Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 15/2019

05.07.2019

Hierarchically porous carbon derived from wheat straw for high rate lithium ion battery anodes

verfasst von: Peng Yan, Fanrong Ai, Chuanliang Cao, Zhongmin Luo

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 15/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Porous biochar for anode material of lithium ion battery (LIBs) was prepared from wheat straw, one of the most common biomass of agricultural waste in China, with KOH using as activator. Microstructure of the porous biochar was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) as well as Brunauer–Emmett–Teller (BET). The porous biochar prepared contains parallel microporous channels derived from wheat straw. These microchannel structures offer the advantage of facilitating the transport of electrolyte ions and providing more active sites. Meanwhile, the electrochemical properties were investigated by galvanostatic charge–discharge (GCD) curves, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The specific capacitance of biomass carbon activated by KOH reaches 271.7 F g−1 at scanning rate of 1 mv s−1. After 100 cycles at 0.1 °C rate, the discharge capacity of lithium-ion battery prepared is 310 mA h g−1, which shows that the material has good rate performance and cycle stability. The samples prepared by this method have a rich pore structure, can improve the permeability of electrolyte, increase the reactive sites, and increase the free movement space of lithium ions and charges, which is conducive to the improvement of electrochemical properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat X. Zeng, Y. Ma, L. Ma, Utilization of straw in biomass energy in China. Renew. Sustain. Energy Rev. 11(5), 976–987 (2007)CrossRef X. Zeng, Y. Ma, L. Ma, Utilization of straw in biomass energy in China. Renew. Sustain. Energy Rev. 11(5), 976–987 (2007)CrossRef
2.
Zurück zum Zitat G. Cao, X. Zhang, Y.Q. Wang et al., Estimation of emissions from field burning of crop straw in China. Chin. Sci. Bull. 53(5), 784–790 (2008)CrossRef G. Cao, X. Zhang, Y.Q. Wang et al., Estimation of emissions from field burning of crop straw in China. Chin. Sci. Bull. 53(5), 784–790 (2008)CrossRef
3.
Zurück zum Zitat P. Kaparaju, M. Serrano, A.B. Thomsen et al., Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Biores. Technol. 100(9), 2562–2568 (2009)CrossRef P. Kaparaju, M. Serrano, A.B. Thomsen et al., Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Biores. Technol. 100(9), 2562–2568 (2009)CrossRef
4.
Zurück zum Zitat Y. Sun, Q. Wu, G. Shi, Graphene based new energy materials. Energy Environ. Sci. 4(4), 1113–1132 (2011)CrossRef Y. Sun, Q. Wu, G. Shi, Graphene based new energy materials. Energy Environ. Sci. 4(4), 1113–1132 (2011)CrossRef
5.
Zurück zum Zitat A.D. Roberts, X. Li, H. Zhang, Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 43(13), 4341–4356 (2014)CrossRef A.D. Roberts, X. Li, H. Zhang, Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 43(13), 4341–4356 (2014)CrossRef
6.
Zurück zum Zitat X. Jiang, X. Cheng, H. Wen et al., Fabrication of anode materials for a lithium-ion battery with waste semi-coke carbon powder. Carbon 85, 448 (2015)CrossRef X. Jiang, X. Cheng, H. Wen et al., Fabrication of anode materials for a lithium-ion battery with waste semi-coke carbon powder. Carbon 85, 448 (2015)CrossRef
7.
Zurück zum Zitat F. Zhang, K.X. Wang, G.D. Li et al., Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance. Electrochem. Commun. 11(1), 130–133 (2009)CrossRef F. Zhang, K.X. Wang, G.D. Li et al., Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance. Electrochem. Commun. 11(1), 130–133 (2009)CrossRef
8.
Zurück zum Zitat Y. Tang, Y. Zhang, W. Li et al., Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 44(17), 5926–5940 (2015)CrossRef Y. Tang, Y. Zhang, W. Li et al., Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 44(17), 5926–5940 (2015)CrossRef
9.
