59, 63–69 (2017).CrossRef
61.
Zurück zum Zitat N. I. Kourov, V. V. Marchenkov, Yu. A. Perevozchikova, and M. Eisterer, “Galvanomagnetic properties of Heusler alloy Co2FeZ (Z = Al, Si, Ga, Ge, In, Sn, Sb),” Phys. Solid State 59, 2352–2359 (2017).CrossRef N. I. Kourov, V. V. Marchenkov, Yu. A. Perevozchikova, and M. Eisterer, “Galvanomagnetic properties of Heusler alloy Co2FeZ (Z = Al, Si, Ga, Ge, In, Sn, Sb),” Phys. Solid State 59, 2352–2359 (2017).CrossRef
62.
Zurück zum Zitat V. V. Marchenkov, V. Yu. Irkhin, Yu. A. Perevozchikova, P. B. Terent’ev, A. A. Semyannikova, E. B. Marchenkova, and M. Eisterer, “Kinetic properties and half-metallic magnetism in Mn2YAl Heusler alloys,” J. Exp. Theor. Phys. 128, No. 6, 919–925 (2019).CrossRef V. V. Marchenkov, V. Yu. Irkhin, Yu. A. Perevozchikova, P. B. Terent’ev, A. A. Semyannikova, E. B. Marchenkova, and M. Eisterer, “Kinetic properties and half-metallic magnetism in Mn2YAl Heusler alloys,” J. Exp. Theor. Phys. 128, No. 6, 919–925 (2019).CrossRef
63.
Zurück zum Zitat V. V. Marchenkov, Yu. A. Perevozchikova, A. A. Semiannikova, P. S. Korenistov, E. B. Marchenkova, and A. N. Domozhirova, “Features of the electroresistivity, magnetic and galvanomagnetic characteristics in Co2MeSi Heusler alloys,” Low Temp. Phys. 47, 61–68 (2021). V. V. Marchenkov, Yu. A. Perevozchikova, A. A. Semiannikova, P. S. Korenistov, E. B. Marchenkova, and A. N. Domozhirova, “Features of the electroresistivity, magnetic and galvanomagnetic characteristics in Co2MeSi Heusler alloys,” Low Temp. Phys.  47, 61–68 (2021).
64.
Zurück zum Zitat J. Kuebler, J. R. Williams, and C. B. Sommers, “Formation and coupling of magnetic moments in Heusler alloys,” Phys. Rev. B 28, 1745 (1983).CrossRef J. Kuebler, J. R. Williams, and C. B. Sommers, “Formation and coupling of magnetic moments in Heusler alloys,” Phys. Rev. B 28, 1745 (1983).CrossRef
65a.
Zurück zum Zitat S. V. Halilov and E. T. Kulatov,” Electron and magnetooptical properties of half-metallic ferromagnets and uranium monochalcogenide,” J. Phys.: Cond. Mat. 3, 6363–6374 (1991); S. V. Halilov and E. T. Kulatov,” Electron and magnetooptical properties of half-metallic ferromagnets and uranium monochalcogenide,” J. Phys.: Cond. Mat. 3, 6363–6374 (1991);
65b.
Zurück zum Zitat Zh. Eksp. Theor. Fiz. 98, 1778 (1989). Zh. Eksp. Theor. Fiz. 98, 1778 (1989).
66.
Zurück zum Zitat S. Matar, P. Mohn, G. Demazeau, and B. Siberchicot, “The calculated electronic and magnetic structures of Fe4N and Mn4N,” J. Phys. France 49, 1761–1768 (1988).CrossRef S. Matar, P. Mohn, G. Demazeau, and B. Siberchicot, “The calculated electronic and magnetic structures of Fe4N and Mn4N,” J. Phys. France 49, 1761–1768 (1988).CrossRef
67.
Zurück zum Zitat K. Schwarz, “CrO2 predicted as a half-metallic ferromagnet,” J. Phys. F: Met. Phys. 16, L211–L215 (1986).CrossRef K. Schwarz, “CrO2 predicted as a half-metallic ferromagnet,” J. Phys. F: Met. Phys. 16, L211–L215 (1986).CrossRef
68.
Zurück zum Zitat S. Fujii, S. Sugimura, S. Ishida, and S. Asano, “Hyperfine fields and electronic structures of the Heusler alloys Co2MnX (X = Al, Ga, Si, Ge, Sn),” J. Phys.: Cond. Matter 2, 8583–8589 (1990). S. Fujii, S. Sugimura, S. Ishida, and S. Asano, “Hyperfine fields and electronic structures of the Heusler alloys Co2MnX (X = Al, Ga, Si, Ge, Sn),” J. Phys.: Cond. Matter 2, 8583–8589 (1990).
69.
Zurück zum Zitat S. Ghosh and S. Ghosh, “Systematic understanding of half-metallicity of ternary compounds in Heusler and inverse Heusler structures with 3d and 4d elements,” Phys. Scr. 94, 125001 (2019).CrossRef S. Ghosh and S. Ghosh, “Systematic understanding of half-metallicity of ternary compounds in Heusler and inverse Heusler structures with 3d and 4d elements,” Phys. Scr. 94, 125001 (2019).CrossRef
70.
Zurück zum Zitat I. Galanakis, P. Mavropoulos, and P. H. Dederichs, “Electronic structure and Slater–Pauling behaviour in half-metallic Heusler alloys calculated from first principles,” Phys. D: Appl. Phys. 39, 765–775 (2006).CrossRef I. Galanakis, P. Mavropoulos, and P. H. Dederichs, “Electronic structure and Slater–Pauling behaviour in half-metallic Heusler alloys calculated from first principles,” Phys. D: Appl. Phys. 39, 765–775 (2006).CrossRef
71.
Zurück zum Zitat X. Q. Chen, R. Podloucky, and P. Rogl, “Ab initio prediction of half-metallic properties for the ferromagnetic Heusler alloys Co2MSi (M = Ti, V, Cr),” J. Appl. Phys. 100, 113901 (2006).CrossRef X. Q. Chen, R. Podloucky, and P. Rogl, “Ab initio prediction of half-metallic properties for the ferromagnetic Heusler alloys Co2MSi (M = Ti, V, Cr),” J. Appl. Phys. 100, 113901 (2006).CrossRef
72.
