Skip to main content
Erschienen in: Journal of Engineering Thermophysics 2/2023

01.06.2023

Enhancement of Heat Transfer during Nitrogen Boiling on Capillary-Porous Coatings under Conditions of Intense Mass Forces at High-Speed Rotation of Cryostat

verfasst von: V. E. Zhukov, N. N. Mezentseva, A. N. Pavlenko

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article presents the results of experimental studies of the efficiency of heat transfer under conditions of intense fields of mass forces on a flat rectangular (\(16 \times 24\) mm2) heat-transfer surface (HS) modified by additive manufacturing. A porous sinusoidal-form coating consisting of spherical bronze granules of average diameter of 35 \(\mu\)m was 3D printed on the brass base of the heat-transfer unit. The thickness of the coating was 150 \(\mu\)m in the deepenings and 300 \(\mu\)m on the ridges. Comparative experimental studies were carried out on an unmodified HS and modified HS in liquid nitrogen under conditions of centrifugal accelerations of up to 4090 g. The heat transfer was studied in the range of heat flux densities of \(4 \cdot 10^{4}{-}8.9\cdot 10^{5}\) W/m2. It has been shown that in the range of heat flux densities of \(80,000<q< 320,000\) W/m2, increase in the intensity of the mass force fields leads to growth in the heat transfer coefficient up to 4 times at transition from the developed boiling regime to the single-phase convection regime. In the region of developed boiling, for the heat flux density range corresponding to a given overload, the heat transfer coefficient normalized to the value of the heat transfer coefficient calculated as per the Borishansky relation for these conditions decreases with increasing centrifugal overload. The dependence of the relative heat transfer coefficient on the overload is close to the ratio \(\alpha_{\rm s}/\alpha_{\rm sB} \sim \eta^{-1/6}\).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kim, D.E., Yu, D.I., Jerng, D.W., Kim, M.H., and Ahn H.S., Review of Boiling Heat Transfer Enhancement on Micro/nanostructured Surfaces, Exp. Thermal Fluid Sci., 2015, vol. 66, pp. 173–196; doi.org/10.1016/j.expthermflusci.2015.03.023.CrossRef Kim, D.E., Yu, D.I., Jerng, D.W., Kim, M.H., and Ahn H.S., Review of Boiling Heat Transfer Enhancement on Micro/nanostructured Surfaces, Exp. Thermal Fluid Sci., 2015, vol. 66, pp. 173–196; doi.org/10.1016/j.expthermflusci.2015.03.023.CrossRef
2.
Zurück zum Zitat Lin, T., Ma, X., Quan, X., Cheng, P., and Chen, G., Enhanced Pool Boiling Heat Transfer on Freeze-Casted Surfaces, Int. J. Heat Mass Transfer, 2020, vol. 153, p. 119622; doi.org/10.1016/ j.ijheatmasstransfer.2020.119622.CrossRef Lin, T., Ma, X., Quan, X., Cheng, P., and Chen, G., Enhanced Pool Boiling Heat Transfer on Freeze-Casted Surfaces, Int. J. Heat Mass Transfer, 2020, vol. 153, p. 119622; doi.org/10.1016/ j.ijheatmasstransfer.2020.119622.CrossRef
3.
Zurück zum Zitat Das, S., Saha, B., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water by Surface Functionalization with Crystalline TiO2 Nanostructure, Appl. Thermal Engin., 2017, vol. 113, pp. 1345–1357; doi.org/10.1016/j.applthermaleng.2016.11.135.CrossRef Das, S., Saha, B., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water by Surface Functionalization with Crystalline TiO2 Nanostructure, Appl. Thermal Engin., 2017, vol. 113, pp. 1345–1357; doi.org/10.1016/j.applthermaleng.2016.11.135.CrossRef
4.
Zurück zum Zitat Das, S., Kumar, D.S., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water on Silicon Oxide Nanoparticle Coated Copper Heating Surface, Appl. Thermal Engin., 2016, vol. 96, pp. 555–567; doi.org/10.1016/j.applthermaleng.2015.11.117.CrossRef Das, S., Kumar, D.S., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water on Silicon Oxide Nanoparticle Coated Copper Heating Surface, Appl. Thermal Engin., 2016, vol. 96, pp. 555–567; doi.org/10.1016/j.applthermaleng.2015.11.117.CrossRef
5.
