Skip to main content
Erschienen in: Flow, Turbulence and Combustion 2/2017

19.07.2016

Helical Structures in the Near Field of a Turbulent Pipe Jet

verfasst von: R. Mullyadzhanov, S. Abdurakipov, K. Hanjalić

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We perform a finely resolved Large-eddy simulation to study coherent vortical structures populating the initial (near-nozzle) zone of a pipe jet at the Reynolds number of 5300. In contrast to ‘top-hat’ jets featured by Kelvin-Helmholtz rings with the non-dimensional frequency S t≈0.3−0.6, no high-frequency dominant mode is observed in the near field of a jet issuing from a fully-developed pipe flow. Instead, in shear layers we observe a relatively wide peak in the power spectrum within the low-frequency range (S t≈0.14) corresponding to the propagating helical waves entering with the pipe flow. This is confirmed by the Fourier transform with respect to the azimuthal angle and the Proper Orthogonal Decomposition complemented with the linear stability analysis revealing that this low-frequency motion is not connected to the Kelvin-Helmholtz instability. We demonstrate that the azimuthal wavenumbers m=1−5 contain the most of the turbulent kinetic energy and that a common form of an eigenmode is a helical vortex rotating around the axis of symmetry. Small and large timescales are identified corresponding to “fast” and “slow” rotating modes. While the “fast” modes correspond to background turbulence and stochastically switch from co- to counter-rotation, the “slow” modes are due to coherent helical structures which are long-lived and have low angular velocities, in agreement with the previously described spectral peak at low S t.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
This frequency has been obtained by calculating the slope of the phase of the complex-valued temporal POD amplitude, see Fig. 10(e) in [23]. We applied a similar procedure for the jet described by Eq. 13 and Fig. 15.
 
Literatur
1.
Zurück zum Zitat Pope, SB: Turbulent flows. Cambridge University Press (2000) Pope, SB: Turbulent flows. Cambridge University Press (2000)
2.
Zurück zum Zitat Gutmark, EJ, Greenstein, FF: Flow control with noncircular jets. Annu. Rev. Fluid Mech. 31, 239–272 (1999)CrossRef Gutmark, EJ, Greenstein, FF: Flow control with noncircular jets. Annu. Rev. Fluid Mech. 31, 239–272 (1999)CrossRef
3.
Zurück zum Zitat Ginevsky, AS, Vlasov, YV, Karavosov, RK: Acoustic control of turbulent jets. Springer (2004) Ginevsky, AS, Vlasov, YV, Karavosov, RK: Acoustic control of turbulent jets. Springer (2004)
4.
Zurück zum Zitat Samimy, M, Kim, JH, Kastner, J, Utkin, IAY: Active control of high-speed and high-Reynolds-number jets using plasma actuators. J. Fluid Mech. 578, 305–330 (2005)CrossRefMATH Samimy, M, Kim, JH, Kastner, J, Utkin, IAY: Active control of high-speed and high-Reynolds-number jets using plasma actuators. J. Fluid Mech. 578, 305–330 (2005)CrossRefMATH
5.
Zurück zum Zitat Ball, CG, Fellouah, H, Pollard, A: The flow field in turbulent round free jets. Prog. Aero Sci. 50, 1–26 (2012)CrossRef Ball, CG, Fellouah, H, Pollard, A: The flow field in turbulent round free jets. Prog. Aero Sci. 50, 1–26 (2012)CrossRef
6.
Zurück zum Zitat Becker, HA, Massaro, TA: Vortex evolution in a round jet. J. Fluid Mech. 31 (3), 435–448 (1968)CrossRef Becker, HA, Massaro, TA: Vortex evolution in a round jet. J. Fluid Mech. 31 (3), 435–448 (1968)CrossRef
7.
Zurück zum Zitat Crow, SC, Champagne, FH: Orderly structure in jet turbulence. J. Fluid Mech. 48(3), 547–591 (1971)CrossRef Crow, SC, Champagne, FH: Orderly structure in jet turbulence. J. Fluid Mech. 48(3), 547–591 (1971)CrossRef
8.