Zurück zum Zitat Y. Miura, M. Shirai, and K. Nagao, “Ab initio study on stability of half-metallic Co-based full-Heusler alloys,” J. Appl. Phys. 99, 08J112 (2006). Y. Miura, M. Shirai, and K. Nagao, “Ab initio study on stability of half-metallic Co-based full-Heusler alloys,” J. Appl. Phys. 99, 08J112 (2006).
73.
Zurück zum Zitat K. Ozdogan, E. Sasioglu, and I. Galanakis, “Slater-Pauling behavior in LiMgPdSn-type multifunctional quaternary Heusler materials: Half-metallicity, spin gapless and magnetic semiconductors,” J. Appl. Phys. 113, 193903 (2013).CrossRef K. Ozdogan, E. Sasioglu, and I. Galanakis, “Slater-Pauling behavior in LiMgPdSn-type multifunctional quaternary Heusler materials: Half-metallicity, spin gapless and magnetic semiconductors,” J. Appl. Phys. 113, 193903 (2013).CrossRef
74.
Zurück zum Zitat A. Kundu, S. Ghosh, R. Banerjee, S. Ghosh, and B. Sanyal, “New quaternary half-metallic ferromagnets with large Curie temperatures,” Sci. Rep. 7, 1803 (2017).CrossRef A. Kundu, S. Ghosh, R. Banerjee, S. Ghosh, and B. Sanyal, “New quaternary half-metallic ferromagnets with large Curie temperatures,” Sci. Rep. 7, 1803 (2017).CrossRef
75.
Zurück zum Zitat L. Bainsla, A. I. Mallick, A. A. Coelho, A. K. Nigam, B. S. D. Ch. S.Varaprasad, Y.K. Takahashi, A. Alam, K.G. Suresh, and K. Hono, “High spin polarization and spin splitting in equiatomic quaternary CoFeCrAl Heusler alloy,” J. Magn. Magn. Mater. 394, 82 (2015).CrossRef L. Bainsla, A. I. Mallick, A. A. Coelho, A. K. Nigam, B. S. D. Ch. S.Varaprasad, Y.K. Takahashi, A. Alam, K.G. Suresh, and K. Hono, “High spin polarization and spin splitting in equiatomic quaternary CoFeCrAl Heusler alloy,” J. Magn. Magn. Mater. 394, 82 (2015).CrossRef
76.
Zurück zum Zitat A. Bahnes, A. Boukortt, H. Abbassa, D. E. Aimouch, R. Hayn, and A. Zaoui, “Half-metallic ferromagnets behavior of a new quaternary Heusler alloys CoFeCrZ (Z = P, As and Sb): Ab-initio study,” J. Alloys Compd. 731, 1208–1213 (2018).CrossRef A. Bahnes, A. Boukortt, H. Abbassa, D. E. Aimouch, R. Hayn, and A. Zaoui, “Half-metallic ferromagnets behavior of a new quaternary Heusler alloys CoFeCrZ (Z = P, As and Sb): Ab-initio study,” J. Alloys Compd. 731, 1208–1213 (2018).CrossRef
77.
Zurück zum Zitat A. V. Sokolov, Optical Properties of Metals (GIFML, Moscow, 1961). A. V. Sokolov, Optical Properties of Metals (GIFML, Moscow, 1961).
78.
Zurück zum Zitat M. M. Kirillova, A. A. Makhnev, E. I. Shreder, V. P. Dyakina, and N. B. Gorina, “Interband Optical Absorption and Plasma Effects in Half-Metallic XMnY Ferromagnets,” Phys. Status Solidi B 187, 231–240 (1995).CrossRef M. M. Kirillova, A. A. Makhnev, E. I. Shreder, V. P. Dyakina, and N. B. Gorina, “Interband Optical Absorption and Plasma Effects in Half-Metallic XMnY Ferromagnets,” Phys. Status Solidi B 187, 231–240 (1995).CrossRef
79.
Zurück zum Zitat E. I. Shreder, A. D. Svyazhin, and K. A. Belozerova, “Optical properties of heusler alloys Co2FeSi, Co2FeAl, Co2CrAl, Co2CrGa,” Phys. Met. Metallogr. 114, No. 5, 904–909 (2013).CrossRef E. I. Shreder, A. D. Svyazhin, and K. A. Belozerova, “Optical properties of heusler alloys Co2FeSi, Co2FeAl, Co2CrAl, Co2CrGa,” Phys. Met. Metallogr. 114, No. 5, 904–909 (2013).CrossRef
80.
Zurück zum Zitat H. C. Kandpal, G. H. Fecher, and C. Felser, “Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds,” J. Phys. D: Appl. Phys. 40, 1507–1523 (2007).CrossRef H. C. Kandpal, G. H. Fecher, and C. Felser, “Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds,” J. Phys. D: Appl. Phys. 40, 1507–1523 (2007).CrossRef
81.
Zurück zum Zitat I. Galanakis and Ph. Mavropoulos, “Spin-polarization and electronic properties of half-metallic Heusler alloys calculated from first principles,” J. Phys.: Condens. Matter 19, 315213 (2007). I. Galanakis and Ph. Mavropoulos, “Spin-polarization and electronic properties of half-metallic Heusler alloys calculated from first principles,” J. Phys.: Condens. Matter 19, 315213 (2007).
82.
Zurück zum Zitat W. Feng, X. Fu, C. Wan, Zh. Yuan, X. Han, N. Van Quang, and S. Cho, “Spin gapless semiconductor like Ti2MnAl film as a new candidate for spintronics application,” Phys. Status Solidi RRL 9, 641 (2015).CrossRef W. Feng, X. Fu, C. Wan, Zh. Yuan, X. Han, N. Van Quang, and S. Cho, “Spin gapless semiconductor like Ti2MnAl film as a new candidate for spintronics application,” Phys. Status Solidi RRL 9, 641 (2015).CrossRef
83.
Zurück zum Zitat G. Z. Xu, E. K. Liu, Y. Du, G. J. Li, G. D. Liu, W. H. Wang, and G. H. Wu, “A new spin gapless semiconductors family: Quaternary Heusler compounds,” EPL 102, 17007 (2013).CrossRef G. Z. Xu, E. K. Liu, Y. Du, G. J. Li, G. D. Liu, W. H. Wang, and G. H. Wu, “A new spin gapless semiconductors family: Quaternary Heusler compounds,” EPL 102, 17007 (2013).CrossRef
84.
