Skip to main content
Erschienen in: Journal of Engineering Thermophysics 2/2023

01.06.2023

Heat Transfer in a Falling Liquid Film of Freon R21 on an Array of Horizontal Tubes with Modified MAO Coatings

verfasst von: N. I. Pecherkin, A. N. Pavlenko, O. A. Volodin

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper presents the results of a study of heat transfer in a falling film of freon R21 on a single-row bundle of horizontal tubes made of aluminum alloys with outer diameters of 10 mm and modified oxide porous coatings. The oxide coatings were deposited by micro-arc oxidation (MAO) in phosphate, acid, and silicate-alkaline electrolytes. The surface modification of the MAO coatings consisted in the deposition of copper particles in a solution of copper sulphate. The heat transfer coefficients for the modified MAO coatings were compared with the results for the surface of tubes with base MAO coatings in electrolytes of similar compositions, as well as for a smooth metal tube without coating for Reynolds numbers of the falling film varying from 600 to 1500. Additional surface treatment of the porous ceramic coatings by the deposition of copper particles has led to a significant decrease in the heat transfer coefficients in the falling film compared with the base MAO coatings. The highest enhancement of the heat transfer relative to the case of the smooth tube (of up to 80%) was obtained on the modified MAO coating deposited in the phosphate electrolyte.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dedov, A.V., A Review of Modern Methods for Enhancing Nucleate Boiling Heat Transfer, Therm. Eng., 2019, vol. 66, no. 12, pp. 881–915; DOI:10.1134/S0040601519120012ADSCrossRef Dedov, A.V., A Review of Modern Methods for Enhancing Nucleate Boiling Heat Transfer, Therm. Eng., 2019, vol. 66, no. 12, pp. 881–915; DOI:10.1134/S0040601519120012ADSCrossRef
2.
Zurück zum Zitat Volodin, O.A., Pecherkin, N.I., and Pavlenko, A.N., Heat Transfer Enhancement at Boiling and Evaporation of Liquids on Modified Surfaces—A Review, High Temp., 2021, vol. 59, nos. 2–6, pp. 405–432; DOI:10.1134/S0018151X21020140CrossRef Volodin, O.A., Pecherkin, N.I., and Pavlenko, A.N., Heat Transfer Enhancement at Boiling and Evaporation of Liquids on Modified Surfaces—A Review, High Temp., 2021, vol. 59, nos. 2–6, pp. 405–432; DOI:10.1134/S0018151X21020140CrossRef
3.
Zurück zum Zitat Kim, D.E., Yu, D.I., Jerng, D.W., Kim, M.H., and Ahn, H.S., Review of Boiling Heat Transfer Enhancement on Micro/Nanostructured Surfaces, Exp. Therm. Fluid Sci., 2015, vol. 66, pp. 173–196; https://doi.org/10.1016/j.expthermflusci.2015.03.023.CrossRef Kim, D.E., Yu, D.I., Jerng, D.W., Kim, M.H., and Ahn, H.S., Review of Boiling Heat Transfer Enhancement on Micro/Nanostructured Surfaces, Exp. Therm. Fluid Sci., 2015, vol. 66, pp. 173–196; https://​doi.​org/​10.​1016/​j.​expthermflusci.​2015.​03.​023.​CrossRef
4.
Zurück zum Zitat Khan, S.A., Atieh, M.A., and Koç, M., Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review, Energies, 2018, vol. 11, p. 3189; DOI:10.3390/en11113189CrossRef Khan, S.A., Atieh, M.A., and Koç, M., Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review, Energies, 2018, vol. 11, p. 3189; DOI:10.3390/en11113189CrossRef
5.
Zurück zum Zitat Chen, J., Ahmad, Sh., Cai, J., Liu, H., Lau, K.T., and Zhao, J., Latest Progress on Nanotechnology Aided Boiling Heat Transfer Enhancement: A Review, Energy, 2021, vol. 215, prt. A, p. 119114; https://doi.org/10.1016/j.energy.2020.119114.CrossRef Chen, J., Ahmad, Sh., Cai, J., Liu, H., Lau, K.T., and Zhao, J., Latest Progress on Nanotechnology Aided Boiling Heat Transfer Enhancement: A Review, Energy, 2021, vol. 215, prt. A, p. 119114; https://​doi.​org/​10.​1016/​j.​energy.​2020.​119114.​CrossRef
6.