Zurück zum Zitat Cao, Z., Liu, B., Preger, C., Wu, Z., Zhang, Y., Wang, X., Messing, M.E., Deppert, K., Wei, J., and Sundén, B., Pool Boiling Heat Transfer of FC-72 on Pin-Fin Silicon Surfaces with Nanoparticle Deposition, Int. J. Heat Mass Transfer, 2018, vol. 126, pp. 1019–1033; doi.org/10.1016/j.ijheatmasstransfer.2018.05.033.CrossRef Cao, Z., Liu, B., Preger, C., Wu, Z., Zhang, Y., Wang, X., Messing, M.E., Deppert, K., Wei, J., and Sundén, B., Pool Boiling Heat Transfer of FC-72 on Pin-Fin Silicon Surfaces with Nanoparticle Deposition, Int. J. Heat Mass Transfer, 2018, vol. 126, pp. 1019–1033; doi.org/10.1016/j.ijheatmasstransfer.2018.05.033.CrossRef
6.
Zurück zum Zitat Pontes, P., Cautela, R., Teodori, E., Moita, A., Liu, Y., Moreira, A.L.N., Nikulin, A., and del Barrio, E.P., Effect of Pattern Geometry on Bubble Dynamics and Heat Transfer on Biphilic Surfaces, Exp. Thermal Fluid Sci., 2020, vol. 115, p. 110088; doi.org/10.1016/j.expthermflusci.2020.110088.CrossRef Pontes, P., Cautela, R., Teodori, E., Moita, A., Liu, Y., Moreira, A.L.N., Nikulin, A., and del Barrio, E.P., Effect of Pattern Geometry on Bubble Dynamics and Heat Transfer on Biphilic Surfaces, Exp. Thermal Fluid Sci., 2020, vol. 115, p. 110088; doi.org/10.1016/j.expthermflusci.2020.110088.CrossRef
7.
Zurück zum Zitat Kaniowski, R., Pastuszko, R., and Nowakowski, Ł., Effect of Geometrical Parameters of Open Microchannel Surfaces on Pool Boiling Heat Transfer, EPJ Web Conf., 2017, vol. 143, p. 02049; doi.org/10.1051/epjconf/ 201714302049.CrossRef Kaniowski, R., Pastuszko, R., and Nowakowski, Ł., Effect of Geometrical Parameters of Open Microchannel Surfaces on Pool Boiling Heat Transfer, EPJ Web Conf., 2017, vol. 143, p. 02049; doi.org/10.1051/epjconf/ 201714302049.CrossRef
8.
Zurück zum Zitat Arenales, M.R.M., Kumar, S., Kuo, L.S., and Chen, P.H., Surface Roughness Variation Effects on Copper Tubes in Pool Boiling of Water, Int. J. Heat Mass Transfer, 2020, vol. 151, p. 119399; doi.org/10.1016/ j.ijheatmasstransfer.2020.119399.CrossRef Arenales, M.R.M., Kumar, S., Kuo, L.S., and Chen, P.H., Surface Roughness Variation Effects on Copper Tubes in Pool Boiling of Water, Int. J. Heat Mass Transfer, 2020, vol. 151, p. 119399; doi.org/10.1016/ j.ijheatmasstransfer.2020.119399.CrossRef
9.
Zurück zum Zitat Kumar, S., Chang, Y.W., and Chen, P.H., Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns, J. Visual. Exp., 2017, vol. 122, p. 55387; DOI:10.3791/55387CrossRef Kumar, S., Chang, Y.W., and Chen, P.H., Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns, J. Visual. Exp., 2017, vol. 122, p. 55387; DOI:10.3791/55387CrossRef
10.
Zurück zum Zitat Vladimirov, V.Yu. and Chinnov, E.A., Heat Transfer Enhancement when Boiling on Finned Surfaces, J. Phys.: Conf. Ser., 2021, vol. 1867, p. 012024; DOI:10.1088/1742-6596/1867/1/012024CrossRef Vladimirov, V.Yu. and Chinnov, E.A., Heat Transfer Enhancement when Boiling on Finned Surfaces, J. Phys.: Conf. Ser., 2021, vol. 1867, p. 012024; DOI:10.1088/1742-6596/1867/1/012024CrossRef
11.