Zurück zum Zitat R. Dhakal, S. Nepal, R. B. Ray, R. Paudel, and G. C. Kaphle, “Effect of doping on SGS and weak half-metallic properties of inverse Heusler Alloys,” J. Magn. Magn. Mater. 503, 166588 (2020).CrossRef R. Dhakal, S. Nepal, R. B. Ray, R. Paudel, and G. C. Kaphle, “Effect of doping on SGS and weak half-metallic properties of inverse Heusler Alloys,” J. Magn. Magn. Mater. 503, 166588 (2020).CrossRef
85.
Zurück zum Zitat Q. Gao, I. Opahle, and H. Zhang, “High-throughput screening for spin gapless semiconductors in quaternary Heusler compounds,” Phys. Rev. Mater. 3, 024410 (2019).CrossRef Q. Gao, I. Opahle, and H. Zhang, “High-throughput screening for spin gapless semiconductors in quaternary Heusler compounds,” Phys. Rev. Mater. 3, 024410 (2019).CrossRef
86.
Zurück zum Zitat D. Rani, Enamullah L. Bainsla, K. G. Suresh, and A. Alam, “Spin gapless semiconducting nature of Co-rich Co1 + xFe1 − xCrGa,” Phys. Rev. B 99, 104429 (2019).CrossRef D. Rani, Enamullah L. Bainsla, K. G. Suresh, and A. Alam, “Spin gapless semiconducting nature of Co-rich Co1 + xFe1 − xCrGa,” Phys. Rev. B 99, 104429 (2019).CrossRef
87.
Zurück zum Zitat L. Bainsla, A. I. Mallick, M. M. Raja, A. A. Coelho, A. K. Nigam, D. D. Johnson, A. Alam, and K. G. Suresh, “Origin of spin gapless semiconductor behavior in CoFeCrGa: Theory and Experiment,” Phys. Rev. B 92, 045201 (2015).CrossRef L. Bainsla, A. I. Mallick, M. M. Raja, A. A. Coelho, A. K. Nigam, D. D. Johnson, A. Alam, and K. G. Suresh, “Origin of spin gapless semiconductor behavior in CoFeCrGa: Theory and Experiment,” Phys. Rev. B 92, 045201 (2015).CrossRef
88.
Zurück zum Zitat V. Barwal, N. Behera, S. Husain, N. K. Gupta, S. Hait, L. Pandey, V. Mishra, and S. Chaudhary, “Spin gapless semiconducting behavior in inverse Heusler Mn2 – xCo1 + xAl (0 ≤ x ≤ 1.75) thin films,” J. Magn. Magn. Mater. 518, 167404 (2021).CrossRef V. Barwal, N. Behera, S. Husain, N. K. Gupta, S. Hait, L. Pandey, V. Mishra, and S. Chaudhary, “Spin gapless semiconducting behavior in inverse Heusler Mn2 – xCo1 + xAl (0 ≤ x ≤ 1.75) thin films,” J. Magn. Magn. Mater. 518, 167404 (2021).CrossRef
89.
Zurück zum Zitat L. Bainsla, A. I. Mallick, M. M. Raja, A. K. Nigam, B. S. D. Ch. S. Varaprasad, Y.K. Takahashi, A. Alam, K.G. Suresh, and K. Hono, “Spin gapless semiconducting behavior in equiatomic quaternary CoFeMnSi Heusler alloy,” Phys. Rev. B 91, 104408 (2015).CrossRef L. Bainsla, A. I. Mallick, M. M. Raja, A. K. Nigam, B. S. D. Ch. S. Varaprasad, Y.K. Takahashi, A. Alam, K.G. Suresh, and K. Hono, “Spin gapless semiconducting behavior in equiatomic quaternary CoFeMnSi Heusler alloy,” Phys. Rev. B 91, 104408 (2015).CrossRef
90.
Zurück zum Zitat K. Ozdogan and I. Galanakis, “Stability of spin gapless semiconducting behavior in Ti2CoSi, Ti2MnAl, and Ti2VAs Heusler compounds,” Phys. Rev. Mater. 5, 024409 (2021).CrossRef K. Ozdogan and I. Galanakis, “Stability of spin gapless semiconducting behavior in Ti2CoSi, Ti2MnAl, and Ti2VAs Heusler compounds,” Phys. Rev. Mater. 5, 024409 (2021).CrossRef
91.
Zurück zum Zitat I. Galanakis, K. Ozdogan, and E. Sasioglu, “Spin-filter and spin gapless semiconductors: The case of Heusler compounds,” AIP Adv. 6, 055606 (2016).CrossRef I. Galanakis, K. Ozdogan, and E. Sasioglu, “Spin-filter and spin gapless semiconductors: The case of Heusler compounds,” AIP Adv. 6, 055606 (2016).CrossRef
92.
Zurück zum Zitat E. I. Shreder, A. A. Makhnev, A. V. Lukoyanov, and V. V. Marchenkov, “Electron structure and optical properties of the Mn1.8Co1.2Al alloy and spin gapless semiconductor state,” Phys. Met. Metallogr. 119, No. 11, 1127–1131 (2018).CrossRef E. I. Shreder, A. A. Makhnev, A. V. Lukoyanov, and V. V. Marchenkov, “Electron structure and optical properties of the Mn1.8Co1.2Al alloy and spin gapless semiconductor state,” Phys. Met. Metallogr. 119, No. 11, 1127–1131 (2018).CrossRef
93.
Zurück zum Zitat X. D. Xu, Z. X. Chen, Y. Sakuraba, et al., “Microstructure, magnetic and transport properties of a Mn2CoAl Heusler compound,” Acta Mater. 176, 33–42 (2019).CrossRef X. D. Xu, Z. X. Chen, Y. Sakuraba, et al., “Microstructure, magnetic and transport properties of a Mn2CoAl Heusler compound,” Acta Mater. 176, 33–42 (2019).CrossRef
94.
Zurück zum Zitat H. Fu, Y. Li, L. Ma, et al., “Structures, magnetism and transport properties of the potential spin gapless semiconductor CoFeMnSi alloy,” J Magn. Magn. Mater. 473, 16–20 (2019).CrossRef H. Fu, Y. Li, L. Ma, et al., “Structures, magnetism and transport properties of the potential spin gapless semiconductor CoFeMnSi alloy,” J Magn. Magn. Mater. 473, 16–20 (2019).CrossRef
95.
