Skip to main content
Erschienen in: Journal of Engineering Thermophysics 2/2023

01.06.2023

Aspects of Two-Phase Flow Boiling Heat Transfer inside Tube of Water Tube Boiler—A Numerical Study

verfasst von: S. Howlader, S. Moharana, M. K. Das

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The study of flow boiling heat transfer inside larger diameter tubes, which are used in water tube boilers, is sparse in the literature. Accordingly, the present study explore numerically saturated flow boiling phenomenon of water in a horizontal plain stainless steel tube at atmospheric condition. The effect of mass flux (254.67 kg/m2s–600.00 kg/m2s), heat flux (16.97–135.00 kW/m2), surface roughness (0.15 mm–0.5 mm), inclination angle (0°–60°) and the tube diameter (5 mm–50 mm) on the flow boiling heat transfer coefficient (HTC) and overall vapor volume fraction (VVF) is investigated. A 2D k-\(\varepsilon\) turbulence model of ANSYS-FLUENT platform is used along with the Volume of Fluid (VOF) model to track the interface between the water and vapor. The numerical findings indicate that HTC rises with a rise in mass flux and declines with a rise in heat flux. Furthermore, it is revealed that when heat flux rises, the VVF in the domain increases, corroborating the observation of a drop in HTC. The observed phenomenon is quite true for conventional tubes used in industries. An improvement in flow boiling HTC is also observed for tubes with higher surface roughness. The influence of inclination angle has substantial effect on the HTC, and the HTC rises with rise in inclination angle except for larger mass flux. The HTC of smaller tube diameter is larger compared to larger tube diameter tube, and after certain range of tube diameter (20 mm) the change in HTC is insignificant.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Goodson, K., Rogacs, A., David, M., and Fang, C., Volume of Fluid Simulation of Boiling Two-Phase Flow in a Vapor-Venting Microchannel, Front. Heat Mass Transf., 2010, vol. 1, no. 1, pp. 1–11. Goodson, K., Rogacs, A., David, M., and Fang, C., Volume of Fluid Simulation of Boiling Two-Phase Flow in a Vapor-Venting Microchannel, Front. Heat Mass Transf., 2010, vol. 1, no. 1, pp. 1–11.
2.
Zurück zum Zitat Wei, J.H., Pan, L.M., Chen, D.Q., Zhang, H., Xu, J.J., and Huang, Y.P., Numerical Simulation of Bubble Behaviors in Subcooled Flow Boiling under Swing Motion, Nucl. Eng. Des., 2011, vol. 241, no. 8, pp. 2898–2908.CrossRef Wei, J.H., Pan, L.M., Chen, D.Q., Zhang, H., Xu, J.J., and Huang, Y.P., Numerical Simulation of Bubble Behaviors in Subcooled Flow Boiling under Swing Motion, Nucl. Eng. Des., 2011, vol. 241, no. 8, pp. 2898–2908.CrossRef
3.
Zurück zum Zitat Chen, Q., Xu, J., Sun, D., Cao, Z., Xie, J., and Xing, F., Numerical Simulation of the Modulated Flow Pattern for Vertical Upflows by the Phase Separation Concept, Int. J. Multiph. Flow, 2013, vol. 56, pp. 105–118.CrossRef Chen, Q., Xu, J., Sun, D., Cao, Z., Xie, J., and Xing, F., Numerical Simulation of the Modulated Flow Pattern for Vertical Upflows by the Phase Separation Concept, Int. J. Multiph. Flow, 2013, vol. 56, pp. 105–118.CrossRef
4.
Zurück zum Zitat Ma, C. and Bothe, D., Numerical Modeling of Thermocapillary Two-Phase Flows with Evaporation Using a Two-Scalar Approach for Heat Transfer, J. Comput. Phys., 2013, vol. 233, pp. 552–573.ADSMathSciNetCrossRef Ma, C. and Bothe, D., Numerical Modeling of Thermocapillary Two-Phase Flows with Evaporation Using a Two-Scalar Approach for Heat Transfer, J. Comput. Phys., 2013, vol. 233, pp. 552–573.ADSMathSciNetCrossRef
5.