Zurück zum Zitat Ma, X. and Cheng, P., Dry Spot Dynamics and Wet Area Fractions in Pool Boiling on Micro-Pillar and Micro-Cavity Hydrophilic Heaters: A 3D Lattice Boltzmann Phase-Change Study, Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 407–418; doi.org/10.1016/j.ijheatmasstransfer.2019.06.086.CrossRef Ma, X. and Cheng, P., Dry Spot Dynamics and Wet Area Fractions in Pool Boiling on Micro-Pillar and Micro-Cavity Hydrophilic Heaters: A 3D Lattice Boltzmann Phase-Change Study, Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 407–418; doi.org/10.1016/j.ijheatmasstransfer.2019.06.086.CrossRef
12.
Zurück zum Zitat Wang, Y.Q., Luo, J.L., Heng, Y., Mo, D.C., and Lyu, S.S., Wettability Modification to Further Enhance the Pool Boiling Performance of the Micro Nano bi-Porous Copper Surface Structure, Int. J. Heat Mass Transfer, 2018, vol. 119, pp. 333–342; doi.org/10.1016/j.ijheatmasstransfer.2017.11.080.CrossRef Wang, Y.Q., Luo, J.L., Heng, Y., Mo, D.C., and Lyu, S.S., Wettability Modification to Further Enhance the Pool Boiling Performance of the Micro Nano bi-Porous Copper Surface Structure, Int. J. Heat Mass Transfer, 2018, vol. 119, pp. 333–342; doi.org/10.1016/j.ijheatmasstransfer.2017.11.080.CrossRef
13.
Zurück zum Zitat Mo, D.C., Yang, S., Luo, J.L., Wang, Y.Q., and Lyu, S.S., Enhanced Pool Boiling Performance of a Porous Honeycomb Copper Surface with Radial Diameter Gradient, Int. J. Heat Mass Transfer, 2020, vol. 157, p. 119867; doi.org/10.1016/j.ijheatmasstransfer.2020.119867.CrossRef Mo, D.C., Yang, S., Luo, J.L., Wang, Y.Q., and Lyu, S.S., Enhanced Pool Boiling Performance of a Porous Honeycomb Copper Surface with Radial Diameter Gradient, Int. J. Heat Mass Transfer, 2020, vol. 157, p. 119867; doi.org/10.1016/j.ijheatmasstransfer.2020.119867.CrossRef
14.
Zurück zum Zitat Jo, H., Yu, D.I., Noh, H., Park, H.S., and Kim, M.H., Boiling on Spatially Controlled Heterogeneous Surfaces: Wettability Patterns on Microstructures, Appl. Phys. Lett., 2015, vol. 106, p. 181602; doi.org/ 10.1063/1.4919916.ADSCrossRef Jo, H., Yu, D.I., Noh, H., Park, H.S., and Kim, M.H., Boiling on Spatially Controlled Heterogeneous Surfaces: Wettability Patterns on Microstructures, Appl. Phys. Lett., 2015, vol. 106, p. 181602; doi.org/ 10.1063/1.4919916.ADSCrossRef
15.
Zurück zum Zitat Gregorčič, P., Zupančič, M., and Golobič, I., Scalable Surface Microstructuring by a Fiber Laser for Controlled Nucleate Boiling Performance of High and Low-Surface-Tension Fluids, Sci. Rep., 2018, vol. 8, no. 7461, pp. 1–8; doi.org:10.1038/s41598-018-25843-5.CrossRef Gregorčič, P., Zupančič, M., and Golobič, I., Scalable Surface Microstructuring by a Fiber Laser for Controlled Nucleate Boiling Performance of High and Low-Surface-Tension Fluids, Sci. Rep., 2018, vol. 8, no. 7461, pp. 1–8; doi.org:10.1038/s41598-018-25843-5.CrossRef
16.
Zurück zum Zitat Tran, N., Sajjad, U., Lin, R., and Wang, C.C., Effects of Surface Inclination and Type of Surface Roughness on the Nucleate Boiling Heat Transfer Performance of HFE-7200 Dielectric Fluid, Int. J. Heat Mass Transfer, 2020, vol. 147, p. 119015; doi.org/10.1016/j.ijheatmasstransfer.2019.119015.CrossRef Tran, N., Sajjad, U., Lin, R., and Wang, C.C., Effects of Surface Inclination and Type of Surface Roughness on the Nucleate Boiling Heat Transfer Performance of HFE-7200 Dielectric Fluid, Int. J. Heat Mass Transfer, 2020, vol. 147, p. 119015; doi.org/10.1016/j.ijheatmasstransfer.2019.119015.CrossRef
17.