Zurück zum Zitat P. Narang, C. A. C. Garcia, and C. Felser, “The topology of electronic band structures,” Nat. Mater. 20, 293–300 (2021).CrossRef P. Narang, C. A. C. Garcia, and C. Felser, “The topology of electronic band structures,” Nat. Mater. 20, 293–300 (2021).CrossRef
96.
Zurück zum Zitat B. Yan and C. Felser, “Topological materials: Weyl semimetals,” Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017).CrossRef B. Yan and C. Felser, “Topological materials: Weyl semimetals,” Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017).CrossRef
97.
Zurück zum Zitat X.-L. Qi and S.-C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057–1110 (2011).CrossRef X.-L. Qi and S.-C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057–1110 (2011).CrossRef
98.
Zurück zum Zitat M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).CrossRef M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).CrossRef
99.
Zurück zum Zitat N. P. Armitage, E. J. Mele, and A. Vishwanath, “Weyl and Dirac semimetals in three-dimensional solids,” Rev. Mod. Phys. 90, 015001 (2018).CrossRef N. P. Armitage, E. J. Mele, and A. Vishwanath, “Weyl and Dirac semimetals in three-dimensional solids,” Rev. Mod. Phys. 90, 015001 (2018).CrossRef
100.
Zurück zum Zitat S. Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a Weyl fermion semimetal and topological Fermi arcs,” Science 349, 613–617 (2015).CrossRef S. Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a Weyl fermion semimetal and topological Fermi arcs,” Science 349, 613–617 (2015).CrossRef
101.
Zurück zum Zitat B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, “Quantum spin Hall effect and topological phase transition in HgTe quantum wells,” Science 314, 1757–1761 (2006).CrossRef B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, “Quantum spin Hall effect and topological phase transition in HgTe quantum wells,” Science 314, 1757–1761 (2006).CrossRef
102.
Zurück zum Zitat H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5, 438–442 (2009).CrossRef H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5, 438–442 (2009).CrossRef
103.
Zurück zum Zitat S. Chadov, X. Qi, J. Kubler, G. H. Fecher, C. Felser, and S. C. Zhang, “Tunable multifunctional topological insulators in ternary Heusler compounds,” Nat. Mater. 9, 541–545 (2010).CrossRef S. Chadov, X. Qi, J. Kubler, G. H. Fecher, C. Felser, and S. C. Zhang, “Tunable multifunctional topological insulators in ternary Heusler compounds,” Nat. Mater. 9, 541–545 (2010).CrossRef
104.
Zurück zum Zitat H. Lin, L. A. Wray, Y. Xia, S. Xu, S. Jia, R. J. Cava, A. Bansil, and M. Z. Hasan, “Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena,” Nat. Mater. 9, 546–549 (2010).CrossRef H. Lin, L. A. Wray, Y. Xia, S. Xu, S. Jia, R. J. Cava, A. Bansil, and M. Z. Hasan, “Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena,” Nat. Mater. 9, 546–549 (2010).CrossRef
105.
Zurück zum Zitat K. Deng, G. Wan, P. Deng, K. Zhang, S. Ding, E. Wang, M. Yan, H. Huang, H. Zhang, Z. Xu, J. Denlinger, A. Fedorov, H. Yang, W. Duan, H. Yao, Y. Wu, S. Fan, H. Zhang, X. Chen, and S. Zhou, “Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2,” Nat. Phys. 12, 1105–1110 (2016).CrossRef K. Deng, G. Wan, P. Deng, K. Zhang, S. Ding, E. Wang, M. Yan, H. Huang, H. Zhang, Z. Xu, J. Denlinger, A. Fedorov, H. Yang, W. Duan, H. Yao, Y. Wu, S. Fan, H. Zhang, X. Chen, and S. Zhou, “Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2,” Nat. Phys. 12, 1105–1110 (2016).CrossRef
106.
Zurück zum Zitat Y. Wu, D. Mou, N. H. Jo, K. Sun, L. Huang, S. L. Bud’ko, P. C. Canfield, and A. Kaminski, “Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe2,” Phys. Rev. B 95, 121113(R) (2016). Y. Wu, D. Mou, N. H. Jo, K. Sun, L. Huang, S. L. Bud’ko, P. C. Canfield, and A. Kaminski, “Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe2,” Phys. Rev. B 95, 121113(R) (2016).
107.
Zurück zum Zitat Z. Wang, et al., “Time-reversal-breaking Weyl fermions in magnetic Heusler alloys,” Phys. Rev. Lett. 117, 236401 (2016).CrossRef Z. Wang, et al., “Time-reversal-breaking Weyl fermions in magnetic Heusler alloys,” Phys. Rev. Lett. 117, 236401 (2016).CrossRef
108.
Zurück zum Zitat J. Kubler and C. Felser, “Weyl points in the ferromagnetic Heusler compound Co2MnAl,” Europhys. Lett. 114, 47005 (2016).CrossRef J. Kubler and C. Felser, “Weyl points in the ferromagnetic Heusler compound Co2MnAl,” Europhys. Lett. 114, 47005 (2016).CrossRef
109.
Zurück zum Zitat Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, “Three-dimensional Dirac semimetal and quantum transport in Cd3As2,” Phys. Rev. B 88, 125427 (2013).CrossRef Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, “Three-dimensional Dirac semimetal and quantum transport in Cd3As2,” Phys. Rev. B 88, 125427 (2013).CrossRef
110.
Zurück zum Zitat Z. K. Liu, et al., “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343, 864–867 (2014).CrossRef Z. K. Liu, et al., “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343, 864–867 (2014).CrossRef
111.
Zurück zum Zitat J. Liu and D. Vanderbilt, “Weyl semimetals from noncentrosymmetric topological insulators,” Phys. Rev. B 90, 155316 (2014).CrossRef J. Liu and D. Vanderbilt, “Weyl semimetals from noncentrosymmetric topological insulators,” Phys. Rev. B 90, 155316 (2014).CrossRef
112.
Zurück zum Zitat V. Yu. Irkhin and Yu. N. Skryabin, “Electronic states and the anomalous Hall effect in strongly correlated topological systems,” J. Exp. Theor. Phys. 133, 116–123 (2021).CrossRef V. Yu. Irkhin and Yu. N. Skryabin, “Electronic states and the anomalous Hall effect in strongly correlated topological systems,” J. Exp. Theor. Phys. 133, 116–123 (2021).CrossRef
113.