Zurück zum Zitat Ratkovich, N., Majumder, S.K., and Bentzen, T.R., Empirical Correlations and CFD Simulations of Vertical Two-Phase Gas-Liquid (Newtonian and Non-Newtonian) Slug Flow Compared against Experimental Data of Void Fraction, Chem. Eng. Res. Des., 2013, vol. 91, no. 6, pp. 988–998.CrossRef Ratkovich, N., Majumder, S.K., and Bentzen, T.R., Empirical Correlations and CFD Simulations of Vertical Two-Phase Gas-Liquid (Newtonian and Non-Newtonian) Slug Flow Compared against Experimental Data of Void Fraction, Chem. Eng. Res. Des., 2013, vol. 91, no. 6, pp. 988–998.CrossRef
6.
Zurück zum Zitat Meng, M., Yang, Z., Duan, Y.Y., and Chen, Y., Boiling Flow of R141b in Vertical and Inclined Serpentine Tubes, Int. J. Heat Mass Transfer, 2013, vol. 57, no. 1, pp. 312–320.CrossRef Meng, M., Yang, Z., Duan, Y.Y., and Chen, Y., Boiling Flow of R141b in Vertical and Inclined Serpentine Tubes, Int. J. Heat Mass Transfer, 2013, vol. 57, no. 1, pp. 312–320.CrossRef
7.
Zurück zum Zitat Liu, Y., Cui, J., and Li, W.Z., A Two-Phase, Two-Component Model for Vertical Upward Gas-Liquid Annular Flow, Int. J. Heat Fluid Flow, 2011, vol. 32, no. 4, pp. 796–804.CrossRef Liu, Y., Cui, J., and Li, W.Z., A Two-Phase, Two-Component Model for Vertical Upward Gas-Liquid Annular Flow, Int. J. Heat Fluid Flow, 2011, vol. 32, no. 4, pp. 796–804.CrossRef
8.
Zurück zum Zitat Liu, Y., Li, W.Z., and Quan, S.L., A Self-Standing Two-Fluid CFD Model for Vertical Upward Two-Phase Annular Flow, Nucl. Eng. Des., 2011, vol. 241, no. 5, pp. 1636–1642.CrossRef Liu, Y., Li, W.Z., and Quan, S.L., A Self-Standing Two-Fluid CFD Model for Vertical Upward Two-Phase Annular Flow, Nucl. Eng. Des., 2011, vol. 241, no. 5, pp. 1636–1642.CrossRef
9.
Zurück zum Zitat Vazquez-Ramirez, E.E., Riesco-Avila, J.M., and Polley, G.T., Two-Phase Flow and Heat Transfer in Horizontal Tube Bundles Fitted with Baffles of Vertical Cut, Appl. Therm. Eng., 2013, vol. 50, no. 1, pp. 1274–1279.CrossRef Vazquez-Ramirez, E.E., Riesco-Avila, J.M., and Polley, G.T., Two-Phase Flow and Heat Transfer in Horizontal Tube Bundles Fitted with Baffles of Vertical Cut, Appl. Therm. Eng., 2013, vol. 50, no. 1, pp. 1274–1279.CrossRef
10.
Zurück zum Zitat Tsui, Y.Y. and Lin, S.W., Three-Dimensional Modeling of Fluid Dynamics and Heat Transfer for Two-Fluid or Phase Change Flows, Int. J. Heat Mass Transfer, 2016, vol. 93, pp. 337–348.CrossRef Tsui, Y.Y. and Lin, S.W., Three-Dimensional Modeling of Fluid Dynamics and Heat Transfer for Two-Fluid or Phase Change Flows, Int. J. Heat Mass Transfer, 2016, vol. 93, pp. 337–348.CrossRef
11.
