Skip to main content
Erschienen in: Journal of Engineering Thermophysics 2/2023

01.06.2023

Effects of Header Configuration on Flow Maldistribution in Plate-Fin Heat Exchangers

verfasst von: J. J. Tian, M. P. Wu, Z. Zhang, S. Q. Wang, Y. L. Lang, S. Mehendale, Q. Y. Wu, X. X. Wang, J. Y. Wang, H. F. Liou

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Non-uniform flow distribution among the channels of a heat exchanger (HX) can adversely affect its thermo-hydraulic performance. In this research, various header designs for a plate-fin heat exchanger (PFHX) and a flow data acquisition system were constructed to study the water flow distribution among the channels of the PFHX. These different header configurations were installed at the entrance of the PFHX operating under different flow conditions to evaluate the impact of header structure on flow distribution within the HX and its thermal-hydraulic performance. The conventional header was found to cause severe flow maldistribution at the inlet of the PFHX. The Reynolds number based on channel flow and geometry was seen to significantly affect the flow distribution, which in turn drastically reduced its effectiveness. To improve the conventional header, new headers with different perforated plates were designed and built. Experimental results showed that an improved version of the header is very effective in mitigating the flow maldistribution in the PFHX and thereby enhancing its thermal performance. Engineering correlations relating the flow distribution non-uniformity, HX effectiveness, and the Reynolds number for different header designs were also developed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wen, J., Huang, H., Li, H., Xu, G., and Fu, Y., Thermal and Hydraulic Performance of a Compact Plate Finned Tube Air-Fuel Heat Exchanger for Aero-Engine, Appl. Thermal Engin., 2017, vol. 126. pp. 920–928.CrossRef Wen, J., Huang, H., Li, H., Xu, G., and Fu, Y., Thermal and Hydraulic Performance of a Compact Plate Finned Tube Air-Fuel Heat Exchanger for Aero-Engine, Appl. Thermal Engin., 2017, vol. 126. pp. 920–928.CrossRef
2.
Zurück zum Zitat Wrobel, R., Scholes, B., Hussein, A., Law, R., Mustaffar A., and Reay, D., A Metal Additively Manufactured (MAM) Heat Exchanger for Electric Motor Thermal Control on a High-Altitude Solar Aircraft—Experimental Characterisation, Thermal Sci. Engin. Progr., 2020, vol. 19, p. 100629.CrossRef Wrobel, R., Scholes, B., Hussein, A., Law, R., Mustaffar A., and Reay, D., A Metal Additively Manufactured (MAM) Heat Exchanger for Electric Motor Thermal Control on a High-Altitude Solar Aircraft—Experimental Characterisation, Thermal Sci. Engin. Progr., 2020, vol. 19, p. 100629.CrossRef
3.
Zurück zum Zitat Wright, S.J., Dixon-Hardy, D.W., and Heggs, P.J., Aircraft Air Conditioning Heat Exchangers and Atmospheric Fouling, Thermal Sci. Engin. Progr., 2018, vol. 7, pp. 184–202.CrossRef Wright, S.J., Dixon-Hardy, D.W., and Heggs, P.J., Aircraft Air Conditioning Heat Exchangers and Atmospheric Fouling, Thermal Sci. Engin. Progr., 2018, vol. 7, pp. 184–202.CrossRef
4.
Zurück zum Zitat Musto, M., Bianco, N., Rotondo, G., Toscano, F., and Pezzella, G., A Simplified Methodology to Simulate a Heat Exchanger in an Aircraft’s Oil Cooler by Means of a Porous Media, Appl. Thermal Engin., vol. 94, 2016, pp. 836–845.CrossRef Musto, M., Bianco, N., Rotondo, G., Toscano, F., and Pezzella, G., A Simplified Methodology to Simulate a Heat Exchanger in an Aircraft’s Oil Cooler by Means of a Porous Media, Appl. Thermal Engin., vol. 94, 2016, pp. 836–845.CrossRef
5.