Zurück zum Zitat T. Suzuki, R. Chisnell, A. Devarakonda, et al., “Large anomalous Hall effect in a half-Heusler antiferromagnet,” Nat. Phys. 12, 1119–1123 (2016).CrossRef T. Suzuki, R. Chisnell, A. Devarakonda, et al., “Large anomalous Hall effect in a half-Heusler antiferromagnet,” Nat. Phys. 12, 1119–1123 (2016).CrossRef
114.
Zurück zum Zitat I. Belopolski, K. Manna, D. S. Sanchez, et al., “Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet,” Science 365, 1278–1281 (2019).CrossRef I. Belopolski, K. Manna, D. S. Sanchez, et al., “Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet,” Science 365, 1278–1281 (2019).CrossRef
115.
Zurück zum Zitat H. Yang, Y. Sun, Y. Zhang, et al., “Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn,” New J. Phys. 19, 015008 (2017).CrossRef H. Yang, Y. Sun, Y. Zhang, et al., “Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn,” New J. Phys. 19, 015008 (2017).CrossRef
116.
Zurück zum Zitat T. Ogasawara, J.-Y. Kim, Y. Ando, and A. Hirohata, “Structural and antiferromagnetic characterization of noncollinear D019 Mn3Ge polycrystalline film,” J. Magn. Magn. Mater. 473, 7–11 (2019).CrossRef T. Ogasawara, J.-Y. Kim, Y. Ando, and A. Hirohata, “Structural and antiferromagnetic characterization of noncollinear D019 Mn3Ge polycrystalline film,” J. Magn. Magn. Mater. 473, 7–11 (2019).CrossRef
117.
Zurück zum Zitat Y. Zhang, Y. Sun, H. Yang, et al. “Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh, and Pt),” Phys. Rev. B 95, 075128 (2017).CrossRef Y. Zhang, Y. Sun, H. Yang, et al. “Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh, and Pt),” Phys. Rev. B 95, 075128 (2017).CrossRef
118.
Zurück zum Zitat Y. Yanagi, J. Ikeda, K. Fujiwara, et al., “First-principles investigation of magnetic and transport properties in hole-doped shandite compounds Co3InxSn2 – xS2,” Phys. Rev. B 103, 205112 (2021).CrossRef Y. Yanagi, J. Ikeda, K. Fujiwara, et al., “First-principles investigation of magnetic and transport properties in hole-doped shandite compounds Co3InxSn2 – xS2,” Phys. Rev. B 103, 205112 (2021).CrossRef
119.
Zurück zum Zitat S. Chadov, S. C. Wu, C. Felser, and I. Galanakis, “Stability of Weyl points in magnetic half-metallic Heusler compounds,” Phys. Rev. B 96, 024435 (2017).CrossRef S. Chadov, S. C. Wu, C. Felser, and I. Galanakis, “Stability of Weyl points in magnetic half-metallic Heusler compounds,” Phys. Rev. B 96, 024435 (2017).CrossRef
120.
Zurück zum Zitat W. Shi and L. Muechler, and K. Manna, “Prediction of a magnetic Weyl semimetal without spin-orbit coupling and strong anomalous Hall effect in the Heusler compensated ferrimagnet Ti2MnAl,” Phys. Rev. B 97, 060406 (2018).CrossRef W. Shi and L. Muechler, and K. Manna, “Prediction of a magnetic Weyl semimetal without spin-orbit coupling and strong anomalous Hall effect in the Heusler compensated ferrimagnet Ti2MnAl,” Phys. Rev. B 97, 060406 (2018).CrossRef
121.
Zurück zum Zitat S. N. Guin, K. Manna, J. Noky, et al., “Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa,” NPG Asia Mater. 11, 16 (2019).CrossRef S. N. Guin, K. Manna, J. Noky, et al., “Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa,” NPG Asia Mater. 11, 16 (2019).CrossRef
122.
Zurück zum Zitat B. Ernst, R. Sahoo, Y. Sun, et al., “Anomalous Hall effect and the role of Berry curvature in Co2TiSn Heusler films,” Phys. Rev. B 100, 054445 (2019).CrossRef B. Ernst, R. Sahoo, Y. Sun, et al., “Anomalous Hall effect and the role of Berry curvature in Co2TiSn Heusler films,” Phys. Rev. B 100, 054445 (2019).CrossRef
123.
Zurück zum Zitat P. Chaudhary, K. K. Dubey, G. K. Shukla, et al., “Role of chemical disorder in tuning the Weyl points in vanadium doped Co2TiSn,” arXiv:2102.13389v1 [cond-mat.mtrl-sci] (2021). P. Chaudhary, K. K. Dubey, G. K. Shukla, et al., “Role of chemical disorder in tuning the Weyl points in vanadium doped Co2TiSn,” arXiv:2102.13389v1 [cond-mat.mtrl-sci] (2021).
124.
Zurück zum Zitat L. Leiva, S. Granville, Y. Zhang, et al., “Giant spin Hall angle in the Heusler alloy Weyl ferromagnet Co2MnGa,” Phys. Rev. B 103, L041114 (2021).CrossRef L. Leiva, S. Granville, Y. Zhang, et al., “Giant spin Hall angle in the Heusler alloy Weyl ferromagnet Co2MnGa,” Phys. Rev. B 103, L041114 (2021).CrossRef
125.
Zurück zum Zitat L. Xu, X. Li, L. Ding, et al., “Anomalous transverse response of Co2MnGa and universality of the room-temperature αAij/σAij ratio across topological magnets,” Phys. Rev. B 101, 180404 (2020).CrossRef L. Xu, X. Li, L. Ding, et al., “Anomalous transverse response of Co2MnGa and universality of the room-temperature αAij/σAij ratio across topological magnets,” Phys. Rev. B 101, 180404 (2020).CrossRef
126.
Zurück zum Zitat C.-Y. Huang, H. Aramberri, H. Lin, and N. Kioussis, “Noncollinear magnetic modulation of Weyl nodes in ferrimagnetic Mn3Ga, Phys. Rev. B 102, 094403 (2020).CrossRef C.-Y. Huang, H. Aramberri, H. Lin, and N. Kioussis, “Noncollinear magnetic modulation of Weyl nodes in ferrimagnetic Mn3Ga, Phys. Rev. B 102, 094403 (2020).CrossRef
127.