Zurück zum Zitat Liang, G. and Mudawar, I., Review of Nanoscale Boiling Enhancement Techniques and Proposed Systematic Testing Strategy to Ensure Cooling Reliability and Repeatability, Appl. Thermal Eng., 2021, vol. 184, p. 115982; https://doi.org/10.1016/j.applthermaleng.2020.115982.CrossRef Liang, G. and Mudawar, I., Review of Nanoscale Boiling Enhancement Techniques and Proposed Systematic Testing Strategy to Ensure Cooling Reliability and Repeatability, Appl. Thermal Eng., 2021, vol. 184, p. 115982; https://​doi.​org/​10.​1016/​j.​applthermaleng.​2020.​115982.​CrossRef
7.
Zurück zum Zitat Upot, N., Fazle Rabbi, K., Khodakarami, S., Ho, J.Y., Kohler Mendizabal, J., and Miljkovic, N., Advances in Micro and Nanoengineered Surfaces for Enhancing Boiling and Condensation Heat Transfer: A Review, Nanoscale Adv., 2023, vol. 5, pp. 1232–1270; DOI:10.1039/d2na00669cADSCrossRef Upot, N., Fazle Rabbi, K., Khodakarami, S., Ho, J.Y., Kohler Mendizabal, J., and Miljkovic, N., Advances in Micro and Nanoengineered Surfaces for Enhancing Boiling and Condensation Heat Transfer: A Review, Nanoscale Adv., 2023, vol. 5, pp. 1232–1270; DOI:10.1039/d2na00669cADSCrossRef
8.
Zurück zum Zitat Serdyukov, V.S., Volodin, O.A., Bessmeltsev, V.P., and Pavlenko, A.N., Heat Transfer Enhancement during Pool Water Boiling Using 3D Printed Capillary-Porous Coatings, J. Eng. Therm., 2022, vol. 31, no. 2, pp. 201–209; DOI.org/10.1134/S1810232822020011CrossRef Serdyukov, V.S., Volodin, O.A., Bessmeltsev, V.P., and Pavlenko, A.N., Heat Transfer Enhancement during Pool Water Boiling Using 3D Printed Capillary-Porous Coatings, J. Eng. Therm., 2022, vol. 31, no. 2, pp. 201–209; DOI.org/10.1134/S1810232822020011CrossRef
9.
Zurück zum Zitat Pavlenko, A.N., Kuznetsov, D.V., and Bessmeltsev, V.P., Experimental Study on Heat Transfer and Critical Heat Flux during Pool Boiling of Nitrogen on 3D Printed Structured Copper Capillary-Porous Coatings, J. Eng. Therm., 2021, vol. 30, no. 3, pp. 341–349; https://doi.org/10.1134/S1810232821030012.CrossRef Pavlenko, A.N., Kuznetsov, D.V., and Bessmeltsev, V.P., Experimental Study on Heat Transfer and Critical Heat Flux during Pool Boiling of Nitrogen on 3D Printed Structured Copper Capillary-Porous Coatings, J. Eng. Therm., 2021, vol. 30, no. 3, pp. 341–349; https://​doi.​org/​10.​1134/​S181023282103001​2.​CrossRef
10.
Zurück zum Zitat Volodin, O.A., Pecherkin, N.I., and Pavlenko, A.N., Heat Transfer Enhancement at Evaporation and Boiling of Liquid on Capillary-Porous Surfaces Created by 3D Printing, J. Phys.: Conf. Ser., 2021, vol. 2119, no. 1, p. 012075; https://doi.org/10.1088/1742-6596/2119/1/012075.CrossRef Volodin, O.A., Pecherkin, N.I., and Pavlenko, A.N., Heat Transfer Enhancement at Evaporation and Boiling of Liquid on Capillary-Porous Surfaces Created by 3D Printing, J. Phys.: Conf. Ser., 2021, vol. 2119, no. 1, p. 012075; https://​doi.​org/​10.​1088/​1742-6596/​2119/​1/​012075.​CrossRef
11.