Zurück zum Zitat Michalke, A: Survey on jet instability theory. Prog. Aerosp. Sci. 21, 159–199 (1984)CrossRef Michalke, A: Survey on jet instability theory. Prog. Aerosp. Sci. 21, 159–199 (1984)CrossRef
9.
Zurück zum Zitat Yule, AJ: Large-scale structure in the mixing layer of a round jet. J. Fluid Mech. 89(3), 413–432 (1978)CrossRef Yule, AJ: Large-scale structure in the mixing layer of a round jet. J. Fluid Mech. 89(3), 413–432 (1978)CrossRef
10.
Zurück zum Zitat Gutmark, E, Ho, CM: Preferred modes and the spreading rates of jets. Phys. Fluids 26, 2932 (1983)CrossRef Gutmark, E, Ho, CM: Preferred modes and the spreading rates of jets. Phys. Fluids 26, 2932 (1983)CrossRef
11.
Zurück zum Zitat Garnaud, X, Lesshafft, L, Schmid, PJ, Huerre, P: The preferred mode of incompressible jets: linear frequency response analysis. J. Fluid Mech. 716, 189–202 (2013)MathSciNetCrossRefMATH Garnaud, X, Lesshafft, L, Schmid, PJ, Huerre, P: The preferred mode of incompressible jets: linear frequency response analysis. J. Fluid Mech. 716, 189–202 (2013)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Mi, J, Nobes, DS, Nathan, GJ: Influence of jet exit conditions on the passive scalar field of an axisymmetric free jet. J. Fluid Mech. 432, 91–125 (2001)MATH Mi, J, Nobes, DS, Nathan, GJ: Influence of jet exit conditions on the passive scalar field of an axisymmetric free jet. J. Fluid Mech. 432, 91–125 (2001)MATH
13.
Zurück zum Zitat Antonia, RA, Zhao, Q: Effect of initial conditions on a circular jet. Exp. Fluids 31, 319–323 (2001)CrossRef Antonia, RA, Zhao, Q: Effect of initial conditions on a circular jet. Exp. Fluids 31, 319–323 (2001)CrossRef
14.
Zurück zum Zitat Xu, G, Antonia, RA: Effect of different initial conditions on a turbulent round free jet. Exp. Fluids 33, 677–683 (2002)CrossRef Xu, G, Antonia, RA: Effect of different initial conditions on a turbulent round free jet. Exp. Fluids 33, 677–683 (2002)CrossRef
15.
Zurück zum Zitat Boguslawski, L, Popiel, CO: Flow structure of the free round turbulent jet in the initial region. J. Fluid Mech. 90(3), 531–539 (1979)CrossRef Boguslawski, L, Popiel, CO: Flow structure of the free round turbulent jet in the initial region. J. Fluid Mech. 90(3), 531–539 (1979)CrossRef
16.
Zurück zum Zitat Lockwood, FC, Moneib, HA: Fluctuating temperature measurements in a heated round free jet. Comb. SciTech. 22, 63–81 (1980) Lockwood, FC, Moneib, HA: Fluctuating temperature measurements in a heated round free jet. Comb. SciTech. 22, 63–81 (1980)
17.
Zurück zum Zitat Pitts, WM, Kashiwagi, T: The application of laser-induced Rayleigh light scattering to the study of turbulent mixing. J. Fluid Mech. 141, 391–429 (1984)CrossRef Pitts, WM, Kashiwagi, T: The application of laser-induced Rayleigh light scattering to the study of turbulent mixing. J. Fluid Mech. 141, 391–429 (1984)CrossRef
18.
Zurück zum Zitat Örlü, R, Alfredsson, PH: An experimental study of the near-field mixing characteristics of a swirling jet. Flow Turb. Comb. 80, 323–350 (2008)CrossRef Örlü, R, Alfredsson, PH: An experimental study of the near-field mixing characteristics of a swirling jet. Flow Turb. Comb. 80, 323–350 (2008)CrossRef
19.