Zurück zum Zitat K. Sumida, Y. Sakuraba, K. Masuda, et al., “Spin-polarized Weyl cones and giant anomalous Nernst effect in ferromagnetic Heusler films,” Commun. Mater. 1, 89 (2020).CrossRef K. Sumida, Y. Sakuraba, K. Masuda, et al., “Spin-polarized Weyl cones and giant anomalous Nernst effect in ferromagnetic Heusler films,” Commun. Mater. 1, 89 (2020).CrossRef
128.
Zurück zum Zitat T. Kono, M. Kakoki, T. Yoshikawa, et al., “Visualizing half-metallic bulk band structure with multiple Weyl cones of the Heusler ferromagnet,” Phys. Rev. Lett. 125, 216403 (2020).CrossRef T. Kono, M. Kakoki, T. Yoshikawa, et al., “Visualizing half-metallic bulk band structure with multiple Weyl cones of the Heusler ferromagnet,” Phys. Rev. Lett. 125, 216403 (2020).CrossRef
129.
Zurück zum Zitat S. Roy, R. Singha, A. Ghosh, A. Pariari, and P. Mandal, “Anomalous Hall effect in the half-metallic Heusler compound Co2TiX (X = Si, Ge),” Phys. Rev. B 102, 085147 (2020).CrossRef S. Roy, R. Singha, A. Ghosh, A. Pariari, and P. Mandal, “Anomalous Hall effect in the half-metallic Heusler compound Co2TiX (X = Si, Ge),” Phys. Rev. B 102, 085147 (2020).CrossRef
130.
Zurück zum Zitat O. Amrich, M. ElA. Monir, H. Baltach, S. B. Omran, X.-W. Sun, X. Wang, Y. Al-Douri, A. Bouhemadou, and R. Khenata, “Half-metallic ferrimagnetic characteristics of Co2YZ (Z = P, As, Sb, and Bi) new full-Heusler alloys: a DFT study,” J. Supercond. Nov. Magn. 3, No. 1, 241–250 (2018).CrossRef O. Amrich, M. ElA. Monir, H. Baltach, S. B. Omran, X.-W. Sun, X. Wang, Y. Al-Douri, A. Bouhemadou, and R. Khenata, “Half-metallic ferrimagnetic characteristics of Co2YZ (Z = P, As, Sb, and Bi) new full-Heusler alloys: a DFT study,” J. Supercond. Nov. Magn. 3, No. 1, 241–250 (2018).CrossRef
131.
Zurück zum Zitat R. Jain, N. Lakshmi, V. K. Jain, V. Jain, A. R. Chandra, and K. Venugopalan, “Electronic structure, magnetic and optical properties of Co2TiZ (Z = B, Al, Ga, In) Heusler alloys,” J. Magn. Magn. Mater. 448, 278–286 (2018).CrossRef R. Jain, N. Lakshmi, V. K. Jain, V. Jain, A. R. Chandra, and K. Venugopalan, “Electronic structure, magnetic and optical properties of Co2TiZ (Z = B, Al, Ga, In) Heusler alloys,” J. Magn. Magn. Mater. 448, 278–286 (2018).CrossRef
132.
Zurück zum Zitat L. Sukhender, L. Mohan, S. Kumar, D. Sharma, and A. S. Verma, “Structural, electronic, optical and magnetic properties of Co2CrZ (Z = Al, Bi, Ge, Si) Heusler compounds,” East Eur. J. Phys. 2, 69–80 (2020). L. Sukhender, L. Mohan, S. Kumar, D. Sharma, and A. S. Verma, “Structural, electronic, optical and magnetic properties of Co2CrZ (Z = Al, Bi, Ge, Si) Heusler compounds,” East Eur. J. Phys. 2, 69–80 (2020).
133.
Zurück zum Zitat Y. Li, L. Qin, S. Y. Huang, X. M. Zhang, and L. W. Li, “Electronic structure, magnetic properties and martensitic transformation of Ga2MnTM (TM = Sc, Y, Lu) Heusler alloys,” J. Magn. Magn. Mater. 529, 167891 (2021).CrossRef Y. Li, L. Qin, S. Y. Huang, X. M. Zhang, and L. W. Li, “Electronic structure, magnetic properties and martensitic transformation of Ga2MnTM (TM = Sc, Y, Lu) Heusler alloys,” J. Magn. Magn. Mater. 529, 167891 (2021).CrossRef
134.
Zurück zum Zitat M. Shakil, S. Mushtaq, I. Zeba, S. S. A. Gillani, M. I. Khan, H. Arshad, and M. Rafique, “Structural, electronic, magnetic and thermoelectric properties of full Heusler alloys Co2YZ (Z = S, Ge, Se): A first principles calculation,” Phys. B: Condens. Matter 602, 412558 (2021).CrossRef M. Shakil, S. Mushtaq, I. Zeba, S. S. A. Gillani, M. I. Khan, H. Arshad, and M. Rafique, “Structural, electronic, magnetic and thermoelectric properties of full Heusler alloys Co2YZ (Z = S, Ge, Se): A first principles calculation,” Phys. B: Condens. Matter 602, 412558 (2021).CrossRef
135.
Zurück zum Zitat A. A. Mubarak, S. Saad, F. Hamioud, and M. Al-Elaimi, “Structural, thermo-elastic, electro-magnetic and thermoelectric attributes of quaternary CoNbMnX (X = Al, Si) Heusler alloys,” Solid State Sci. 111, 106397 (2021).CrossRef A. A. Mubarak, S. Saad, F. Hamioud, and M. Al-Elaimi, “Structural, thermo-elastic, electro-magnetic and thermoelectric attributes of quaternary CoNbMnX (X = Al, Si) Heusler alloys,” Solid State Sci. 111, 106397 (2021).CrossRef
136.
Zurück zum Zitat Y. El Krimi, R. Masrour, and A. Jabar, “A comparative study of structural electronic and magnetic properties of full-Heuslers Co2MnZ (Z = Al, Ge and Sn),” J. Mol. Struct. 1220, 128707 (2020).CrossRef Y. El Krimi, R. Masrour, and A. Jabar, “A comparative study of structural electronic and magnetic properties of full-Heuslers Co2MnZ (Z = Al, Ge and Sn),” J. Mol. Struct. 1220, 128707 (2020).CrossRef
137.
