Skip to main content
Erschienen in: Journal of Engineering Thermophysics 2/2023

01.06.2023

Investigation of Kinetics of Formation of Methane + Propane Hydrates by Molecular Dynamics Method in the Presence of Hydrate Seed and Sea Salt

verfasst von: R. K. Zhdanov, K. V. Gets, Yu. Yu. Bozhko, O. O. Subboting, V. R. Belosludov

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the presented work we studied the process of nucleation and growth of methane and propane gas hydrate from a homogeneous solution by means of molecular dynamics. The aim is to assess the effect of hydrate seed on the growth rate and structure of the resulting hydrate in the presence of sea salt. This process was characterized via calculation of the number of long-lived hydrogen bonds and amount of hydrate and hydrate-like cavities, as well as the order parameter of the intermolecular torsion angles. It is shown that the kinetics of hydrate formation do not differ much in the cases of pure water and seawater. A seed crystal of hydrate on the contrary, not only increases the hydrate growth rate, but also makes the resulting structure more consistent with the cubic structure II hydrate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Khurana, M., Yin, Z., and Linga, P., A Review of Clathrate Hydrate Nucleation, ACS Sust. Chem. Engin., 2017, vol. 5, no. 12, pp. 11176–11203.CrossRef Khurana, M., Yin, Z., and Linga, P., A Review of Clathrate Hydrate Nucleation, ACS Sust. Chem. Engin., 2017, vol. 5, no. 12, pp. 11176–11203.CrossRef
2.
Zurück zum Zitat Sosso, G.C., Chen, J., Cox, S.J., Fitzner, M., Pedevilla, P., Zen, A., and Michaelides, A., Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations, Chem. Rev., 2016 vol. 116, no. 12, pp. 7078–7116.CrossRef Sosso, G.C., Chen, J., Cox, S.J., Fitzner, M., Pedevilla, P., Zen, A., and Michaelides, A., Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations, Chem. Rev., 2016 vol. 116, no. 12, pp. 7078–7116.CrossRef
3.
Zurück zum Zitat English, N.J. and MacElroy, J.M.D., Perspectives on Molecular Simulation of Clathrate Hydrates: Progress, Prospects and Challenges, Chem. Engin. Sci., 2015, vol. 121, pp. 133–156.ADSCrossRef English, N.J. and MacElroy, J.M.D., Perspectives on Molecular Simulation of Clathrate Hydrates: Progress, Prospects and Challenges, Chem. Engin. Sci., 2015, vol. 121, pp. 133–156.ADSCrossRef
4.
Zurück zum Zitat Sloan, E.D., Jr., and Fleyfel, F., A Molecular Mechanism for Gas Hydrate Nucleation from Ice, AIChE J., 1991, vol. 37, no. 9, pp. 1281–1292.CrossRef Sloan, E.D., Jr., and Fleyfel, F., A Molecular Mechanism for Gas Hydrate Nucleation from Ice, AIChE J., 1991, vol. 37, no. 9, pp. 1281–1292.CrossRef
5.
Zurück zum Zitat Radhakrishnan, R. and Trout, B.L., A New Approach for Studying Nucleation Phenomena Using Molecular Simulations: Application to CO2 Hydrate Clathrates J. Chem. Phys., 2002, vol. 117, no. 4, pp. 1786–1796.ADSCrossRef Radhakrishnan, R. and Trout, B.L., A New Approach for Studying Nucleation Phenomena Using Molecular Simulations: Application to CO2 Hydrate Clathrates J. Chem. Phys., 2002, vol. 117, no. 4, pp. 1786–1796.ADSCrossRef
6.
Zurück zum Zitat Sloan, E.D. and Koh, C.A., Clathrate Hydrates of Natural Gasses, 3rd ed., Boca Raton: CRC Press, 2008. Sloan, E.D. and Koh, C.A., Clathrate Hydrates of Natural Gasses, 3rd ed., Boca Raton: CRC Press, 2008.
7.
Zurück zum Zitat Klapproth, A., Piltz, R.O., Kennedy, S.J., and Kozielski, K.A., Kinetics of sII and Mixed sI/sII, Gas Hydrate Growth for a Methane/Propane Mixture Using Neutron Diffraction J. Phys. Chem. C, 2019, vol. 123, pp. 2703–2715.CrossRef Klapproth, A., Piltz, R.O., Kennedy, S.J., and Kozielski, K.A., Kinetics of sII and Mixed sI/sII, Gas Hydrate Growth for a Methane/Propane Mixture Using Neutron Diffraction J. Phys. Chem. C, 2019, vol. 123, pp. 2703–2715.CrossRef
8.