Zurück zum Zitat Kozlov, VV, Grek, GR, Dovgal, AV, Litvinenko, YA: Stability of subsonic jet flows. J. Flow Control Meas Vis. 1, 94–101 (2013)CrossRef Kozlov, VV, Grek, GR, Dovgal, AV, Litvinenko, YA: Stability of subsonic jet flows. J. Flow Control Meas Vis. 1, 94–101 (2013)CrossRef
20.
Zurück zum Zitat Zarruk, GA, Cowen, EA: Simultaneous velocity and passive scalar concentration measurements in low Reynolds number neutrally buoyant turbulent round jets. Exp. Fluids 44, 865–872 (2008)CrossRef Zarruk, GA, Cowen, EA: Simultaneous velocity and passive scalar concentration measurements in low Reynolds number neutrally buoyant turbulent round jets. Exp. Fluids 44, 865–872 (2008)CrossRef
21.
Zurück zum Zitat Vouros, AP, Panidis, T: Turbulent properties of a low Reynolds number, axisymmetric, pipe jet. Exp. Therm. Fluid Sci. 44, 42–50 (2013)CrossRef Vouros, AP, Panidis, T: Turbulent properties of a low Reynolds number, axisymmetric, pipe jet. Exp. Therm. Fluid Sci. 44, 42–50 (2013)CrossRef
22.
Zurück zum Zitat Capone, A, Soldati, A, Romano, GP: Mixing and entrainment in the near field of turbulent round jets. Exp. Fluids 54(1), 1–14 (2013)CrossRef Capone, A, Soldati, A, Romano, GP: Mixing and entrainment in the near field of turbulent round jets. Exp. Fluids 54(1), 1–14 (2013)CrossRef
23.
Zurück zum Zitat Duggleby, A, Ball, KS, Paul, MR, Fischer, PF: Dynamical eigenfunction decomposition of turbulent pipe flow. J. Turbulence 8(43), 1–24 (2007)MathSciNetMATH Duggleby, A, Ball, KS, Paul, MR, Fischer, PF: Dynamical eigenfunction decomposition of turbulent pipe flow. J. Turbulence 8(43), 1–24 (2007)MathSciNetMATH
24.
Zurück zum Zitat Gudmundsson, K, Colonius, T: Instability wave models for the near-field fluctuations of turbulent jets. J. Fluid Mech. 689, 97–128 (2011)CrossRefMATH Gudmundsson, K, Colonius, T: Instability wave models for the near-field fluctuations of turbulent jets. J. Fluid Mech. 689, 97–128 (2011)CrossRefMATH
25.
Zurück zum Zitat Oberleithner, K, Seiber, M, Nayeri, CN, Paschereit, CO, Petz, C, Hege, HC, Noack, BR, Wygnanski, I: Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383–414 (2011)CrossRefMATH Oberleithner, K, Seiber, M, Nayeri, CN, Paschereit, CO, Petz, C, Hege, HC, Noack, BR, Wygnanski, I: Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383–414 (2011)CrossRefMATH
26.
Zurück zum Zitat Ryu, J, Lele, SK: Instability waves in high-speed jets: Near-and far-field DNS/LES data analysis. Int. J. Aeroacoust. 14(3–4), 643–674 (2015)CrossRef Ryu, J, Lele, SK: Instability waves in high-speed jets: Near-and far-field DNS/LES data analysis. Int. J. Aeroacoust. 14(3–4), 643–674 (2015)CrossRef
27.
Zurück zum Zitat Lumley, JL: The structure of inhomogeneous turbulent flows. In: Atmospheric turbulence and radio wave propagation, pp. 166–178. Nauka (1967) Lumley, JL: The structure of inhomogeneous turbulent flows. In: Atmospheric turbulence and radio wave propagation, pp. 166–178. Nauka (1967)
28.