Zurück zum Zitat Li, H., Huang, H., Xu, G., Wen, J., and Wu, H., Performance Analysis of a Novel Compact Air-Air Heat Exchanger for Aircraft Gas Turbine Engine Using LMTD Method, Appl. Thermal Engin., 2017, vol. 116, pp. 445–455.CrossRef Li, H., Huang, H., Xu, G., Wen, J., and Wu, H., Performance Analysis of a Novel Compact Air-Air Heat Exchanger for Aircraft Gas Turbine Engine Using LMTD Method, Appl. Thermal Engin., 2017, vol. 116, pp. 445–455.CrossRef
6.
Zurück zum Zitat Missirlis, D., Yakinthos, K., Palikaras, A., Katheder, K., and Goulas, A., Experimental and Numerical Investigation of the Flow Field through a Heat Exchanger for Aero-Engine Applications, Int. J. Heat Fluid Flow, 2004, vol. 26, no. 3, pp. 440–458.CrossRef Missirlis, D., Yakinthos, K., Palikaras, A., Katheder, K., and Goulas, A., Experimental and Numerical Investigation of the Flow Field through a Heat Exchanger for Aero-Engine Applications, Int. J. Heat Fluid Flow, 2004, vol. 26, no. 3, pp. 440–458.CrossRef
7.
Zurück zum Zitat Torii, K., Kwak, K.M., and Nishino, K., Heat Transfer Enhancement Accompanying Pressure-Loss Reduction with Winglet-Type Vortex Generators for Fin-Tube Heat Exchangers, Int. J. Heat Mass Transfer, 2002, vol. 45, no. 18, pp. 3795–3801.CrossRef Torii, K., Kwak, K.M., and Nishino, K., Heat Transfer Enhancement Accompanying Pressure-Loss Reduction with Winglet-Type Vortex Generators for Fin-Tube Heat Exchangers, Int. J. Heat Mass Transfer, 2002, vol. 45, no. 18, pp. 3795–3801.CrossRef
8.
Zurück zum Zitat Ranganayakulu, H., The Effects of Longitudinal Heat Conduction in Compact Plate-Fin and Tube-Fin Heat Exchangers Using a Finite Element Method, Int. J. Heat Mass Transfer, 1997, vol. 40, no. 6, pp. 1261–1277.CrossRefMATH Ranganayakulu, H., The Effects of Longitudinal Heat Conduction in Compact Plate-Fin and Tube-Fin Heat Exchangers Using a Finite Element Method, Int. J. Heat Mass Transfer, 1997, vol. 40, no. 6, pp. 1261–1277.CrossRefMATH
9.
Zurück zum Zitat Mueller, A.C. and Chiou, J.P., Review of Various Types of Flow Maldistribution in Heat Exchangers, Heat Transfer Engin., 1988, vol. 9, no. 2, pp. 36–50.ADSCrossRef Mueller, A.C. and Chiou, J.P., Review of Various Types of Flow Maldistribution in Heat Exchangers, Heat Transfer Engin., 1988, vol. 9, no. 2, pp. 36–50.ADSCrossRef
10.
Zurück zum Zitat Hossein, S. and Majid, H., Effect of Number of Plates on the Thermal Performance of a Plate Heat Exchanger with Considering Flow Maldistribution, J. Energy Storage, 2002, vol. 32, p. 101907. Hossein, S. and Majid, H., Effect of Number of Plates on the Thermal Performance of a Plate Heat Exchanger with Considering Flow Maldistribution, J. Energy Storage, 2002, vol. 32, p. 101907.
11.