Zurück zum Zitat J. Wang, P. Nie, B. Ding et al., Biomass derived carbon for energy storage devices. J. Mater. Chem. A 5(6), 2411–2428 (2017)CrossRef J. Wang, P. Nie, B. Ding et al., Biomass derived carbon for energy storage devices. J. Mater. Chem. A 5(6), 2411–2428 (2017)CrossRef
10.
Zurück zum Zitat M. Chen, C. Yu, S. Liu et al., Micro-sized porous carbon spheres with ultra-high rate capability for lithium storage. Nanoscale 7(5), 1791–1795 (2015)CrossRef M. Chen, C. Yu, S. Liu et al., Micro-sized porous carbon spheres with ultra-high rate capability for lithium storage. Nanoscale 7(5), 1791–1795 (2015)CrossRef
11.
Zurück zum Zitat R. Marom, S.F. Amalraj, N. Leifer et al., A review of advanced and practical lithium battery materials. J. Mater. Chem. 21(27), 9938–9954 (2011)CrossRef R. Marom, S.F. Amalraj, N. Leifer et al., A review of advanced and practical lithium battery materials. J. Mater. Chem. 21(27), 9938–9954 (2011)CrossRef
12.
Zurück zum Zitat T. Deng, X. Zhou, Porous graphite prepared by molybdenum oxide catalyzed gasification as anode material for lithium ion batteries. Mater. Lett. 176, 151–154 (2016)CrossRef T. Deng, X. Zhou, Porous graphite prepared by molybdenum oxide catalyzed gasification as anode material for lithium ion batteries. Mater. Lett. 176, 151–154 (2016)CrossRef
13.
Zurück zum Zitat B. Hu, S.H. Yu, K. Wang et al., Functional carbonaceous materials from hydrothermal carbonization of biomass: an effective chemical process. Dalton Trans. 40, 5414–5423 (2008)CrossRef B. Hu, S.H. Yu, K. Wang et al., Functional carbonaceous materials from hydrothermal carbonization of biomass: an effective chemical process. Dalton Trans. 40, 5414–5423 (2008)CrossRef
14.
Zurück zum Zitat T. Staudt, Y. Lykhach, N. Tsud et al., Electronic structure of magnesia–ceria model catalysts, CO2 adsorption, and CO2 activation: a synchrotron radiation photoelectron spectroscopy study. J. Phys. Chem. C 115(17), 8716–8724 (2011)CrossRef T. Staudt, Y. Lykhach, N. Tsud et al., Electronic structure of magnesia–ceria model catalysts, CO2 adsorption, and CO2 activation: a synchrotron radiation photoelectron spectroscopy study. J. Phys. Chem. C 115(17), 8716–8724 (2011)CrossRef
15.
Zurück zum Zitat T.H. Liou, Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chem. Eng. J. 158(2), 129–142 (2010)CrossRef T.H. Liou, Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chem. Eng. J. 158(2), 129–142 (2010)CrossRef
16.
Zurück zum Zitat J. Hayashi, A. Kazehaya, K. Muroyama et al., Preparation of activated carbon from lignin by chemical activation. Carbon 38(13), 1873–1878 (2000)CrossRef J. Hayashi, A. Kazehaya, K. Muroyama et al., Preparation of activated carbon from lignin by chemical activation. Carbon 38(13), 1873–1878 (2000)CrossRef
17.
Zurück zum Zitat Y. Gao, Y.S. Zhou, M. Qian et al., Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes. Carbon 51, 52–58 (2013)CrossRef Y. Gao, Y.S. Zhou, M. Qian et al., Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes. Carbon 51, 52–58 (2013)CrossRef
18.
Zurück zum Zitat H. Deng, G. Zhang, X. Xu et al., Optimization of preparation of activated carbon from cotton stalk by microwave assisted phosphoric acid-chemical activation. J. Hazard. Mater. 182(1–3), 217–224 (2010)CrossRef H. Deng, G. Zhang, X. Xu et al., Optimization of preparation of activated carbon from cotton stalk by microwave assisted phosphoric acid-chemical activation. J. Hazard. Mater. 182(1–3), 217–224 (2010)CrossRef
19.