Zurück zum Zitat Cintriniti, JH, George, WK: Reconstruction of the global velocity field in the axisymmetric mixing layer utilizing the proper orthogonal decomposition. J. Fluid Mech. 418, 137–166 (2000)CrossRefMATH Cintriniti, JH, George, WK: Reconstruction of the global velocity field in the axisymmetric mixing layer utilizing the proper orthogonal decomposition. J. Fluid Mech. 418, 137–166 (2000)CrossRefMATH
29.
Zurück zum Zitat Jung, D, Gamard, S, George, WK: Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 1. The near-field region. J. Fluid Mech. 514, 173–204 (2004)CrossRefMATH Jung, D, Gamard, S, George, WK: Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 1. The near-field region. J. Fluid Mech. 514, 173–204 (2004)CrossRefMATH
30.
Zurück zum Zitat Gamard, S, Jung, D, George, WK: Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 2. The far-field region. J. Fluid Mech. 514, 205–230 (2004)CrossRefMATH Gamard, S, Jung, D, George, WK: Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 2. The far-field region. J. Fluid Mech. 514, 205–230 (2004)CrossRefMATH
31.
Zurück zum Zitat Iqbal, MO, Thomas, FO: Coherent structure in a turbulent jet via a vector implementation of the proper orthogonal decomposition. J. Fluid Mech. 571, 281–326 (2007)CrossRefMATH Iqbal, MO, Thomas, FO: Coherent structure in a turbulent jet via a vector implementation of the proper orthogonal decomposition. J. Fluid Mech. 571, 281–326 (2007)CrossRefMATH
32.
Zurück zum Zitat Wänström, M, George, WK, Meyer, KE: Stereoscopic PIV and POD applied to the far turbulent axisymmetric jet. AIAA Paper, 2006–3368 (2006) Wänström, M, George, WK, Meyer, KE: Stereoscopic PIV and POD applied to the far turbulent axisymmetric jet. AIAA Paper, 2006–3368 (2006)
33.
Zurück zum Zitat Freund, JB: Noise sources in a low-Reynolds-number turbulent jet at mach 0.9. J. Fluid Mech. 438, 277–305 (2001)CrossRefMATH Freund, JB: Noise sources in a low-Reynolds-number turbulent jet at mach 0.9. J. Fluid Mech. 438, 277–305 (2001)CrossRefMATH
34.
Zurück zum Zitat Freund, JB, Colonius, T: Turbulence and sound-field POD analysis of a turbulent jet. Int. J. Aeroacoust. 8, 337–354 (2009)CrossRef Freund, JB, Colonius, T: Turbulence and sound-field POD analysis of a turbulent jet. Int. J. Aeroacoust. 8, 337–354 (2009)CrossRef
35.
Zurück zum Zitat Bogey, C, Bailly, C: Large eddy simulations of transitional round jets: Influence of the Reynolds number on flow development and energy dissipation. Phys. Fluids 18, 065,101 (2006)CrossRef Bogey, C, Bailly, C: Large eddy simulations of transitional round jets: Influence of the Reynolds number on flow development and energy dissipation. Phys. Fluids 18, 065,101 (2006)CrossRef
36.
Zurück zum Zitat Vuorinen, V, Tirunagari, JYS, Kaario, O, Larmi, M, Duwig, C, Boersma, BJ: Large-eddy simulation of highly underexpanded transient gas jets. Phys. Fluids 25, 016,101 (2013)CrossRef Vuorinen, V, Tirunagari, JYS, Kaario, O, Larmi, M, Duwig, C, Boersma, BJ: Large-eddy simulation of highly underexpanded transient gas jets. Phys. Fluids 25, 016,101 (2013)CrossRef
37.
Zurück zum Zitat Bodony, DJ, Lele, SK: On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets. Phys. Fluids 17, 085,103 (2005)CrossRefMATH Bodony, DJ, Lele, SK: On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets. Phys. Fluids 17, 085,103 (2005)CrossRefMATH
38.