Zurück zum Zitat Hardt, S. and Wondra, F., Evaporation Model for Interfacial Flows Based on a Continuum-Field Representation of the Source Terms, J. Comput. Phys., 2008, vol. 227, no. 11, pp. 5871–5895.ADSMathSciNetMATHCrossRef Hardt, S. and Wondra, F., Evaporation Model for Interfacial Flows Based on a Continuum-Field Representation of the Source Terms, J. Comput. Phys., 2008, vol. 227, no. 11, pp. 5871–5895.ADSMathSciNetMATHCrossRef
12.
Zurück zum Zitat Lorstad, D. and Fuchs, L., High-Order Surface Tension VOF-Model for 3D Bubble Flows with High Density Ratio, J. Comput. Phys., 2004, vol. 200, no. 1, pp. 153–176.ADSMATHCrossRef Lorstad, D. and Fuchs, L., High-Order Surface Tension VOF-Model for 3D Bubble Flows with High Density Ratio, J. Comput. Phys., 2004, vol. 200, no. 1, pp. 153–176.ADSMATHCrossRef
13.
Zurück zum Zitat Prah, B. and Yun, R., Heat Transfer and Pressure Drop Simulation of CO2-Hydrate Mixture in Tube, Int. J. Air-Cond. Refrig., 2017, vol. 25 no. 1, p. 1750005.CrossRef Prah, B. and Yun, R., Heat Transfer and Pressure Drop Simulation of CO2-Hydrate Mixture in Tube, Int. J. Air-Cond. Refrig., 2017, vol. 25 no. 1, p. 1750005.CrossRef
14.
Zurück zum Zitat Mikielewicz, D., A New Method for Determination of Flow Boiling Heat Transfer Coefficient in Conventional-Diameter Channels and Minichannels, Heat Transf. Eng., 2010, vol. 31, no. 4, pp. 276–287.ADSCrossRef Mikielewicz, D., A New Method for Determination of Flow Boiling Heat Transfer Coefficient in Conventional-Diameter Channels and Minichannels, Heat Transf. Eng., 2010, vol. 31, no. 4, pp. 276–287.ADSCrossRef
15.
Zurück zum Zitat Piasecka, M. and Maciejewska, B., Heat Transfer Coefficient Determination for Flow Boiling in Vertical and Horizontal Minichannels, EPJ Web Conf., 2014, vol. 67, p. 02094. Piasecka, M. and Maciejewska, B., Heat Transfer Coefficient Determination for Flow Boiling in Vertical and Horizontal Minichannels, EPJ Web Conf., 2014, vol. 67, p. 02094.
16.
Zurück zum Zitat Guo, Z., Haynes, B.S., and Fletcher, D.F., Numerical Simulation of Annular Flow Boiling in Microchannels, J. Comput. Multiph. Flows, 2016, vol. 8, no. 1, pp. 61–82.MathSciNetMATHCrossRef Guo, Z., Haynes, B.S., and Fletcher, D.F., Numerical Simulation of Annular Flow Boiling in Microchannels, J. Comput. Multiph. Flows, 2016, vol. 8, no. 1, pp. 61–82.MathSciNetMATHCrossRef
17.
Zurück zum Zitat Singh, D., Rai, S., and Shukla, S., Numerical Analysis of Two Phase Flow Boiling Heat Transfer through Microchannel, Int. J. Eng. Res. Technol., 2017, vol. 6, pp. 1–6.CrossRef Singh, D., Rai, S., and Shukla, S., Numerical Analysis of Two Phase Flow Boiling Heat Transfer through Microchannel, Int. J. Eng. Res. Technol., 2017, vol. 6, pp. 1–6.CrossRef
18.
Zurück zum Zitat Cuan, Z. and Chen, Y., Analyze of Laminar Flow and Boiling Heat Transfer Characteristics of R134a in the Horizontal Micro-Channel under Low Temperature Condition, Procedia Eng., 2017, vol. 205, pp. 2933–2939.CrossRef Cuan, Z. and Chen, Y., Analyze of Laminar Flow and Boiling Heat Transfer Characteristics of R134a in the Horizontal Micro-Channel under Low Temperature Condition, Procedia Eng., 2017, vol. 205, pp. 2933–2939.CrossRef
19.