Zurück zum Zitat Suminov, I.V., Epel’fel’d, A.V., Lyudin, V.B., Krit, B.L., and Borisov, A.M., Mikrodugovoe oksidirovanie: teoriya, tekhnologiya, oborudovanie (Micro-Arc Oxidation: Theory, Technology, and Equipment), Moscow: Ekomet, 2005, chs. 2, 4, and 5. Suminov, I.V., Epel’fel’d, A.V., Lyudin, V.B., Krit, B.L., and Borisov, A.M., Mikrodugovoe oksidirovanie: teoriya, tekhnologiya, oborudovanie (Micro-Arc Oxidation: Theory, Technology, and Equipment), Moscow: Ekomet, 2005, chs. 2, 4, and 5.
12.
Zurück zum Zitat Alykretsky, R.V., Ravodina, D.V., Trushkina, T.V., Vakhteev, E.V., and Alekseeva, E.G., Antierosion Coatings Development for Power Units of Space Crafts; Network Sci. Periodic Publ., 2014, vol. 74, pp. 29–30; http://trudymai.ru/eng/published.php?ID=49348. Alykretsky, R.V., Ravodina, D.V., Trushkina, T.V., Vakhteev, E.V., and Alekseeva, E.G., Antierosion Coatings Development for Power Units of Space Crafts; Network Sci. Periodic Publ., 2014, vol. 74, pp. 29–30; http://​trudymai.​ru/​eng/​published.​php?​ID=​49348.​
13.
Zurück zum Zitat Xi, K., Wu, H., Zhou, C., Qi, Z., Yang, K., Fu, R.K.Y., Xiao, S., Wu, G., Ding, K., Chen, G., and Chu, P.K., Improved Corrosion and Wear Resistance of Micro-Arc Oxidation Coatings on the 2024 Aluminum Alloy by Incorporation of Quasi-Two-Dimensional Sericite Microplates, Appl. Surface Sci., 2022. vol. 585, p. 152693; https://doi.org/10.1016/j.apsusc.2022.152693.CrossRef Xi, K., Wu, H., Zhou, C., Qi, Z., Yang, K., Fu, R.K.Y., Xiao, S., Wu, G., Ding, K., Chen, G., and Chu, P.K., Improved Corrosion and Wear Resistance of Micro-Arc Oxidation Coatings on the 2024 Aluminum Alloy by Incorporation of Quasi-Two-Dimensional Sericite Microplates, Appl. Surface Sci., 2022. vol. 585, p. 152693; https://​doi.​org/​10.​1016/​j.​apsusc.​2022.​152693.​CrossRef
14.
Zurück zum Zitat Nikiforov, A.A., Nikiforova, G.L., Terleeva, O.P., Slonova, A.I., Eshchenko, V.N., and Li, D.K., Device for Micro-Electric Arc Oxidation, RF Patent C1 2248416, 2005. Nikiforov, A.A., Nikiforova, G.L., Terleeva, O.P., Slonova, A.I., Eshchenko, V.N., and Li, D.K., Device for Micro-Electric Arc Oxidation, RF Patent C1 2248416, 2005.
15.
Zurück zum Zitat Miheev, A.E., Girn, A.V., Alykretsky, R.V., Ravodina, D.V., and Trushkina, T.V., Study of Emissivity Infrared Heaters Coated with MAO Coating, Vestnik SibGAU, 2014, vol. 54, no. 2, pp. 132–137. Miheev, A.E., Girn, A.V., Alykretsky, R.V., Ravodina, D.V., and Trushkina, T.V., Study of Emissivity Infrared Heaters Coated with MAO Coating, Vestnik SibGAU, 2014, vol. 54, no. 2, pp. 132–137.
16.