Zurück zum Zitat Ryu, J: Study of high-speed turbulent jet noise using decomposition methods. PhD thesis, Stanford University, USA (2010) Ryu, J: Study of high-speed turbulent jet noise using decomposition methods. PhD thesis, Stanford University, USA (2010)
39.
Zurück zum Zitat Ryu, J, Lele, SK, Viswanathan, K: Study of supersonic wave components in high-speed turbulent jets using an LES database. J. Sound Vibr. 333, 6900–6923 (2014)CrossRef Ryu, J, Lele, SK, Viswanathan, K: Study of supersonic wave components in high-speed turbulent jets using an LES database. J. Sound Vibr. 333, 6900–6923 (2014)CrossRef
40.
Zurück zum Zitat Mullyadzhanov, R, Hadžiabdić, M, Hanjalić, K: LES investigation of the hysteresis regime in the cold model of a rotating-pipe swirl burner. Flow Turb. Comb. 94(1), 175–198 (2015)CrossRef Mullyadzhanov, R, Hadžiabdić, M, Hanjalić, K: LES investigation of the hysteresis regime in the cold model of a rotating-pipe swirl burner. Flow Turb. Comb. 94(1), 175–198 (2015)CrossRef
41.
Zurück zum Zitat Eggels, JG, Unger, F, Weiss, MH, Westerweel, J, Adrian, RJ, Friedreich, F, Nieuwstadt, FTM: Fully developed turbulent pipe flow: A comparison between direct numerical simulation and experiment. J. Fluid Mech. 268, 175–209 (1994)CrossRef Eggels, JG, Unger, F, Weiss, MH, Westerweel, J, Adrian, RJ, Friedreich, F, Nieuwstadt, FTM: Fully developed turbulent pipe flow: A comparison between direct numerical simulation and experiment. J. Fluid Mech. 268, 175–209 (1994)CrossRef
42.
Zurück zum Zitat Wu, X, Moin, P: A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech. 608, 81–112 (2008)CrossRefMATH Wu, X, Moin, P: A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech. 608, 81–112 (2008)CrossRefMATH
43.
Zurück zum Zitat Ferdman, E, Ötügen, M V, Kim, S: Effect of initial velocity profile on the development of round jets. J. Prop. Power 16(4), 676–686 (2000)CrossRef Ferdman, E, Ötügen, M V, Kim, S: Effect of initial velocity profile on the development of round jets. J. Prop. Power 16(4), 676–686 (2000)CrossRef
44.
Zurück zum Zitat Kim, J, Choi, H: Large eddy simulation of a circular jet: Effect of inflow conditions on the near field. J. Fluid Mech. 620, 383–411 (2009)CrossRefMATH Kim, J, Choi, H: Large eddy simulation of a circular jet: Effect of inflow conditions on the near field. J. Fluid Mech. 620, 383–411 (2009)CrossRefMATH
45.
Zurück zum Zitat Sandberg, RD, Sandham, ND, Suponitsky, V: DNS of compressible pipe flow exiting into a coflow. Int. J. Heat Fluid Flow 35, 33–44 (2012)CrossRef Sandberg, RD, Sandham, ND, Suponitsky, V: DNS of compressible pipe flow exiting into a coflow. Int. J. Heat Fluid Flow 35, 33–44 (2012)CrossRef
46.
Zurück zum Zitat Oberleithner, K, Terhaar, S, Rukes, L, Paschereit, CO: Why nonuniform density suppresses the precessing vortex core. J. Eng. Gas Turb. Power 135(12), 121,506 (2013)CrossRef Oberleithner, K, Terhaar, S, Rukes, L, Paschereit, CO: Why nonuniform density suppresses the precessing vortex core. J. Eng. Gas Turb. Power 135(12), 121,506 (2013)CrossRef
47.