Zurück zum Zitat Cao, Z., Wu, Z., Pham, A.D., Yang, Y., Abbood, S., Falkman, P., and Sundén, B., Pool Boiling of HFE-7200 on Nanoparticle-Coating Surfaces: Experiments and Heat Transfer Analysis, Int. J. Heat Mass Transfer, 2019, vol. 133, pp. 548–560; doi.org/10.1016/j.ijheatmasstransfer.2018.12.140.CrossRef Cao, Z., Wu, Z., Pham, A.D., Yang, Y., Abbood, S., Falkman, P., and Sundén, B., Pool Boiling of HFE-7200 on Nanoparticle-Coating Surfaces: Experiments and Heat Transfer Analysis, Int. J. Heat Mass Transfer, 2019, vol. 133, pp. 548–560; doi.org/10.1016/j.ijheatmasstransfer.2018.12.140.CrossRef
18.
Zurück zum Zitat Manetti, L.L., Ribatski, G., de Souza, R.R., and Cardoso, E.M., Pool Boiling Heat Transfer of HFE-7100 on Metal Foams, Exp. Thermal Fluid Sci., 2020, vol. 113, p. 110025; doi.org/10.1016/ j.expthermflusci.2019.110025.CrossRef Manetti, L.L., Ribatski, G., de Souza, R.R., and Cardoso, E.M., Pool Boiling Heat Transfer of HFE-7100 on Metal Foams, Exp. Thermal Fluid Sci., 2020, vol. 113, p. 110025; doi.org/10.1016/ j.expthermflusci.2019.110025.CrossRef
19.
Zurück zum Zitat McGillis, W.R., Carey, V.P., Fitch, J.S., and Hamburgen, W.R., Pool Boiling Enhancement Techniques for Water at Low Pressure, 1991 Procs., Seventh IEEE Semiconductor Thermal Measurement and Management Symposium, 1991, pp. 64–72; DOI:10.1109/STHERM.1991.152914 McGillis, W.R., Carey, V.P., Fitch, J.S., and Hamburgen, W.R., Pool Boiling Enhancement Techniques for Water at Low Pressure, 1991 Procs., Seventh IEEE Semiconductor Thermal Measurement and Management Symposium, 1991, pp. 64–72; DOI:10.1109/STHERM.1991.152914
20.
Zurück zum Zitat Rainey, K.N. and You, S.M., Pool Boiling Heat Transfer from Plain and Microporous, Square Pin-Finned Surfaces in Saturated FC-72, J. Heat Transfer, 2000, vol. 122, no. 3, pp. 509–516; doi.org/10.1115/ 1.1288708.CrossRef Rainey, K.N. and You, S.M., Pool Boiling Heat Transfer from Plain and Microporous, Square Pin-Finned Surfaces in Saturated FC-72, J. Heat Transfer, 2000, vol. 122, no. 3, pp. 509–516; doi.org/10.1115/ 1.1288708.CrossRef
21.
Zurück zum Zitat Yu, C.K. and Lu, D.C., Pool Boiling Heat Transfer on Horizontal Rectangular Fin Array in Saturated FC-72, Int. J. Heat Mass Transfer, 2007, vol. 50, nos. 17/18, pp. 3624–3637; doi.org/10.1016/ j.ijheatmasstransfer.2007.02.003.CrossRef Yu, C.K. and Lu, D.C., Pool Boiling Heat Transfer on Horizontal Rectangular Fin Array in Saturated FC-72, Int. J. Heat Mass Transfer, 2007, vol. 50, nos. 17/18, pp. 3624–3637; doi.org/10.1016/ j.ijheatmasstransfer.2007.02.003.CrossRef
22.
Zurück zum Zitat Shen, C., Zhang, C., Bao, Y., Wang, X., Liu, Y., and Ren, L., Experimental Investigation on Enhancement of Nucleate Pool Boiling Heat Transfer Using Hybrid Wetting Pillar Surface at Low Heat Fluxes, Int. J. Thermal Sci., 2018, vol. 130, pp. 47–58; doi.org/10.1016/j.ijthermalsci.2018.04.011.CrossRef Shen, C., Zhang, C., Bao, Y., Wang, X., Liu, Y., and Ren, L., Experimental Investigation on Enhancement of Nucleate Pool Boiling Heat Transfer Using Hybrid Wetting Pillar Surface at Low Heat Fluxes, Int. J. Thermal Sci., 2018, vol. 130, pp. 47–58; doi.org/10.1016/j.ijthermalsci.2018.04.011.CrossRef
23.