Zurück zum Zitat Zhukov, V.M., Elagina, O.Yu., Kuzma-Kichta, Yu.A., Lavrikov, A.V., Lenkov, V.A., Slobodyannikov, B.A., and Stenina, N.A., Heat Transfer Intensification at Boiling of Liquid Nitrogen by Applying Submicron Ceramic Coatings on the Surface of Aluminum Alloy Bodies, Therm. Proc. Engin., 2014, vol. 6, no. 12, pp. 553–559.CrossRef Zhukov, V.M., Elagina, O.Yu., Kuzma-Kichta, Yu.A., Lavrikov, A.V., Lenkov, V.A., Slobodyannikov, B.A., and Stenina, N.A., Heat Transfer Intensification at Boiling of Liquid Nitrogen by Applying Submicron Ceramic Coatings on the Surface of Aluminum Alloy Bodies, Therm. Proc. Engin., 2014, vol. 6, no. 12, pp. 553–559.CrossRef
17.
Zurück zum Zitat Zhukov, V.M., Kuzma-Kichta, Yu.A., Lavrikov, A.V., Belov, K.I., and Lenkov, V.A., Heat Transfer Investigation at Boiling of Nitrogen and Freon 113 on a Sphere with Coating Based on Al2O3 Obtained by Microarc Oxidation, Therm. Proc. Engin., 2016, vol. 8, no. 8, pp. 363–360.CrossRef Zhukov, V.M., Kuzma-Kichta, Yu.A., Lavrikov, A.V., Belov, K.I., and Lenkov, V.A., Heat Transfer Investigation at Boiling of Nitrogen and Freon 113 on a Sphere with Coating Based on Al2O3 Obtained by Microarc Oxidation, Therm. Proc. Engin., 2016, vol. 8, no. 8, pp. 363–360.CrossRef
18.
Zurück zum Zitat Zhukov, V.M., Kuzma-Kichta, Yu.A., Lavrikov, A.V., Belov, K.I., and Len’kov, V.A., Heat Transfer Enhancement at Boiling of Different Liquids on Spheres with Coatings Formed Using Micro-Arc Oxidation Technique, Therm. Proc. Engin., 2017, vol. 9, no. 12, pp. 537–543.CrossRef Zhukov, V.M., Kuzma-Kichta, Yu.A., Lavrikov, A.V., Belov, K.I., and Len’kov, V.A., Heat Transfer Enhancement at Boiling of Different Liquids on Spheres with Coatings Formed Using Micro-Arc Oxidation Technique, Therm. Proc. Engin., 2017, vol. 9, no. 12, pp. 537–543.CrossRef
19.
Zurück zum Zitat Vasil’ev, N.V., Varaksin, A.Yu., Zeigarnik, Yu.A., Khodakov, K.A., and Epel’fel’d, A.V., Characteristics of Subcooled Water Boiling on Structured Surfaces, High Temp., 2017, vol. 55, no. 6, pp. 880–886; https://doi.org/10.1134/S0018151X17060189.CrossRef Vasil’ev, N.V., Varaksin, A.Yu., Zeigarnik, Yu.A., Khodakov, K.A., and Epel’fel’d, A.V., Characteristics of Subcooled Water Boiling on Structured Surfaces, High Temp., 2017, vol. 55, no. 6, pp. 880–886; https://​doi.​org/​10.​1134/​S0018151X1706018​9.​CrossRef
20.
Zurück zum Zitat Pavlenko, A.N., Pecherkin, N.I., Volodin, O.A., Kataev, A.I., and Mironova, I.B., Heat Transfer in the Falling Liquid Film on an Array of Horizontal Tubes with MAO Coating, J. Phys.: Conf. Ser., 2020, vol. 1677, p. 012091; DOI:10.1088/1742-6596/1677/1/012091CrossRef Pavlenko, A.N., Pecherkin, N.I., Volodin, O.A., Kataev, A.I., and Mironova, I.B., Heat Transfer in the Falling Liquid Film on an Array of Horizontal Tubes with MAO Coating, J. Phys.: Conf. Ser., 2020, vol. 1677, p. 012091; DOI:10.1088/1742-6596/1677/1/012091CrossRef
21.