Zurück zum Zitat Roberta, M., Benjamin, Z., Vikrant, A., Wiebke, B.M., and Brian, E.W., Performance of Heat Pumps Using Pure and Mixed Refrigerants with Maldistribution Effects in Plate Heat Exchanger Evaporators, Int. J. Refrig., 2019, vol. 104, pp. 390–403.CrossRef Roberta, M., Benjamin, Z., Vikrant, A., Wiebke, B.M., and Brian, E.W., Performance of Heat Pumps Using Pure and Mixed Refrigerants with Maldistribution Effects in Plate Heat Exchanger Evaporators, Int. J. Refrig., 2019, vol. 104, pp. 390–403.CrossRef
12.
Zurück zum Zitat Sun, H., Hu, H., Ding, G.L., Chen, H., Zhang, Z., Wu, C., and Wang, L., A General Distributed-Parameter Model for Thermal Performance of Cold Box with Parallel Plate-Fin Heat Exchangers Based on Graph Theory, Appl. Thermal Engin., 2010, vol. 148, pp. 478–490.CrossRef Sun, H., Hu, H., Ding, G.L., Chen, H., Zhang, Z., Wu, C., and Wang, L., A General Distributed-Parameter Model for Thermal Performance of Cold Box with Parallel Plate-Fin Heat Exchangers Based on Graph Theory, Appl. Thermal Engin., 2010, vol. 148, pp. 478–490.CrossRef
13.
Zurück zum Zitat Gu, L.D. and Min, J.C., Airside Thermal-Hydraulic Characteristics for Tube Bank Heat Exchangers Used to Cool Compressor Bleed Air in an Aero Engine—Sciencedirect, Appl. Thermal Engin., 2018, vol. 141, pp. 939–947.CrossRef Gu, L.D. and Min, J.C., Airside Thermal-Hydraulic Characteristics for Tube Bank Heat Exchangers Used to Cool Compressor Bleed Air in an Aero Engine—Sciencedirect, Appl. Thermal Engin., 2018, vol. 141, pp. 939–947.CrossRef
14.
Zurück zum Zitat Nacke, R., Northcutt, B., and Mudawar, I., Theory and Experimental Validation of Cross-Flow Micro-Channel Heat Exchanger Module with Reference to High Mach Aircraft Gas Turbine Engines, Int. J. Heat Mass Transfer, 2011, vol. 54, nos. 5/6, pp. 1224–1235.CrossRefMATH Nacke, R., Northcutt, B., and Mudawar, I., Theory and Experimental Validation of Cross-Flow Micro-Channel Heat Exchanger Module with Reference to High Mach Aircraft Gas Turbine Engines, Int. J. Heat Mass Transfer, 2011, vol. 54, nos. 5/6, pp. 1224–1235.CrossRefMATH
15.
Zurück zum Zitat Kallath, H., Kholi, F.K., Jin, Q., Ha, M.Y., Park, S.H., Kim, H., Chetwynd-Chatwin, J., and Min, J.K., Numerical Study of the Flow Uniformity Inside the High-Pressure Side Manifolds of a Cooled Cooling Air Heat Exchanger, Appl. Thermal Engin., 2021, vol. 189.CrossRef Kallath, H., Kholi, F.K., Jin, Q., Ha, M.Y., Park, S.H., Kim, H., Chetwynd-Chatwin, J., and Min, J.K., Numerical Study of the Flow Uniformity Inside the High-Pressure Side Manifolds of a Cooled Cooling Air Heat Exchanger, Appl. Thermal Engin., 2021, vol. 189.CrossRef
16.
Zurück zum Zitat Niroomand, R., Saidi, M.H., and Hannani, S.K., A Quasi-Three-Dimensional Thermal Model for Multi-Stream Plate Fin Heat Exchangers, Appl. Thermal Engin., vol. 157, published online 5 nov., 2019.CrossRef Niroomand, R., Saidi, M.H., and Hannani, S.K., A Quasi-Three-Dimensional Thermal Model for Multi-Stream Plate Fin Heat Exchangers, Appl. Thermal Engin., vol. 157, published online 5 nov., 2019.CrossRef
17.