Zurück zum Zitat Ballard, A.L. and Sloan, E.D., Jr., Hydrate Phase Diagrams for Methane + Ethane + Propane Mixtures Chem. Engin. Sci., 2001, vol. 56, pp. 6883–6895.ADSCrossRef Ballard, A.L. and Sloan, E.D., Jr., Hydrate Phase Diagrams for Methane + Ethane + Propane Mixtures Chem. Engin. Sci., 2001, vol. 56, pp. 6883–6895.ADSCrossRef
9.
Zurück zum Zitat Zhang, Z., Guo, G.J., Wu, N., and Kusalik, P.G., Molecular Insights into Guest and Composition Dependence of Mixed Hydrate Nucleation, J. Phys. Chem. C, 2020, vol. 124, no. 45, pp. 25078–25086.CrossRef Zhang, Z., Guo, G.J., Wu, N., and Kusalik, P.G., Molecular Insights into Guest and Composition Dependence of Mixed Hydrate Nucleation, J. Phys. Chem. C, 2020, vol. 124, no. 45, pp. 25078–25086.CrossRef
10.
Zurück zum Zitat Jiménez-Ángeles, F. and Firoozabadi, A., Nucleation Pathways of Gas Hydrates from Molecular Dynamics Simulations, Procs. of the 8th Int. Conf. on Gas Hydrates (ICGH8-2014), Beijing, China, 2014. Jiménez-Ángeles, F. and Firoozabadi, A., Nucleation Pathways of Gas Hydrates from Molecular Dynamics Simulations, Procs. of the 8th Int. Conf. on Gas Hydrates (ICGH8-2014), Beijing, China, 2014.
11.
Zurück zum Zitat Babu, P., Kumar, R., and Linga, P., Unusual Behavior of Propane as a Co-Guest During Hydrate Formation in Silica Sand: Potential Application to Seawater Desalination and Carbon Dioxide Capture, Chem. Engin. Sci., 2014, vol. 117, pp. 342–351.ADSCrossRef Babu, P., Kumar, R., and Linga, P., Unusual Behavior of Propane as a Co-Guest During Hydrate Formation in Silica Sand: Potential Application to Seawater Desalination and Carbon Dioxide Capture, Chem. Engin. Sci., 2014, vol. 117, pp. 342–351.ADSCrossRef
12.
Zurück zum Zitat Meleshkin, A.V. and Shkoldina, A.A., Modeling of Freon 134a Gas Hydrate Synthesis via Boiling and Condensation of Gas in a Volume of Water J. Eng. Therm., 2021, vol. 30, no. 4, pp. 693–698.CrossRef Meleshkin, A.V. and Shkoldina, A.A., Modeling of Freon 134a Gas Hydrate Synthesis via Boiling and Condensation of Gas in a Volume of Water J. Eng. Therm., 2021, vol. 30, no. 4, pp. 693–698.CrossRef
13.
Zurück zum Zitat Meleshkin, A.V. and Marasanov, N.V., Study of Enhancement of Synthesis of Freon 134a Gas Hydrate during Boiling of Liquefied Gas with Its Simultaneous Stirring with Water J. Eng. Therm., 2021, vol. 30, no. 4, pp. 699–703.CrossRef Meleshkin, A.V. and Marasanov, N.V., Study of Enhancement of Synthesis of Freon 134a Gas Hydrate during Boiling of Liquefied Gas with Its Simultaneous Stirring with Water J. Eng. Therm., 2021, vol. 30, no. 4, pp. 699–703.CrossRef
14.
Zurück zum Zitat Bai, D., Chen, G., Zhang, X., and Wang, W., Microsecond Molecular Dynamics Simulations of the Kinetic Pathways of Gas Hydrate Formation from Solid Surfaces, Langmuir, 2011, vol. 27, no. 10, pp. 5961–5967.CrossRef Bai, D., Chen, G., Zhang, X., and Wang, W., Microsecond Molecular Dynamics Simulations of the Kinetic Pathways of Gas Hydrate Formation from Solid Surfaces, Langmuir, 2011, vol. 27, no. 10, pp. 5961–5967.CrossRef
15.