Zurück zum Zitat D.J. Ryu, R.G. Oh, Y.D. Seo et al., Recovery and electrochemical performance in lithium secondary batteries of biochar derived from rice straw. Environ. Sci. Pollut. Res. 22(14), 10405–10412 (2015)CrossRef D.J. Ryu, R.G. Oh, Y.D. Seo et al., Recovery and electrochemical performance in lithium secondary batteries of biochar derived from rice straw. Environ. Sci. Pollut. Res. 22(14), 10405–10412 (2015)CrossRef
20.
Zurück zum Zitat L. Wang, Z. Schnepp, M.M. Titirici, Rice husk-derived carbon anodes for lithium ion batteries. J. Mater. Chem. A 1(17), 5269–5273 (2013)CrossRef L. Wang, Z. Schnepp, M.M. Titirici, Rice husk-derived carbon anodes for lithium ion batteries. J. Mater. Chem. A 1(17), 5269–5273 (2013)CrossRef
21.
Zurück zum Zitat A.M. Stephan, T.P. Kumar, R. Ramesh et al., Pyrolitic carbon from biomass precursors as anode materials for lithium batteries. Mater. Sci. Eng. A 430(1–2), 132–137 (2006)CrossRef A.M. Stephan, T.P. Kumar, R. Ramesh et al., Pyrolitic carbon from biomass precursors as anode materials for lithium batteries. Mater. Sci. Eng. A 430(1–2), 132–137 (2006)CrossRef
22.
Zurück zum Zitat W. Li, M. Chen, C. Wang, Spherical hard carbon prepared from potato starch using as anode material for Li-ion batteries. Mater. Lett. 65(23–24), 3368–3370 (2011)CrossRef W. Li, M. Chen, C. Wang, Spherical hard carbon prepared from potato starch using as anode material for Li-ion batteries. Mater. Lett. 65(23–24), 3368–3370 (2011)CrossRef
23.
Zurück zum Zitat L. Wang, Y. Zheng, X. Wang et al., Nitrogen-doped porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces. 6(10), 7117–7125 (2014)CrossRef L. Wang, Y. Zheng, X. Wang et al., Nitrogen-doped porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces. 6(10), 7117–7125 (2014)CrossRef
24.
Zurück zum Zitat J. Jiang, J. Zhu, W. Ai et al., Evolution of disposable bamboo chopsticks into uniform carbon fibers: a smart strategy to fabricate sustainable anodes for Li-ion batteries. Energy Environ. Sci. 7(8), 2670–2679 (2014)CrossRef J. Jiang, J. Zhu, W. Ai et al., Evolution of disposable bamboo chopsticks into uniform carbon fibers: a smart strategy to fabricate sustainable anodes for Li-ion batteries. Energy Environ. Sci. 7(8), 2670–2679 (2014)CrossRef
25.
Zurück zum Zitat E. Peled, V. Eshkenazi, Y. Rosenberg, Study of lithium insertion in hard carbon made from cotton wool. J. Power Sources 76(2), 153–158 (1998)CrossRef E. Peled, V. Eshkenazi, Y. Rosenberg, Study of lithium insertion in hard carbon made from cotton wool. J. Power Sources 76(2), 153–158 (1998)CrossRef
26.
Zurück zum Zitat Y.J. Hwang, S.K. Jeong, K.S. Nahm et al., Pyrolytic carbon derived from coffee shells as anode materials for lithium batteries. J. Phys. Chem. Solids 68(2), 182–188 (2007)CrossRef Y.J. Hwang, S.K. Jeong, K.S. Nahm et al., Pyrolytic carbon derived from coffee shells as anode materials for lithium batteries. J. Phys. Chem. Solids 68(2), 182–188 (2007)CrossRef
27.