Zurück zum Zitat Patrick, H., Pascal, F., Thomas, A., Sebastian, R., and Harald, K., A Transient Three-Dimensional Model for Thermo-Fluid Simulation of Cryogenic Plate-Fin Heat Exchangers, Appl. Thermal Engin., vol. 180, published online 2020.CrossRef Patrick, H., Pascal, F., Thomas, A., Sebastian, R., and Harald, K., A Transient Three-Dimensional Model for Thermo-Fluid Simulation of Cryogenic Plate-Fin Heat Exchangers, Appl. Thermal Engin., vol. 180, published online 2020.CrossRef
18.
Zurück zum Zitat Pacio, J.C. and Dorao, C.A., A Study of the Effect of Flow Maldistribution on Heat Transfer Performance in Evaporators, Nucl. Engin. Design, 2010, vol. 240, no. 11, pp. 3868–3877.CrossRef Pacio, J.C. and Dorao, C.A., A Study of the Effect of Flow Maldistribution on Heat Transfer Performance in Evaporators, Nucl. Engin. Design, 2010, vol. 240, no. 11, pp. 3868–3877.CrossRef
19.
Zurück zum Zitat Li, J., Hu, H., and Zhang, Y., Experimental Investigation and Correlation Development for Two-Phase Pressure Drop Characteristics of Flow Boiling in Offset Strip Fin Channels, Int. J. Thermal Sci., vol. 160, published online 2021. Li, J., Hu, H., and Zhang, Y., Experimental Investigation and Correlation Development for Two-Phase Pressure Drop Characteristics of Flow Boiling in Offset Strip Fin Channels, Int. J. Thermal Sci., vol. 160, published online 2021.
20.
Zurück zum Zitat Wu, J. and Wang, Y., Liquid Blockage and Flow Maldistribution of Two-Phase Flow in Two Parallel Thin Micro-Channels, Appl. Thermal Engin., 2021. Wu, J. and Wang, Y., Liquid Blockage and Flow Maldistribution of Two-Phase Flow in Two Parallel Thin Micro-Channels, Appl. Thermal Engin., 2021.
21.
Zurück zum Zitat Li, R., Liu, J., and Xu, X., Development and Validation of a Direct Passage Arrangement Method for Multistream Plate Fin Heat Exchangers, Appl. Thermal Engin., 2018, vol. 130, pp. 1266–1278.CrossRef Li, R., Liu, J., and Xu, X., Development and Validation of a Direct Passage Arrangement Method for Multistream Plate Fin Heat Exchangers, Appl. Thermal Engin., 2018, vol. 130, pp. 1266–1278.CrossRef
22.
Zurück zum Zitat Wang, S., Li, Y., Wen, J., and Ma, Y., Experimental Investigation of Header Configuration on Two-Phase Flow Distribution in Plate-Fin Heat Exchanger, Int. Comm. Heat Mass Transfer, 2009, vol. 37, no. 2, pp. 116–120.CrossRef Wang, S., Li, Y., Wen, J., and Ma, Y., Experimental Investigation of Header Configuration on Two-Phase Flow Distribution in Plate-Fin Heat Exchanger, Int. Comm. Heat Mass Transfer, 2009, vol. 37, no. 2, pp. 116–120.CrossRef
23.
Zurück zum Zitat Li, M., Luo, Y., Jiang, Y., Wei, W., and Wang, W., Experimental Research on Flow and Heat Transfer in Microchannel with Refrigerant HFO1234yf, J. Thermophys. Heat Transfer, published online: 21 Dec., 2020. Li, M., Luo, Y., Jiang, Y., Wei, W., and Wang, W., Experimental Research on Flow and Heat Transfer in Microchannel with Refrigerant HFO1234yf, J. Thermophys. Heat Transfer, published online: 21 Dec., 2020.
24.