Zurück zum Zitat Bai, D., Chen, G., Zhang, X., Sum, A.K., and Wang, W., How Properties of Solid Surfaces Modulate the Nucleation of Gas Hydrate, Sci. Rep., 2015, vol. 5, no. 1, pp. 1–12.CrossRef Bai, D., Chen, G., Zhang, X., Sum, A.K., and Wang, W., How Properties of Solid Surfaces Modulate the Nucleation of Gas Hydrate, Sci. Rep., 2015, vol. 5, no. 1, pp. 1–12.CrossRef
16.
Zurück zum Zitat Meleshkin, A.V., Bartashevich, M.V., Glezer, V.V., and Glebov, R.A., Effect of Surfactants on Synthesis of Gas Hydrates, J. Eng. Therm., 2020, vol. 29, no. 2, pp. 264–266.CrossRef Meleshkin, A.V., Bartashevich, M.V., Glezer, V.V., and Glebov, R.A., Effect of Surfactants on Synthesis of Gas Hydrates, J. Eng. Therm., 2020, vol. 29, no. 2, pp. 264–266.CrossRef
17.
Zurück zum Zitat Thompson, A.P., Aktulga, H.M., Berger, R., Bolintineanu, D.S., Brown, W.M., Crozier, P.S., in ’t Velde, P.J., Kohlmeyer, A., Moore, S.G., Nguyen, T.D., Shan, R., Stevens, M.J., Tranchida, J., Trott, C., and Plimpton, S.J., LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales, Comp. Phys. Commun., 2022, vol. 271, p. 108171.CrossRefMATH Thompson, A.P., Aktulga, H.M., Berger, R., Bolintineanu, D.S., Brown, W.M., Crozier, P.S., in ’t Velde, P.J., Kohlmeyer, A., Moore, S.G., Nguyen, T.D., Shan, R., Stevens, M.J., Tranchida, J., Trott, C., and Plimpton, S.J., LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales, Comp. Phys. Commun., 2022, vol. 271, p. 108171.CrossRefMATH
18.
Zurück zum Zitat Nosé, S., A Molecular Dynamics Method for Simulations in the Canonical Ensemble, Molec. Phys., 1984, vol. 52, no. 2, pp. 255–268.ADSCrossRef Nosé, S., A Molecular Dynamics Method for Simulations in the Canonical Ensemble, Molec. Phys., 1984, vol. 52, no. 2, pp. 255–268.ADSCrossRef
19.
Zurück zum Zitat Hoover, W.G., Canonical Dynamics: Equilibrium Phase-Space Distributions, Phys. Rev. A, 1985, vol. 31, no. 3, p. 1695.ADSCrossRef Hoover, W.G., Canonical Dynamics: Equilibrium Phase-Space Distributions, Phys. Rev. A, 1985, vol. 31, no. 3, p. 1695.ADSCrossRef
20.
Zurück zum Zitat Hockney, R.W. and Eastwood, J.W., Computer Simulation Using Particles, McGraw-Hill, 1981.MATH Hockney, R.W. and Eastwood, J.W., Computer Simulation Using Particles, McGraw-Hill, 1981.MATH
21.
Zurück zum Zitat Ryckaert, J.P., Ciccotti, G., and Berendsen, H.J., Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes, J. Comput. Phys., 1977, vol. 23, no. 3, pp. 327–341.ADSCrossRef Ryckaert, J.P., Ciccotti, G., and Berendsen, H.J., Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes, J. Comput. Phys., 1977, vol. 23, no. 3, pp. 327–341.ADSCrossRef
22.
Zurück zum Zitat Zhdanov, R.K., Adamova, T.P., Subbotin, O.S., Pomeranskii, A.A., Belosludov, V.R., Dontsov, V.R., and Nakoryakov, V.E., Modeling the Properties of Methane + Ethane (Propane) Binary Hydrates, Depending on the Composition of Gas Phase State in Equilibrium with Hydrate, J. Eng. Therm., 2010, vol. 19, no. 4, pp. 282–288.CrossRef Zhdanov, R.K., Adamova, T.P., Subbotin, O.S., Pomeranskii, A.A., Belosludov, V.R., Dontsov, V.R., and Nakoryakov, V.E., Modeling the Properties of Methane + Ethane (Propane) Binary Hydrates, Depending on the Composition of Gas Phase State in Equilibrium with Hydrate, J. Eng. Therm., 2010, vol. 19, no. 4, pp. 282–288.CrossRef
23.
Zurück zum Zitat Abascal, J.L.F., Sanz, E., Garcı́a Fernández, R., and Vega, C., A Potential Model for the Study of Ices and Amorphous Water: TIP4P/Ice, J. Chem. Phys., 2005, vol. 122, no. 23, p. 234511.ADSCrossRef Abascal, J.L.F., Sanz, E., Garcı́a Fernández, R., and Vega, C., A Potential Model for the Study of Ices and Amorphous Water: TIP4P/Ice, J. Chem. Phys., 2005, vol. 122, no. 23, p. 234511.ADSCrossRef
24.