Zurück zum Zitat Juric, D. and Tryggvason, G., Computations of Boiling Flows, Int. J. Multiph. Flow, 1998, vol. 24, no. 3, pp. 387–410.MATHCrossRef Juric, D. and Tryggvason, G., Computations of Boiling Flows, Int. J. Multiph. Flow, 1998, vol. 24, no. 3, pp. 387–410.MATHCrossRef
20.
Zurück zum Zitat Kuang, Y.W., Wang, W., Zhuan, R., and Yi, C.C., Simulation of Boiling Flow in Evaporator of Separate Type Heat Pipe with Low Heat Flux, Ann. Nucl. Energy, 2015, vol. 75, pp. 158–167.CrossRef Kuang, Y.W., Wang, W., Zhuan, R., and Yi, C.C., Simulation of Boiling Flow in Evaporator of Separate Type Heat Pipe with Low Heat Flux, Ann. Nucl. Energy, 2015, vol. 75, pp. 158–167.CrossRef
21.
Zurück zum Zitat Pouryoussefi, S.M. and Zhang, Y., Identification of Two-Phase Water-Air Flow Patterns in a Vertical Pipe Using Fuzzy Logic and Genetic Algorithm, Appl. Therm. Eng., 2015, vol. 85, pp. 195–206.CrossRef Pouryoussefi, S.M. and Zhang, Y., Identification of Two-Phase Water-Air Flow Patterns in a Vertical Pipe Using Fuzzy Logic and Genetic Algorithm, Appl. Therm. Eng., 2015, vol. 85, pp. 195–206.CrossRef
22.
Zurück zum Zitat Sato, Y. and Niceno, B., A Sharp-Interface Phase Change Model for a Mass-Conservative Interface Tracking Method, J. Comput. Phys., 2013, vol. 249, pp. 127–161.ADSCrossRef Sato, Y. and Niceno, B., A Sharp-Interface Phase Change Model for a Mass-Conservative Interface Tracking Method, J. Comput. Phys., 2013, vol. 249, pp. 127–161.ADSCrossRef
23.
Zurück zum Zitat Oh, J.T., Pamitran, A.S., Choi, K.I., and Hrnjak, P., Experimental Investigation on Two-Phase Flow Boiling Heat Transfer of Five Refrigerants in Horizontal Small Tubes of 0.5, 1.5, and 3.0 mm Inner Diameters, Int. J. Heat Mass Transfer, 2011, vol. 54, nos. 9/10, pp. 2080–2088.CrossRef Oh, J.T., Pamitran, A.S., Choi, K.I., and Hrnjak, P., Experimental Investigation on Two-Phase Flow Boiling Heat Transfer of Five Refrigerants in Horizontal Small Tubes of 0.5, 1.5, and 3.0 mm Inner Diameters, Int. J. Heat Mass Transfer, 2011, vol. 54, nos. 9/10, pp. 2080–2088.CrossRef
24.
Zurück zum Zitat Oh, H.K. and Son, C.H., Evaporation Flow Pattern and Heat Transfer of R-22 and R-134a in Small Diameter Tubes, Heat Mass Transfer, 2011, vol. 47, no. 6, pp. 703–717.ADSCrossRef Oh, H.K. and Son, C.H., Evaporation Flow Pattern and Heat Transfer of R-22 and R-134a in Small Diameter Tubes, Heat Mass Transfer, 2011, vol. 47, no. 6, pp. 703–717.ADSCrossRef
25.
Zurück zum Zitat Xu, Y., Fang, X., Li, G., Li, D., and Yuan, Y., An Experimental Study of Flow Boiling Heat Transfer of R134a and Evaluation of Existing Correlations, Int. J. Heat Mass Transfer, 2016, vol. 92, pp. 1143–1157.CrossRef Xu, Y., Fang, X., Li, G., Li, D., and Yuan, Y., An Experimental Study of Flow Boiling Heat Transfer of R134a and Evaluation of Existing Correlations, Int. J. Heat Mass Transfer, 2016, vol. 92, pp. 1143–1157.CrossRef
26.