Zurück zum Zitat Kaniowski, R., Pastuszko, R., and Nowakowski, Ł., Effect of Geometrical Parameters of Open Microchannel Surfaces on Pool Boiling Heat Transfer, EPJ Web Conf., 2017, vol. 143, p. 02049; doi.org/10.1051/epjconf/ 201714302049. Kaniowski, R., Pastuszko, R., and Nowakowski, Ł., Effect of Geometrical Parameters of Open Microchannel Surfaces on Pool Boiling Heat Transfer, EPJ Web Conf., 2017, vol. 143, p. 02049; doi.org/10.1051/epjconf/ 201714302049.
24.
Zurück zum Zitat Khmel, S.Y., Baranov, E.A., Safonov, A.I., Vladimirov, V.Yu., and Chinnov, E.A., Experimental Study of Pool Boiling on Heaters with Nanomodified Surfaces under Saturation, Heat Transfer Engin., 2021, vol. 42, no. 22; DOI:10.1080/01457632.2021.2009211ADSCrossRef Khmel, S.Y., Baranov, E.A., Safonov, A.I., Vladimirov, V.Yu., and Chinnov, E.A., Experimental Study of Pool Boiling on Heaters with Nanomodified Surfaces under Saturation, Heat Transfer Engin., 2021, vol. 42, no. 22; DOI:10.1080/01457632.2021.2009211ADSCrossRef
25.
Zurück zum Zitat Pecherkin, N.I., Pavlenko, A.N., Volodin, O.A., Kataev, A.I., and Mironova I.B., Experimental Study of Heat Transfer Enhancement in a Falling Film of R21 on an Array of Horizontal Tubes with MAO Coating, Int. Comm. Heat Mass Transfer., 2021, vol. 129, pp. 105743-1–105743-13; doi.org/10.1016/ j.icheatmasstransfer.2021.105743.CrossRef Pecherkin, N.I., Pavlenko, A.N., Volodin, O.A., Kataev, A.I., and Mironova I.B., Experimental Study of Heat Transfer Enhancement in a Falling Film of R21 on an Array of Horizontal Tubes with MAO Coating, Int. Comm. Heat Mass Transfer., 2021, vol. 129, pp. 105743-1–105743-13; doi.org/10.1016/ j.icheatmasstransfer.2021.105743.CrossRef
26.
Zurück zum Zitat Pavlenko, A.N., Zhukov, V.E., and Mezentseva, N.N., Heat Transfer and Critical Heat Flux on a Modified Surface during Boiling under Conditions of Natural Convection, Thermophys. Aeromech., 2022, vol. 29, no. 3, pp. 423–426; doi.org/10.1134/S0869864322030106.ADSCrossRef Pavlenko, A.N., Zhukov, V.E., and Mezentseva, N.N., Heat Transfer and Critical Heat Flux on a Modified Surface during Boiling under Conditions of Natural Convection, Thermophys. Aeromech., 2022, vol. 29, no. 3, pp. 423–426; doi.org/10.1134/S0869864322030106.ADSCrossRef
27.
Zurück zum Zitat Zhukov, V.E., Slesareva, E.Yu., and Pavlenko, A.N., Effect of Modification of Heat-Release Surface on Heat Transfer in Nucleate Boiling at Free Convection of Freon, J. Engin. Thermophys., 2021, vol. 30, pp. 1–13; doi.org/10.1134/S181023282101001X.CrossRef Zhukov, V.E., Slesareva, E.Yu., and Pavlenko, A.N., Effect of Modification of Heat-Release Surface on Heat Transfer in Nucleate Boiling at Free Convection of Freon, J. Engin. Thermophys., 2021, vol. 30, pp. 1–13; doi.org/10.1134/S181023282101001X.CrossRef
28.
Zurück zum Zitat Bessmeltsev, V.P., Pavlenko, A.N., and Zhukov, V.I., Development of a Technology for Creating Structured Capillary-Porous Coatings by Means of 3D Printing for Intensification of Heat Transfer during Boiling, Optoelectr., Instrum. Data Process., 2019, vol. 55, no. 6, pp. 554–563; DOI:10.3103/S8756699019060049ADSCrossRef Bessmeltsev, V.P., Pavlenko, A.N., and Zhukov, V.I., Development of a Technology for Creating Structured Capillary-Porous Coatings by Means of 3D Printing for Intensification of Heat Transfer during Boiling, Optoelectr., Instrum. Data Process., 2019, vol. 55, no. 6, pp. 554–563; DOI:10.3103/S8756699019060049ADSCrossRef
29.