Zurück zum Zitat Pecherkin, N.I., Pavlenko, A.N., Volodin, O.A., Kataev, A.I., Mironova, I.B., and Das, M.K., Heat Transfer at Film Cooling of an Array of Horizontal Tubes with an Enhanced Surface, J. Phys.: Conf. Ser. (ICAE 2021), 2021, vol. 2096, p. 012141; DOI:10.1088/1742-6596/2096/1/012141CrossRef Pecherkin, N.I., Pavlenko, A.N., Volodin, O.A., Kataev, A.I., Mironova, I.B., and Das, M.K., Heat Transfer at Film Cooling of an Array of Horizontal Tubes with an Enhanced Surface, J. Phys.: Conf. Ser. (ICAE 2021), 2021, vol. 2096, p. 012141; DOI:10.1088/1742-6596/2096/1/012141CrossRef
22.
Zurück zum Zitat Pecherkin, N., Volodin, O., Pavlenko, A., Kataev, A., and Mironova, I., Heat Transfer Enhancement Experiments in R21 Falling Film over a Bundle of MAO-Coated Horizontal Tubes, Int. Comm. Heat Mass Transfer, 2021, vol. 129, p. 105743; https://doi.org/10.1016/j.icheatmasstransfer.2021.105743.CrossRef Pecherkin, N., Volodin, O., Pavlenko, A., Kataev, A., and Mironova, I., Heat Transfer Enhancement Experiments in R21 Falling Film over a Bundle of MAO-Coated Horizontal Tubes, Int. Comm. Heat Mass Transfer, 2021, vol. 129, p. 105743; https://​doi.​org/​10.​1016/​j.​icheatmasstransf​er.​2021.​105743.​CrossRef
23.
Zurück zum Zitat Pecherkin, N.I., Pavlenko, A.N., Volodin, O.A., Das, M.K., Kataev, A.I., and Mironova, I.B., Heat Transfer in Falling Films of R21 Refrigerant on a Single-Row Bundle of Horizontal Tubes with Porous Coatings, Proc. XXXVII Siberian Thermophysical Seminar (STS 37), 2021, 2021, p. 124. Pecherkin, N.I., Pavlenko, A.N., Volodin, O.A., Das, M.K., Kataev, A.I., and Mironova, I.B., Heat Transfer in Falling Films of R21 Refrigerant on a Single-Row Bundle of Horizontal Tubes with Porous Coatings, Proc. XXXVII Siberian Thermophysical Seminar (STS 37), 2021, 2021, p. 124.
24.
Zurück zum Zitat Chun, K.R. and Seban, R.A., Heat Transfer to Evaporating Liquid Films, ASME J. Heat Transfer, 1971, vol. 94, no. 4, pp. 391–396.CrossRef Chun, K.R. and Seban, R.A., Heat Transfer to Evaporating Liquid Films, ASME J. Heat Transfer, 1971, vol. 94, no. 4, pp. 391–396.CrossRef
25.
Zurück zum Zitat Aladjev, I.T., Heat Transfer in Liquids at Convective Boiling in Tubes and at Pool Boiling, Teploenerg., 1963, no. 4, pp. 57–61. Aladjev, I.T., Heat Transfer in Liquids at Convective Boiling in Tubes and at Pool Boiling, Teploenerg., 1963, no. 4, pp. 57–61.
26.
Zurück zum Zitat Alhusseini, A.A., Tuzla, K., and Chen, J.C., Falling Film Evaporation of Single Component Liquids, Int. J. Heat Mass Transfer, 1998, vol. 41, no. 12, pp. 1623–1632.CrossRef Alhusseini, A.A., Tuzla, K., and Chen, J.C., Falling Film Evaporation of Single Component Liquids, Int. J. Heat Mass Transfer, 1998, vol. 41, no. 12, pp. 1623–1632.CrossRef
Metadaten
Titel
Heat Transfer in a Falling Liquid Film of Freon R21 on an Array of Horizontal Tubes with Modified MAO Coatings
verfasst von
N. I. Pecherkin
A. N. Pavlenko
O. A. Volodin
Publikationsdatum
01.06.2023
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 2/2023
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232823020029

Weitere Artikel der Ausgabe 2/2023

Journal of Engineering Thermophysics 2/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.