Zurück zum Zitat Chien, N.B., Vu, P.Q., Choi, K.I., and Oh, J.T., A General Correlation to Predict the Flow Boiling Heat Transfer of R410A in Macro-/Mini-Channels, Sci. Technol. Built Environ., 2015, vol. 21, no. 5, pp. 526–534.CrossRef Chien, N.B., Vu, P.Q., Choi, K.I., and Oh, J.T., A General Correlation to Predict the Flow Boiling Heat Transfer of R410A in Macro-/Mini-Channels, Sci. Technol. Built Environ., 2015, vol. 21, no. 5, pp. 526–534.CrossRef
27.
Zurück zum Zitat Choi, K.I., Pamitran, A.S., Oh, C.Y., and Oh, J.T., Boiling Heat Transfer of R-22, R-134a, and CO2 in Horizontal Smooth Minichannels, Int. J. Refrig., 2007, vol. 30, no. 8, pp. 1336–1346.CrossRef Choi, K.I., Pamitran, A.S., Oh, C.Y., and Oh, J.T., Boiling Heat Transfer of R-22, R-134a, and CO2 in Horizontal Smooth Minichannels, Int. J. Refrig., 2007, vol. 30, no. 8, pp. 1336–1346.CrossRef
28.
Zurück zum Zitat Greco, A. and Vanoli, G.P., Flow-Boiling of R22, R134a, R507, R404A, and R410A inside a Smooth Horizontal Tube, Int. J. Refrig., 2005, vol. 28, no. 6, pp. 872–880.CrossRef Greco, A. and Vanoli, G.P., Flow-Boiling of R22, R134a, R507, R404A, and R410A inside a Smooth Horizontal Tube, Int. J. Refrig., 2005, vol. 28, no. 6, pp. 872–880.CrossRef
29.
Zurück zum Zitat Park, C.Y. and Hrnjak, P.S., CO2 and R410A Flow Boiling Heat Transfer, Pressure Drop, and Flow Pattern at Low Temperatures in a Horizontal Smooth Tube, Int. J. Refrig., 2007, vol. 30, no. 1, pp. 166–178.CrossRef Park, C.Y. and Hrnjak, P.S., CO2 and R410A Flow Boiling Heat Transfer, Pressure Drop, and Flow Pattern at Low Temperatures in a Horizontal Smooth Tube, Int. J. Refrig., 2007, vol. 30, no. 1, pp. 166–178.CrossRef
30.
Zurück zum Zitat Del Col, D., Flow Boiling of Halogenated Refrigerants at High Saturation Temperature in a Horizontal Smooth Tube, Exp. Therm. Fluid Sci., 2010, vol. 34, no. 2, pp. 234–245.CrossRef Del Col, D., Flow Boiling of Halogenated Refrigerants at High Saturation Temperature in a Horizontal Smooth Tube, Exp. Therm. Fluid Sci., 2010, vol. 34, no. 2, pp. 234–245.CrossRef
31.
Zurück zum Zitat Kaew-On, J., Sakamatapan, K., and Wongwises, S., Flow Boiling Heat Transfer of R134a in the Multiport Minichannel Heat Exchangers, Exp. Therm. Fluid Sci., 2011, vol. 35, no. 2, pp. 364–374.CrossRef Kaew-On, J., Sakamatapan, K., and Wongwises, S., Flow Boiling Heat Transfer of R134a in the Multiport Minichannel Heat Exchangers, Exp. Therm. Fluid Sci., 2011, vol. 35, no. 2, pp. 364–374.CrossRef
32.