Zurück zum Zitat Zhukov, V.E., Mezentseva, N.N., and Pavlenko, A.N., Heat Transfer Enhancement on Surface Modified via Additive Manufacturing during Pool Boiling of Freon, J. Engin. Thermophys., 2022, vol. 31, no. 4, pp. 551–562; DOI:10.1134/S1810232822040014CrossRef Zhukov, V.E., Mezentseva, N.N., and Pavlenko, A.N., Heat Transfer Enhancement on Surface Modified via Additive Manufacturing during Pool Boiling of Freon, J. Engin. Thermophys., 2022, vol. 31, no. 4, pp. 551–562; DOI:10.1134/S1810232822040014CrossRef
30.
Zurück zum Zitat Sajjad, U., Sadeghianjahromi, A., Ali, H.M., and Wang, C.C., Enhanced Pool Boiling of Dielectric and Highly Wetting Liquids—A Review on Enhancement Mechanisms, Int. Comm. Heat Mass Transfer, 2020, vol. 119, p. 104950; doi.org/10.1016/j.icheatmasstransfer.2020.104950.CrossRef Sajjad, U., Sadeghianjahromi, A., Ali, H.M., and Wang, C.C., Enhanced Pool Boiling of Dielectric and Highly Wetting Liquids—A Review on Enhancement Mechanisms, Int. Comm. Heat Mass Transfer, 2020, vol. 119, p. 104950; doi.org/10.1016/j.icheatmasstransfer.2020.104950.CrossRef
31.
Zurück zum Zitat Li, X., Cole, I., and Tu, J., A Review of Nucleate Boiling on Nanoengineered Surfaces—The Nanostructures, Phenomena and Mechanisms, Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 20–33; doi.org/10.1016/ j.ijheatmasstransfer.2019.06.069.CrossRef Li, X., Cole, I., and Tu, J., A Review of Nucleate Boiling on Nanoengineered Surfaces—The Nanostructures, Phenomena and Mechanisms, Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 20–33; doi.org/10.1016/ j.ijheatmasstransfer.2019.06.069.CrossRef
32.
Zurück zum Zitat Liang, G. and Mudawar, I., Review of Pool Boiling Enhancement by Surface Modification, Int. J. Heat Mass Transfer, 2019, vol. 128, pp. 892–933; doi.org/10.1016/j.ijheatmasstransfer.2018.09.026.CrossRef Liang, G. and Mudawar, I., Review of Pool Boiling Enhancement by Surface Modification, Int. J. Heat Mass Transfer, 2019, vol. 128, pp. 892–933; doi.org/10.1016/j.ijheatmasstransfer.2018.09.026.CrossRef
33.
Zurück zum Zitat Dedov, A.V., A Review of Modern Methods for Enhancing Nucleate Boiling Heat Transfer, Thermal Engin., 2019, vol. 66, no. 12, pp. 881–915; doi.org/10.1134/S0040601519120012.ADSCrossRef Dedov, A.V., A Review of Modern Methods for Enhancing Nucleate Boiling Heat Transfer, Thermal Engin., 2019, vol. 66, no. 12, pp. 881–915; doi.org/10.1134/S0040601519120012.ADSCrossRef
34.
Zurück zum Zitat Pavlenko, A.N. and Kuznetsov, D.V. Development of Methods for Heat Transfer Enhancement During Nitrogen Boiling to Ensure Stabilization of HTS Devices, J. Eng. Therm., 2021, vol. 30, no. 4, pp. 526–562; doi.org/10.1134/S1810232821040019.CrossRef Pavlenko, A.N. and Kuznetsov, D.V. Development of Methods for Heat Transfer Enhancement During Nitrogen Boiling to Ensure Stabilization of HTS Devices, J. Eng. Therm., 2021, vol. 30, no. 4, pp. 526–562; doi.org/10.1134/S1810232821040019.CrossRef
35.
Zurück zum Zitat Haran, K.S., Haran, K., Kalsi, S., Arndt, T., Karmaker, H., Badcock, R., Buckley, B., Haugan, T., Izumi, M., Loder, D., et al., High Power Density Superconducting Rotating Machines—Development Status and Technology Roadmap, Supercond. Sci. Technol. IOP Publ., 2017, vol. 30, no. 12; DOI:10.1088/1361-6668/aa833eADSCrossRef Haran, K.S., Haran, K., Kalsi, S., Arndt, T., Karmaker, H., Badcock, R., Buckley, B., Haugan, T., Izumi, M., Loder, D., et al., High Power Density Superconducting Rotating Machines—Development Status and Technology Roadmap, Supercond. Sci. Technol. IOP Publ., 2017, vol. 30, no. 12; DOI:10.1088/1361-6668/aa833eADSCrossRef
36.