Zurück zum Zitat V. V. Marchenkov, Yu. A. Perevozchikova, N. I. Kourov, V. Yu. Irkhin, M. Eisterer, and T. Gao, “Peculiarities of the electronic transport in half-metallic Co-based Heusler alloys,” J. Magn. Magn. Mater. 459, 211–214 (2018).CrossRef V. V. Marchenkov, Yu. A. Perevozchikova, N. I. Kourov, V. Yu. Irkhin, M. Eisterer, and T. Gao, “Peculiarities of the electronic transport in half-metallic Co-based Heusler alloys,” J. Magn. Magn. Mater. 459, 211–214 (2018).CrossRef
138.
Zurück zum Zitat V. V. Marchenkov, V. Yu. Irkhin, and Yu. A. Perevozchikova, “Peculiarities of electronic transport and magnetic state in half-metallic ferromagnetic and spin gapless semiconducting Heusler alloys,” Phys. Met. Metallogr. 120, 1325–1332 (2019).CrossRef V. V. Marchenkov, V. Yu. Irkhin, and Yu. A. Perevozchikova, “Peculiarities of electronic transport and magnetic state in half-metallic ferromagnetic and spin gapless semiconducting Heusler alloys,” Phys. Met. Metallogr. 120, 1325–1332 (2019).CrossRef
139.
Zurück zum Zitat Yu. A. Perevozchikova, A. A. Semyannikova, A. N. Domozhirova, P. B. Terent’ev, E. B. Marchenkova, E. I. Patrakov, M. Eisterer, P. S. Korenistov, and V. V. Marchenkov, “Experimental observation of anomalies in the electrical, magnetic, and galvanomagnetic properties of cobalt-based Heusler alloys with varying transition elements,” Low Temp. Phys. 45, No. 7, 789–794 (2019).CrossRef Yu. A. Perevozchikova, A. A. Semyannikova, A. N. Domozhirova, P. B. Terent’ev, E. B. Marchenkova, E. I. Patrakov, M. Eisterer, P. S. Korenistov, and V. V. Marchenkov, “Experimental observation of anomalies in the electrical, magnetic, and galvanomagnetic properties of cobalt-based Heusler alloys with varying transition elements,” Low Temp. Phys. 45, No. 7, 789–794 (2019).CrossRef
140.
Zurück zum Zitat A. A. Semiannikova, Yu. A. Perevozchikova, V. Yu. Irkhin, E. B. Marchenkova, P. S. Korenistov, and V. V. Marchenkov, “Electronic, magnetic and galvanomagnetic properties of Co-based Heusler alloys: possible states of a half-metallic ferromagnet and spin gapless semiconductor,” AIP Adv. 11, 15139 (2021).CrossRef A. A. Semiannikova, Yu. A. Perevozchikova, V. Yu. Irkhin, E. B. Marchenkova, P. S. Korenistov, and V. V. Marchenkov, “Electronic, magnetic and galvanomagnetic properties of Co-based Heusler alloys: possible states of a half-metallic ferromagnet and spin gapless semiconductor,” AIP Adv. 11, 15139 (2021).CrossRef
141.
Zurück zum Zitat H. Luo, Z. Zhu, L. Ma, et al., “Effect of site preference of 3d atoms on the electronic structure and half-metallicity of Heusler alloy Mn2YAl,” J. Phys. D: Appl. Phys. 41, 055010 (2008).CrossRef H. Luo, Z. Zhu, L. Ma, et al., “Effect of site preference of 3d atoms on the electronic structure and half-metallicity of Heusler alloy Mn2YAl,” J. Phys. D: Appl. Phys. 41, 055010 (2008).CrossRef
142.
Zurück zum Zitat S. V. Faleev, Y. Ferrante, J. Jeong, M. G. Samant, B. Jones, and S. S. P. Parkin, “Heusler compounds with perpendicular magnetic anisotropy and large tunneling magnetoresistance,” Phys. Rev. Materials 1, 024402 (2017).CrossRef S. V. Faleev, Y. Ferrante, J. Jeong, M. G. Samant, B. Jones, and S. S. P. Parkin, “Heusler compounds with perpendicular magnetic anisotropy and large tunneling magnetoresistance,” Phys. Rev. Materials 1, 024402 (2017).CrossRef
143.
Zurück zum Zitat L. Makinistian, M. M. Faiz, R. P. Panguluri, B. Balke, S. Wurmehl, C. Felser, et al., “On the half-metallicity of Co2FeSi Heusler alloy: an experimental and ab initio study,” Phys. Rev. B 87, 220402 (2013).CrossRef L. Makinistian, M. M. Faiz, R. P. Panguluri, B. Balke, S. Wurmehl, C. Felser, et al., “On the half-metallicity of Co2FeSi Heusler alloy: an experimental and ab initio study,” Phys. Rev. B 87, 220402 (2013).CrossRef
144.
Zurück zum Zitat M. E. Jamer, Y. J. Wang, G. M. Stephen, et al., “Compensated ferrimagnetism in the zero-moment Heusler alloy Mn3Al,” Phys. Rev. Appl. 7, 064036 (2017).CrossRef M. E. Jamer, Y. J. Wang, G. M. Stephen, et al., “Compensated ferrimagnetism in the zero-moment Heusler alloy Mn3Al,” Phys. Rev. Appl. 7, 064036 (2017).CrossRef
145.
Zurück zum Zitat S. Chatterjee, P. Dutta, P. Singha, S. Giri, and A. Banerjee, “Emergence of compensated ferrimagnetic state in Mn2 – xRu1 + xGa (x = 0.2, 0.5) alloys,” J. Magn. Magn. Mater. 532, 167956 (2021).CrossRef S. Chatterjee, P. Dutta, P. Singha, S. Giri, and A. Banerjee, “Emergence of compensated ferrimagnetic state in Mn2 – xRu1 + xGa (x = 0.2, 0.5) alloys,” J. Magn. Magn. Mater. 532, 167956 (2021).CrossRef
146.
Zurück zum Zitat E. I. Shreder, A. V. Lukoyanov, and V. V. Marchenkov, “Optical properties and electronic structure of alloys Co2Cr1 – xFexAl (x = 0, 0.4, 0.6, 1.0),” Phys. Solid State 58, No. 1, 164–169 (2016).CrossRef E. I. Shreder, A. V. Lukoyanov, and V. V. Marchenkov, “Optical properties and electronic structure of alloys Co2Cr1 – xFexAl (x = 0, 0.4, 0.6, 1.0),” Phys. Solid State 58, No. 1, 164–169 (2016).CrossRef
147.