Zurück zum Zitat Basu, S., Ndao, S., Michna, G.J., Peles, Y., and Jensen, M.K., Flow Boiling of R134a in Circular Microtubes—Part I: Study of Heat Transfer Characteristics, ASME J. Heat Transfer, 2011, vol. 133, no. 5, p. 051502.CrossRef Basu, S., Ndao, S., Michna, G.J., Peles, Y., and Jensen, M.K., Flow Boiling of R134a in Circular Microtubes—Part I: Study of Heat Transfer Characteristics, ASME J. Heat Transfer, 2011, vol. 133, no. 5, p. 051502.CrossRef
33.
Zurück zum Zitat Dorao, C.A., Fernandez, O.B., and Fernandino, M., Experimental Study of Horizontal Flow Boiling Heat Transfer of R134a at a Saturation Temperature of 18.6°C, ASME J. Heat Transfer, 2017, vol. 139, no. 11, p. 111510.CrossRef Dorao, C.A., Fernandez, O.B., and Fernandino, M., Experimental Study of Horizontal Flow Boiling Heat Transfer of R134a at a Saturation Temperature of 18.6°C, ASME J. Heat Transfer, 2017, vol. 139, no. 11, p. 111510.CrossRef
34.
Zurück zum Zitat Sempertegui-Tapia, D.F. and Ribatski, G., Flow Boiling Heat Transfer of R134a and Low GWP Refrigerants in a Horizontal Micro-Scale Channel, Int. J. Heat Mass Transfer, 2017, vol. 108, pp. 2417–2432.CrossRef Sempertegui-Tapia, D.F. and Ribatski, G., Flow Boiling Heat Transfer of R134a and Low GWP Refrigerants in a Horizontal Micro-Scale Channel, Int. J. Heat Mass Transfer, 2017, vol. 108, pp. 2417–2432.CrossRef
35.
Zurück zum Zitat da Silva, P.K., Copetti, J.B., and Oliveira, J.D., Flow Boiling Heat Transfer of Propane in MPE Tube, Proc. Conf. IV Journeys in Multiphase Flows, 2017, vol. 27, pp. 1–9. da Silva, P.K., Copetti, J.B., and Oliveira, J.D., Flow Boiling Heat Transfer of Propane in MPE Tube, Proc. Conf. IV Journeys in Multiphase Flows, 2017, vol. 27, pp. 1–9.
36.
Zurück zum Zitat Saitoh, S., Daiguji, H., and Hihara, E., Correlation for Boiling Heat Transfer of R-134a in Horizontal Tubes Including Effect of Tube Diameter, Int. J. Heat Mass Transfer, 2007, vol. 50, nos. 25/26, pp. 5215–5225.MATHCrossRef Saitoh, S., Daiguji, H., and Hihara, E., Correlation for Boiling Heat Transfer of R-134a in Horizontal Tubes Including Effect of Tube Diameter, Int. J. Heat Mass Transfer, 2007, vol. 50, nos. 25/26, pp. 5215–5225.MATHCrossRef
37.
Zurück zum Zitat Li, H., Yi, F., Li, X., Pavlenko, A.N., and Gao, X., Numerical Simulation for Falling Film Flow Characteristics of Refrigerant on the Smooth and Structured Surfaces, J. Eng. Therm., 2018, vol. 27, no. 1, pp. 1–19.CrossRef Li, H., Yi, F., Li, X., Pavlenko, A.N., and Gao, X., Numerical Simulation for Falling Film Flow Characteristics of Refrigerant on the Smooth and Structured Surfaces, J. Eng. Therm., 2018, vol. 27, no. 1, pp. 1–19.CrossRef
38.
Zurück zum Zitat Sun, Y., Jiang, J., Li, J., Jiang, B., Zhang, L., He, D., Kang, Q., Yang, N., Tantai, X., and Xiao, X., Simulation of Gas-Liquid-Solid Three-Phase Flow Process and Particle Removal Characteristics in Liquid Chamber of Scrubbing Tower, J. Eng. Therm., 2020, vol. 29, no. 3, pp. 477–491.CrossRef Sun, Y., Jiang, J., Li, J., Jiang, B., Zhang, L., He, D., Kang, Q., Yang, N., Tantai, X., and Xiao, X., Simulation of Gas-Liquid-Solid Three-Phase Flow Process and Particle Removal Characteristics in Liquid Chamber of Scrubbing Tower, J. Eng. Therm., 2020, vol. 29, no. 3, pp. 477–491.CrossRef
39.