Zurück zum Zitat Kovalev, K., Ivanov, N., Zhuravlev, S., Nekrasova, J., Rusanov, D., and Kuznetsov, G., Development and Testing of 10 kW Fully HTS Generator, J. Phys. Conf. Ser., 2020, vol. 1559, p. 012137; doi.org/10.1088/1742-6596/1559/1/012137.CrossRef Kovalev, K., Ivanov, N., Zhuravlev, S., Nekrasova, J., Rusanov, D., and Kuznetsov, G., Development and Testing of 10 kW Fully HTS Generator, J. Phys. Conf. Ser., 2020, vol. 1559, p. 012137; doi.org/10.1088/1742-6596/1559/1/012137.CrossRef
37.
Zurück zum Zitat Zhuravlev, S., Zechikhin, B., Ivanov, N., and Nekrasova, J., Analytical Calculation of the Magnetic Field in Electrical Machines with HTS Excitation and Armature Windings, Mater. Res. Express., 2019, vol. 6, p. 076001; DOI:10.1088/2053-1591/ab18beADSCrossRef Zhuravlev, S., Zechikhin, B., Ivanov, N., and Nekrasova, J., Analytical Calculation of the Magnetic Field in Electrical Machines with HTS Excitation and Armature Windings, Mater. Res. Express., 2019, vol. 6, p. 076001; DOI:10.1088/2053-1591/ab18beADSCrossRef
38.
Zurück zum Zitat Grilli, F., Benkel, T., Hanisch, J., Lao, M., Reis, T., Berberich, E., Wolfstadter, S., Schneider, C., Miller, P., Palmer, C., et al., Superconducting Motors for Aircraft Propulsion: The Advanced Superconducting Motor Experimental Demonstrator project, J. Phys. Conf. Ser, 2020, vol. 1590, p. 012051; DOI:10.1088/1742-6596/1590/1/012051CrossRef Grilli, F., Benkel, T., Hanisch, J., Lao, M., Reis, T., Berberich, E., Wolfstadter, S., Schneider, C., Miller, P., Palmer, C., et al., Superconducting Motors for Aircraft Propulsion: The Advanced Superconducting Motor Experimental Demonstrator project, J. Phys. Conf. Ser, 2020, vol. 1590, p. 012051; DOI:10.1088/1742-6596/1590/1/012051CrossRef
39.
Zurück zum Zitat Zanegin, S., Ivanov, N., Zubko, V., Kovalev, K., Shishov, I., Shishov, D., and Podguzov, V., Measurements and Analysis of AC Losses in HTS Windings of Electrical Machine for Different Operation Modes, Appl. Sci., 2021, vol. 11, p. 2741; doi.org/10.3390/app11062741.CrossRef Zanegin, S., Ivanov, N., Zubko, V., Kovalev, K., Shishov, I., Shishov, D., and Podguzov, V., Measurements and Analysis of AC Losses in HTS Windings of Electrical Machine for Different Operation Modes, Appl. Sci., 2021, vol. 11, p. 2741; doi.org/10.3390/app11062741.CrossRef
40.
Zurück zum Zitat Messina, G., Yazdani-Asrami, M., Marignetti, F., and Della Corte, A., Characterization of HTS Coils for Superconducting Rotating Electric Machine Applications: Challenges, Material Selection, Winding Process, and Testing, IEEE Trans. Appl. Supercond., 2021, vol. 31, p. 2; DOI:10.1109/TASC.2020.3042829CrossRef Messina, G., Yazdani-Asrami, M., Marignetti, F., and Della Corte, A., Characterization of HTS Coils for Superconducting Rotating Electric Machine Applications: Challenges, Material Selection, Winding Process, and Testing, IEEE Trans. Appl. Supercond., 2021, vol. 31, p. 2; DOI:10.1109/TASC.2020.3042829CrossRef
41.