Zurück zum Zitat Anjun, J. and Seungwook, B., Effects of Distributor Configuration on Flow Maldistribution in Plate-Fin Heat Exchangers, Heat Transfer Engin., 2006, vol. 26, no. 4, pp. 019–025. Anjun, J. and Seungwook, B., Effects of Distributor Configuration on Flow Maldistribution in Plate-Fin Heat Exchangers, Heat Transfer Engin., 2006, vol. 26, no. 4, pp. 019–025.
25.
Zurück zum Zitat Hao, P. and Xiang, L., Optimal Design Approach for the Plate-Fin Heat Exchangers Using Neural Networks Cooperated with Genetic Algorithms, Appl. Thermal Engin., 2007, vol. 28, no. 5, pp. 642–650. Hao, P. and Xiang, L., Optimal Design Approach for the Plate-Fin Heat Exchangers Using Neural Networks Cooperated with Genetic Algorithms, Appl. Thermal Engin., 2007, vol. 28, no. 5, pp. 642–650.
26.
Zurück zum Zitat Leblay, P., Henry, J.F., Caron, D., Leducq, D., Fournaison, L., and Bontemps, A., Characterisation of the Hydraulic Maldistribution in a Heat Exchanger by Local Measurement of Convective Heat Transfer Coefficients Using Infrared Thermography, Int. J. Refrig., 2014, vol. 45, pp. 73–82.CrossRef Leblay, P., Henry, J.F., Caron, D., Leducq, D., Fournaison, L., and Bontemps, A., Characterisation of the Hydraulic Maldistribution in a Heat Exchanger by Local Measurement of Convective Heat Transfer Coefficients Using Infrared Thermography, Int. J. Refrig., 2014, vol. 45, pp. 73–82.CrossRef
27.
Zurück zum Zitat Ahmad, M., Berthoud, G., and Mercier, P., General Characteristics of Two-Phase Flow Distribution in a Compact Heat Exchanger, Int. J. Heat Mass Transfer, 2009, vol. 52, pp. 442–450.CrossRef Ahmad, M., Berthoud, G., and Mercier, P., General Characteristics of Two-Phase Flow Distribution in a Compact Heat Exchanger, Int. J. Heat Mass Transfer, 2009, vol. 52, pp. 442–450.CrossRef
28.
Zurück zum Zitat Choi Steve, H., Shin, S., and Cho Young, I., The Effect of Area Ratio on the Flow Distribution in Liquid Cooling Module Manifolds for Electronic Packaging, Int. J. Heat Mass Transfer, 1993, vol. 20, no. 5, pp. 607–617.CrossRef Choi Steve, H., Shin, S., and Cho Young, I., The Effect of Area Ratio on the Flow Distribution in Liquid Cooling Module Manifolds for Electronic Packaging, Int. J. Heat Mass Transfer, 1993, vol. 20, no. 5, pp. 607–617.CrossRef
29.
Zurück zum Zitat Wen, J., Li, Y.Z., Wang, S., and Zhou, A., Experimental Investigation of Header Configuration Improvement in Plate-Fin Heat Exchanger, Appl. Thermal Engin., 2007, vol. 27, pp. 1761–1770.CrossRef Wen, J., Li, Y.Z., Wang, S., and Zhou, A., Experimental Investigation of Header Configuration Improvement in Plate-Fin Heat Exchanger, Appl. Thermal Engin., 2007, vol. 27, pp. 1761–1770.CrossRef
30.
Zurück zum Zitat Kim, S., A Novel Design Method of the Dividing Header Configuration Using 3D Numerical Simulation for a Heat Exchanger with a Parallel Arrangement, Appl. Thermal Engin., 2019, vol. 159.CrossRef Kim, S., A Novel Design Method of the Dividing Header Configuration Using 3D Numerical Simulation for a Heat Exchanger with a Parallel Arrangement, Appl. Thermal Engin., 2019, vol. 159.CrossRef
31.