Zurück zum Zitat Alekseev, M.V. and Vozhakov, I.S., 3D Numerical Simulation of Hydrodynamics and Heat Transfer in the Taylor Flow, J. Eng. Therm., 2022, vol. 31, no. 2, pp. 299–308.CrossRef Alekseev, M.V. and Vozhakov, I.S., 3D Numerical Simulation of Hydrodynamics and Heat Transfer in the Taylor Flow, J. Eng. Therm., 2022, vol. 31, no. 2, pp. 299–308.CrossRef
40.
Zurück zum Zitat Wu, J., Tang, Z., Zhu, Y., Li, X., Wang, H., and Shi, Q., Two-Phase Secondary Flow Characteristics and Heat Transfer Mechanism during Boiling in a Vertical Helically Coiled Tube, Int. Commun. Heat Mass Transfer, 2022, vol. 138, p. 106398.CrossRef Wu, J., Tang, Z., Zhu, Y., Li, X., Wang, H., and Shi, Q., Two-Phase Secondary Flow Characteristics and Heat Transfer Mechanism during Boiling in a Vertical Helically Coiled Tube, Int. Commun. Heat Mass Transfer, 2022, vol. 138, p. 106398.CrossRef
41.
Zurück zum Zitat Lv, H., Ma, H., Zhao, Y., Mao, N., and He, T., Numerical Simulation of Flow Boiling Heat Transfer Characteristics of R134a/Ethane Binary Mixture in Horizontal Micro-Tube, Int. J. Refrig., 2022. Lv, H., Ma, H., Zhao, Y., Mao, N., and He, T., Numerical Simulation of Flow Boiling Heat Transfer Characteristics of R134a/Ethane Binary Mixture in Horizontal Micro-Tube, Int. J. Refrig., 2022.
42.
Zurück zum Zitat Mohanty, R.L. and Das, M.K., A Critical Review on Bubble Dynamics Parameters Influencing Boiling Heat Transfer, Renew. Sust. Energ. Rev., 2017, vol. 78, pp. 466–494.CrossRef Mohanty, R.L. and Das, M.K., A Critical Review on Bubble Dynamics Parameters Influencing Boiling Heat Transfer, Renew. Sust. Energ. Rev., 2017, vol. 78, pp. 466–494.CrossRef
43.
Zurück zum Zitat Swain, A. and Das, M.K., A Review on Saturated Boiling of Liquids on Tube Bundles, Heat Mass Transfer, 2014, vol. 50, no. 5, pp. 617–637.ADSCrossRef Swain, A. and Das, M.K., A Review on Saturated Boiling of Liquids on Tube Bundles, Heat Mass Transfer, 2014, vol. 50, no. 5, pp. 617–637.ADSCrossRef
44.
Zurück zum Zitat Moharana, S., Bhattacharya, A., and Das, M.K., A Critical Review of Parameters Governing the Boiling Characteristics of Tube Bundle on Shell Side of Two-Phase Shell and Tube Heat Exchangers, Therm. Sci. Eng. Prog., 2022, p. 101220. Moharana, S., Bhattacharya, A., and Das, M.K., A Critical Review of Parameters Governing the Boiling Characteristics of Tube Bundle on Shell Side of Two-Phase Shell and Tube Heat Exchangers, Therm. Sci. Eng. Prog., 2022, p. 101220.
45.