Zurück zum Zitat Kovalev, K., Ivanov, N., Zhuravlev, S., Rusanov, D., Kuznetsov, G., and Podguzov, V., Calculation, Design and Test Results of 3 kW Fully HTS Electric Machine, Physica C: Supercond. Its Appl., 2021, vol. 587, p. 1353892; doi.org/10.1016/j.physc.2021.1353892.ADSCrossRef Kovalev, K., Ivanov, N., Zhuravlev, S., Rusanov, D., Kuznetsov, G., and Podguzov, V., Calculation, Design and Test Results of 3 kW Fully HTS Electric Machine, Physica C: Supercond. Its Appl., 2021, vol. 587, p. 1353892; doi.org/10.1016/j.physc.2021.1353892.ADSCrossRef
42.
Zurück zum Zitat Kovalev, K., et al., Superconducting System with 100 kW Output Power for Experimental Research, IEEE Transact. Appl. Supercond., 2022, vol. 32, no. 4, pp. 1–4; DOI:10.1109/TASC.2022.3147442CrossRef Kovalev, K., et al., Superconducting System with 100 kW Output Power for Experimental Research, IEEE Transact. Appl. Supercond., 2022, vol. 32, no. 4, pp. 1–4; DOI:10.1109/TASC.2022.3147442CrossRef
43.
Zurück zum Zitat Verkin, B.I., Kirichenko, Yu.A., and Rusanov, K.V., Teploobmen pri kipenii v polyakh massovykh sil razlichnoi intensivnosti (Heat Transfer during Boiling in Fields of Mass Forces of Different Intensities), Kyiv: Nauk. Dumka, 1988. Verkin, B.I., Kirichenko, Yu.A., and Rusanov, K.V., Teploobmen pri kipenii v polyakh massovykh sil razlichnoi intensivnosti (Heat Transfer during Boiling in Fields of Mass Forces of Different Intensities), Kyiv: Nauk. Dumka, 1988.
44.
Zurück zum Zitat Zhukov, V.Y. and Lutcet M.O., Heat Transfer in a Liquid Nitrogen at High Centrifugal Acceleration Fields, Low Temperature and Cryogenic Refrigeration, NATO Science Series, 2003, vol. 99, pp. 221–240; doi.org/10.1007/978-94-010-0099-4_13. Zhukov, V.Y. and Lutcet M.O., Heat Transfer in a Liquid Nitrogen at High Centrifugal Acceleration Fields, Low Temperature and Cryogenic Refrigeration, NATO Science Series, 2003, vol. 99, pp. 221–240; doi.org/10.1007/978-94-010-0099-4_13.
45.
Zurück zum Zitat Sokolov, V.A., Sovremennye promyshlennye tsentrifugi (Modern Industrial Centrifuges), Moscow: Mashinostroenie, 1967. Sokolov, V.A., Sovremennye promyshlennye tsentrifugi (Modern Industrial Centrifuges), Moscow: Mashinostroenie, 1967.
46.
Zurück zum Zitat Pavlenko, A.N., Zhukov, V.E., and Mezentseva, N.N., Heat Transfer and Critical Heat Flux on a Modified Surface during Boiling in Liquid Nitrogen, in Trudy XXXVIII Sibirskogo teplofizicheskogo seminara, posvyashchennogo 65-letiyu Instituta teplofiziki im. S.S. Kutateladze SO RAN, Novosibirsk, 2022, pp. 242–256; DOI:10.53954/9785604859551_242 Pavlenko, A.N., Zhukov, V.E., and Mezentseva, N.N., Heat Transfer and Critical Heat Flux on a Modified Surface during Boiling in Liquid Nitrogen, in Trudy XXXVIII Sibirskogo teplofizicheskogo seminara, posvyashchennogo 65-letiyu Instituta teplofiziki im. S.S. Kutateladze SO RAN, Novosibirsk, 2022, pp. 242–256; DOI:10.53954/9785604859551_242
47.
Zurück zum Zitat Novikov, I.I. and Borishanskii, V.M., Teoriya podobiya v termodinamike i teploperedache (Similarity Theory in Thermodynamics and Heat Transfer), Moscow: Atomizdat, 1979. Novikov, I.I. and Borishanskii, V.M., Teoriya podobiya v termodinamike i teploperedache (Similarity Theory in Thermodynamics and Heat Transfer), Moscow: Atomizdat, 1979.
Metadaten
Titel
Enhancement of Heat Transfer during Nitrogen Boiling on Capillary-Porous Coatings under Conditions of Intense Mass Forces at High-Speed Rotation of Cryostat
verfasst von
V. E. Zhukov
N. N. Mezentseva
A. N. Pavlenko
Publikationsdatum
01.06.2023
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 2/2023
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232823020017

Weitere Artikel der Ausgabe 2/2023

Journal of Engineering Thermophysics 2/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.