Zurück zum Zitat V. D. Buchelnikov, V. V. Sokolovskiy, O. N. Miroshkina, D. R. Baigutlin, M. A. Zagrebin, B. Barbiellini, and E. Lahderanta, “Prediction of a Heusler alloy with switchable metal-to-half-metal behavior,” Phys. Rev. B 103, 054414 (2021).CrossRef V. D. Buchelnikov, V. V. Sokolovskiy, O. N. Miroshkina, D. R. Baigutlin, M. A. Zagrebin, B. Barbiellini, and E. Lahderanta, “Prediction of a Heusler alloy with switchable metal-to-half-metal behavior,” Phys. Rev. B 103, 054414 (2021).CrossRef
148.
Zurück zum Zitat Z. P. Hou, Y. Wang, G. Z. Xu, X. M. Zhang, E. K. Liu, W. Q. Wang, Z. Y. Liu, X. K. Xi, W. H. Wang, and G. H. Wu, “Transition from semiconducting to metallic-like conducting and weak antilocalization effect in single crystals of LuPtSb,” Appl. Phys. Lett. 10, 102102 (2015).CrossRef Z. P. Hou, Y. Wang, G. Z. Xu, X. M. Zhang, E. K. Liu, W. Q. Wang, Z. Y. Liu, X. K. Xi, W. H. Wang, and G. H. Wu, “Transition from semiconducting to metallic-like conducting and weak antilocalization effect in single crystals of LuPtSb,” Appl. Phys. Lett. 10, 102102 (2015).CrossRef
149.
Zurück zum Zitat B. M. Ludbrook, G. Dubuis, A. H. Puichaud, B. J. Ruck, and S. Granville, “Nucleation and annihilation of skyrmions in Mn2CoAl observed through the topological Hall effect,” Sci. Rep. 7, 13620 (2017).CrossRef B. M. Ludbrook, G. Dubuis, A. H. Puichaud, B. J. Ruck, and S. Granville, “Nucleation and annihilation of skyrmions in Mn2CoAl observed through the topological Hall effect,” Sci. Rep. 7, 13620 (2017).CrossRef
150.
Zurück zum Zitat S. Ghosh, “Insights into the half-metallicity in Heusler compounds with 3d and 4d transition metal elements,” PhD Thesis (Indian Institute of Technology Guwahati, Asam, 2019). S. Ghosh, “Insights into the half-metallicity in Heusler compounds with 3d and 4d transition metal elements,” PhD Thesis (Indian Institute of Technology Guwahati, Asam, 2019).
151.
Zurück zum Zitat A. Ahmad, S. K. Srivastava, and A.K. Das, “Phase stability and the effect of lattice distortions on electronic properties and half-metallic ferromagnetism of Co2FeAl Heusler alloy: an ab initio study,” J. Phys.: Condens. Matter 32, 415606 (2020). A. Ahmad, S. K. Srivastava, and A.K. Das, “Phase stability and the effect of lattice distortions on electronic properties and half-metallic ferromagnetism of Co2FeAl Heusler alloy: an ab initio study,” J. Phys.: Condens. Matter 32, 415606 (2020).
152.
Zurück zum Zitat P. O. Adebambo, B. I. Adetunji, J. A. Olowofela, J. A. Oguntuase, and G. A. Adebayo, “Prediction of metallic and half-metallic structure and elastic properties of Fe2Ti1 – xMnxAl Heusler alloys,” Phys. B: Condens. Matter 485, 103–109 (2016).CrossRef P. O. Adebambo, B. I. Adetunji, J. A. Olowofela, J. A. Oguntuase, and G. A. Adebayo, “Prediction of metallic and half-metallic structure and elastic properties of Fe2Ti1 – xMnxAl Heusler alloys,” Phys. B: Condens. Matter 485, 103–109 (2016).CrossRef
153.
Zurück zum Zitat S. M. Azar, B. A. Hamad, and J. M. Khalifeh, “Structural, electronic and magnetic properties of Fe3 – xMnxZFe3 – xMnxZ (Z = Al, Ge, Sb) Heusler alloys,” J. Magn. Magn. Mater. 324, 1776–1785 (2012).CrossRef S. M. Azar, B. A. Hamad, and J. M. Khalifeh, “Structural, electronic and magnetic properties of Fe3 – xMnxZFe3 – xMnxZ (Z = Al, Ge, Sb) Heusler alloys,” J. Magn. Magn. Mater. 324, 1776–1785 (2012).CrossRef
154.
Zurück zum Zitat N. V. Uvarov, Y. V. Kudryavtsev, A. F. Kravets, A. Ya. Vovk, R. P. Borges, M. Godinho, and V. Korenivski, “Electronic structure, optical and magnetic properties of Co2FeGe Heusler alloy films,” J. Appl. Phys. 112, 063909 (2012).CrossRef N. V. Uvarov, Y. V. Kudryavtsev, A. F. Kravets, A. Ya. Vovk, R. P. Borges, M. Godinho, and V. Korenivski, “Electronic structure, optical and magnetic properties of Co2FeGe Heusler alloy films,” J. Appl. Phys. 112, 063909 (2012).CrossRef
155.
Zurück zum Zitat S. Dash, A. V. Lukoyanov, N. Nancy, D. Mishra, U. P. M. Rasi, R. B. Gangineni, M. Vasundhara, and M. Patra, “Structural stability and magnetic properties of Mn2FeAl alloy with a β-Mn structure,” J. Magn. Magn. Mater. 513, 167205 (2020).CrossRef S. Dash, A. V. Lukoyanov, N. Nancy, D. Mishra, U. P. M. Rasi, R. B. Gangineni, M. Vasundhara, and M. Patra, “Structural stability and magnetic properties of Mn2FeAl alloy with a β-Mn structure,” J. Magn. Magn. Mater. 513, 167205 (2020).CrossRef
Metadaten
Titel
Half-Metallic Ferromagnets, Spin Gapless Semiconductors, and Topological Semimetals Based on Heusler Alloys: Theory and Experiment
verfasst von
V. V. Marchenkov
V. Yu. Irkhin
Publikationsdatum
01.12.2021
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 12/2021
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21120061

Weitere Artikel der Ausgabe 12/2021

Physics of Metals and Metallography 12/2021 Zur Ausgabe

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Crowdion in Deformed FCC Metal. Atomistic Modeling