Zurück zum Zitat Huang, Q., Jia, L., Dang, C., and Yang, L., Experimental Study on Flow Boiling of Deionized Water in a Horizontal Long Small Channel, J. Therm. Sci., 2018, vol. 27, no. 2, pp. 157–166.ADSCrossRef Huang, Q., Jia, L., Dang, C., and Yang, L., Experimental Study on Flow Boiling of Deionized Water in a Horizontal Long Small Channel, J. Therm. Sci., 2018, vol. 27, no. 2, pp. 157–166.ADSCrossRef
46.
Zurück zum Zitat Zhang, J., Ma, Y., Wang, M., Zhang, D., Qiu, S., Tian, W., and Su, G., Prediction of Flow Boiling Heat Transfer Coefficient in Horizontal Channels Varying from Conventional to Small-Diameter Scales by Genetic Neural Network, Nucl. Eng. Technol., 2019, vol. 51, no. 8, pp. 1897–1904.CrossRef Zhang, J., Ma, Y., Wang, M., Zhang, D., Qiu, S., Tian, W., and Su, G., Prediction of Flow Boiling Heat Transfer Coefficient in Horizontal Channels Varying from Conventional to Small-Diameter Scales by Genetic Neural Network, Nucl. Eng. Technol., 2019, vol. 51, no. 8, pp. 1897–1904.CrossRef
47.
Zurück zum Zitat Sun, Z.C., Ma, X., Ma, L.X., Li, W., and Kukulka, D.J., Flow Boiling Heat Transfer Characteristics in Horizontal, Three-Dimensional Enhanced Tubes, Energies, 2019, vol. 12, no. 5, p. 927.CrossRef Sun, Z.C., Ma, X., Ma, L.X., Li, W., and Kukulka, D.J., Flow Boiling Heat Transfer Characteristics in Horizontal, Three-Dimensional Enhanced Tubes, Energies, 2019, vol. 12, no. 5, p. 927.CrossRef
48.
Zurück zum Zitat Cho, J.M. and Kim, M.S., Experimental Studies on the Evaporative Heat Transfer and Pressure Drop of CO2 in Smooth and Micro-Fin Tubes of the Diameters of 5 and 9.52 mm, Int. J. Refrig., 2007, vol. 30, no. 6, pp. 986–994.CrossRef Cho, J.M. and Kim, M.S., Experimental Studies on the Evaporative Heat Transfer and Pressure Drop of CO2 in Smooth and Micro-Fin Tubes of the Diameters of 5 and 9.52 mm, Int. J. Refrig., 2007, vol. 30, no. 6, pp. 986–994.CrossRef
49.
Zurück zum Zitat Hirt, C.W. and Nichols, B.D., Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comput. Phys., 1981, vol. 39, no. 1, pp. 201–225.ADSMATHCrossRef Hirt, C.W. and Nichols, B.D., Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comput. Phys., 1981, vol. 39, no. 1, pp. 201–225.ADSMATHCrossRef
50.
Zurück zum Zitat Brackbill, J.U., Kothe, D.B., and Zemach, C., A Continuum Method for Modeling Surface Tension, J. Comput. Phys., vol. 100, no. 2, pp. 335–354.ADSMathSciNetMATHCrossRef Brackbill, J.U., Kothe, D.B., and Zemach, C., A Continuum Method for Modeling Surface Tension, J. Comput. Phys., vol. 100, no. 2, pp. 335–354.ADSMathSciNetMATHCrossRef
51.
Zurück zum Zitat Bikmukhametov, T., CFD Simulations of Multiphase Flows with Particles, M.Sc. Thesis, Norway: Norwegian University of Science and Technology, 2016. Bikmukhametov, T., CFD Simulations of Multiphase Flows with Particles, M.Sc. Thesis, Norway: Norwegian University of Science and Technology, 2016.
Metadaten
Titel
Aspects of Two-Phase Flow Boiling Heat Transfer inside Tube of Water Tube Boiler—A Numerical Study
verfasst von
S. Howlader
S. Moharana
M. K. Das
Publikationsdatum
01.06.2023
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 2/2023
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232823020108

Weitere Artikel der Ausgabe 2/2023

Journal of Engineering Thermophysics 2/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.