Zurück zum Zitat Martin, M.G. and Siepmann, J.I., Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes, J. Phys. Chem. B, 1998, vol. 102, no. 14, pp. 2569–2577.CrossRef Martin, M.G. and Siepmann, J.I., Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes, J. Phys. Chem. B, 1998, vol. 102, no. 14, pp. 2569–2577.CrossRef
25.
Zurück zum Zitat Tanaka, H., The Thermodynamic Stability of Clathrate Hydrate. III. Accommodation of Nonspherical Propane and Ethane Molecules, J. Chem. Phys., 1994, vol. 101, no. 12, pp. 10833–10842.ADSCrossRef Tanaka, H., The Thermodynamic Stability of Clathrate Hydrate. III. Accommodation of Nonspherical Propane and Ethane Molecules, J. Chem. Phys., 1994, vol. 101, no. 12, pp. 10833–10842.ADSCrossRef
26.
Zurück zum Zitat Cygan, R.T., Liang, J.J., and Kalinichev, A.G., Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field, J. Phys. Chem. B, 2004, vol. 108, no. 4, pp. 1255–1266.CrossRef Cygan, R.T., Liang, J.J., and Kalinichev, A.G., Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field, J. Phys. Chem. B, 2004, vol. 108, no. 4, pp. 1255–1266.CrossRef
27.
Zurück zum Zitat Matsumoto, M., Saito, S., and Ohmine, I., Molecular Dynamics Simulation of the Ice Nucleation and Growth Process Leading to Water Freezing, Nature, 2002, vol. 416, no. 6879, pp. 409–413.ADSCrossRef Matsumoto, M., Saito, S., and Ohmine, I., Molecular Dynamics Simulation of the Ice Nucleation and Growth Process Leading to Water Freezing, Nature, 2002, vol. 416, no. 6879, pp. 409–413.ADSCrossRef
28.
Zurück zum Zitat Rodger, P.M., Forester, T.R., and Smith, W., Simulations of the Methane Hydrate/Methane Gas Interface near Hydrate Forming Conditions, Fluid Phase Equil., 1996, vol. 116, nos. 1/2, pp. 326–332.CrossRef Rodger, P.M., Forester, T.R., and Smith, W., Simulations of the Methane Hydrate/Methane Gas Interface near Hydrate Forming Conditions, Fluid Phase Equil., 1996, vol. 116, nos. 1/2, pp. 326–332.CrossRef
29.
Zurück zum Zitat Belosludov, V.R., Gets, K.V., Zhdanov, R.K., Bozhko, Y., Belosludov, R.V., and Chen, L.J., Collective Effect of Transformation of a Hydrogen Bond Network at the Initial State of Growth of Methane Hydrate JETP Lett., 2022, vol. 115, no. 3, pp. 124–129.ADSCrossRef Belosludov, V.R., Gets, K.V., Zhdanov, R.K., Bozhko, Y., Belosludov, R.V., and Chen, L.J., Collective Effect of Transformation of a Hydrogen Bond Network at the Initial State of Growth of Methane Hydrate JETP Lett., 2022, vol. 115, no. 3, pp. 124–129.ADSCrossRef
30.
Zurück zum Zitat Chen, Y., Chen, C., and Sum, A.K., Molecular Resolution into the Nucleation and Crystal Growth of Clathrate Hydrates Formed from Methane and Propane Mixtures Crystal Growth Des., 2021, vol. 21, no. 2, pp. 960–973.CrossRef Chen, Y., Chen, C., and Sum, A.K., Molecular Resolution into the Nucleation and Crystal Growth of Clathrate Hydrates Formed from Methane and Propane Mixtures Crystal Growth Des., 2021, vol. 21, no. 2, pp. 960–973.CrossRef
Metadaten
Titel
Investigation of Kinetics of Formation of Methane + Propane Hydrates by Molecular Dynamics Method in the Presence of Hydrate Seed and Sea Salt
verfasst von
R. K. Zhdanov
K. V. Gets
Yu. Yu. Bozhko
O. O. Subboting
V. R. Belosludov
Publikationsdatum
01.06.2023
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 2/2023
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S181023282302008X

Weitere Artikel der Ausgabe 2/2023

Journal of Engineering Thermophysics 2/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.