Zurück zum Zitat Khorrami, MR, Malik, MR, Ash, RL: Application of spectral collocation techniques to the stability of swirling flows. J. Comp. Phys. 81(1), 206–229 (1989)CrossRefMATH Khorrami, MR, Malik, MR, Ash, RL: Application of spectral collocation techniques to the stability of swirling flows. J. Comp. Phys. 81(1), 206–229 (1989)CrossRefMATH
48.
Zurück zum Zitat Oberleithner, K, Paschereit, CO, Seele, R, Wygnanski, I: Formation of turbulent vortex breakdown: intermittency, criticality, and global instability. AIAA Paper 50(7), 1437–1452 (2012)CrossRef Oberleithner, K, Paschereit, CO, Seele, R, Wygnanski, I: Formation of turbulent vortex breakdown: intermittency, criticality, and global instability. AIAA Paper 50(7), 1437–1452 (2012)CrossRef
49.
Zurück zum Zitat Chatterjee, A: An introduction to the proper orthogonal decomposition. Curr. Sci. 78(7), 808–817 (2000) Chatterjee, A: An introduction to the proper orthogonal decomposition. Curr. Sci. 78(7), 808–817 (2000)
50.
Zurück zum Zitat Petersen, RA, Samet, MM: On the preferred mode of jet instability. J. Fluid Mech. 194, 153–173 (1988)CrossRef Petersen, RA, Samet, MM: On the preferred mode of jet instability. J. Fluid Mech. 194, 153–173 (1988)CrossRef
51.
Zurück zum Zitat Michalke, A, Herman, G: On the inviscid instability of a circular jet with external flow. J. Fluid Mech. 114, 343–359 (1982)CrossRefMATH Michalke, A, Herman, G: On the inviscid instability of a circular jet with external flow. J. Fluid Mech. 114, 343–359 (1982)CrossRefMATH
53.
Zurück zum Zitat Davoust, S, Jacquin, L, Leclaire, B: Dynamics of m=0 and m=1 modes and of streamwise vortices in a turbulent axisymmetric mixing layer. J. Fluid Mech. 709, 408–444 (2012)MathSciNetCrossRefMATH Davoust, S, Jacquin, L, Leclaire, B: Dynamics of m=0 and m=1 modes and of streamwise vortices in a turbulent axisymmetric mixing layer. J. Fluid Mech. 709, 408–444 (2012)MathSciNetCrossRefMATH
54.
Zurück zum Zitat Sirovich, L, Ball, KS, Keefe, LR: Plane waves and structures in turbulent channel flow. Phys. Fluids A 2, 2217–2226 (1990)CrossRef Sirovich, L, Ball, KS, Keefe, LR: Plane waves and structures in turbulent channel flow. Phys. Fluids A 2, 2217–2226 (1990)CrossRef
55.
Zurück zum Zitat Ball, KS, Sirovich, L, Keefe, LR: Dynamical eigenfunction decomposition of turbulent channel flow. Int. J. Num. Meth. Fluids 12, 585–604 (1991)CrossRefMATH Ball, KS, Sirovich, L, Keefe, LR: Dynamical eigenfunction decomposition of turbulent channel flow. Int. J. Num. Meth. Fluids 12, 585–604 (1991)CrossRefMATH
56.
Zurück zum Zitat Sirovich, L, Ball, KS, Handler, RA: Propagating structures in wall-bounded turbulent flows. Theor. Comp. Fluid Dyn. 2, 307–317 (1991)CrossRefMATH Sirovich, L, Ball, KS, Handler, RA: Propagating structures in wall-bounded turbulent flows. Theor. Comp. Fluid Dyn. 2, 307–317 (1991)CrossRefMATH
Metadaten
Titel
Helical Structures in the Near Field of a Turbulent Pipe Jet
verfasst von
R. Mullyadzhanov
S. Abdurakipov
K. Hanjalić
Publikationsdatum
19.07.2016
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 2/2017
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-016-9753-2

Weitere Artikel der Ausgabe 2/2017

Flow, Turbulence and Combustion 2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.