Zurück zum Zitat Mario, P., Tsuguo, K., and Kenichiro, F., Optimization of Fin Topology for Heat Transfer within Lightweight Plate-Fin Heat Exchangers, J. Thermophys. Heat Transfer, published online: 18 March, 2021.CrossRef Mario, P., Tsuguo, K., and Kenichiro, F., Optimization of Fin Topology for Heat Transfer within Lightweight Plate-Fin Heat Exchangers, J. Thermophys. Heat Transfer, published online: 18 March, 2021.CrossRef
32.
Zurück zum Zitat Zhang, Z., Mehendale, S., Tian, J.J., and Li, Y.Z., Experimental Investigation of Two-Phase Flow Distribution in Plate-Fin Heat Exchangers, Chem. Engin. Res. Design, 2017, vol. 120, pp. 34–46.CrossRef Zhang, Z., Mehendale, S., Tian, J.J., and Li, Y.Z., Experimental Investigation of Two-Phase Flow Distribution in Plate-Fin Heat Exchangers, Chem. Engin. Res. Design, 2017, vol. 120, pp. 34–46.CrossRef
33.
Zurück zum Zitat Wen, J. and Li, Y.Z., Study of Flow Distribution and Its Improvement on the Header of Plate-Fin Heat Exchanger, Cryogenics, 2004, vol. 44, no. 11, pp. 823–831.ADSCrossRef Wen, J. and Li, Y.Z., Study of Flow Distribution and Its Improvement on the Header of Plate-Fin Heat Exchanger, Cryogenics, 2004, vol. 44, no. 11, pp. 823–831.ADSCrossRef
34.
Zurück zum Zitat Wen, J., Li, Y.Z., Zhou, A., and Zhang, K., An Experimental and Numerical Investigation of Flow Patterns in the Entrance of Plate-Fin Heat Exchanger, Int. J. Heat Mass Transfer, 2005, vol. 49, no. 9, pp. 1667–1678.CrossRef Wen, J., Li, Y.Z., Zhou, A., and Zhang, K., An Experimental and Numerical Investigation of Flow Patterns in the Entrance of Plate-Fin Heat Exchanger, Int. J. Heat Mass Transfer, 2005, vol. 49, no. 9, pp. 1667–1678.CrossRef
35.
Zurück zum Zitat Zhang, Z., Li, Y.Z., and Xu, J., Experimental Research on Flow Maldistribution in Plate-Fin Heat Exchangers, Chinese J. Chem. Engin., 2004, vol. 12, pp. 1–7.ADS Zhang, Z., Li, Y.Z., and Xu, J., Experimental Research on Flow Maldistribution in Plate-Fin Heat Exchangers, Chinese J. Chem. Engin., 2004, vol. 12, pp. 1–7.ADS
36.
Zurück zum Zitat Zhang, Z., Mehendale, S., Tian, J.J., and Li, Y.Z., Fluid Flow Distribution and Heat Transfer in Plate-Fin Heat Exchangers, Heat Transfer Engin., 2015, vol. 36, no. 9, pp. 806–819.ADSCrossRef Zhang, Z., Mehendale, S., Tian, J.J., and Li, Y.Z., Fluid Flow Distribution and Heat Transfer in Plate-Fin Heat Exchangers, Heat Transfer Engin., 2015, vol. 36, no. 9, pp. 806–819.ADSCrossRef
Metadaten
Titel
Effects of Header Configuration on Flow Maldistribution in Plate-Fin Heat Exchangers
verfasst von
J. J. Tian
M. P. Wu
Z. Zhang
S. Q. Wang
Y. L. Lang
S. Mehendale
Q. Y. Wu
X. X. Wang
J. Y. Wang
H. F. Liou
Publikationsdatum
01.06.2023
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 2/2023
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232823020091

Weitere Artikel der Ausgabe 2/2023

Journal of Engineering Thermophysics 2/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.