Zurück zum Zitat J. Hou, C. Cao, F. Idrees et al., Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9(3), 2556–2564 (2015)CrossRef J. Hou, C. Cao, F. Idrees et al., Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9(3), 2556–2564 (2015)CrossRef
28.
Zurück zum Zitat J. Ou, Y. Zhang, L. Chen et al., Heteroatom doped porous carbon derived from hair as an anode with high performance for lithium ion batteries. RSC Adv. 4(109), 63784–63791 (2014)CrossRef J. Ou, Y. Zhang, L. Chen et al., Heteroatom doped porous carbon derived from hair as an anode with high performance for lithium ion batteries. RSC Adv. 4(109), 63784–63791 (2014)CrossRef
29.
Zurück zum Zitat J.C. Arrebola, A. Caballero, L. Hernán et al., Improving the performance of biomass-derived carbons in Li-ion batteries by controlling the lithium insertion process. J. Electrochem. Soc. 157(7), A791–A797 (2010)CrossRef J.C. Arrebola, A. Caballero, L. Hernán et al., Improving the performance of biomass-derived carbons in Li-ion batteries by controlling the lithium insertion process. J. Electrochem. Soc. 157(7), A791–A797 (2010)CrossRef
30.
Zurück zum Zitat D. Pan, S. Wang, B. Zhao et al., Li storage properties of disordered graphene nanosheets. Chem. Mater. 21(14), 3136–3142 (2009)CrossRef D. Pan, S. Wang, B. Zhao et al., Li storage properties of disordered graphene nanosheets. Chem. Mater. 21(14), 3136–3142 (2009)CrossRef
31.
Zurück zum Zitat H. Wang, L.F. Cui, Y. Yang et al., Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132(40), 13978–13980 (2010)CrossRef H. Wang, L.F. Cui, Y. Yang et al., Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132(40), 13978–13980 (2010)CrossRef
32.
Zurück zum Zitat A. Caballero, L. Hernán, J. Morales, Limitations of disordered carbons obtained from biomass as anodes for real lithium-ion batteries. Chemsuschem 4(5), 658–663 (2011)CrossRef A. Caballero, L. Hernán, J. Morales, Limitations of disordered carbons obtained from biomass as anodes for real lithium-ion batteries. Chemsuschem 4(5), 658–663 (2011)CrossRef
33.
Zurück zum Zitat D. Pan, S. Wang, B. Zhao et al., Li storage properties of disordered graphene nanosheets. Chem. Mater. 21(14), 3136–3142 (2009)CrossRef D. Pan, S. Wang, B. Zhao et al., Li storage properties of disordered graphene nanosheets. Chem. Mater. 21(14), 3136–3142 (2009)CrossRef
34.
Zurück zum Zitat V. Etacheri, C. Wang, M.J. O’Connell et al., Porous carbon sphere anodes for enhanced lithium-ion storage. J. Mater. Chem. A 3(18), 9861–9868 (2015)CrossRef V. Etacheri, C. Wang, M.J. O’Connell et al., Porous carbon sphere anodes for enhanced lithium-ion storage. J. Mater. Chem. A 3(18), 9861–9868 (2015)CrossRef
35.
Zurück zum Zitat G.T.K. Fey, D.C. Lee, Y.Y. Lin et al., High-capacity disordered carbons derived from peanut shells as lithium-intercalating anode materials. Synth. Met. 139(1), 71–80 (2003)CrossRef G.T.K. Fey, D.C. Lee, Y.Y. Lin et al., High-capacity disordered carbons derived from peanut shells as lithium-intercalating anode materials. Synth. Met. 139(1), 71–80 (2003)CrossRef
36.
Zurück zum Zitat S. Song, F. Ma, G. Wu et al., Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J. Mater. Chem. A 3(35), 18154–18162 (2015)CrossRef S. Song, F. Ma, G. Wu et al., Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J. Mater. Chem. A 3(35), 18154–18162 (2015)CrossRef
37.
Zurück zum Zitat K.T. Lee, J.C. Lytle, N.S. Ergang et al., Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries. Adv. Funct. Mater. 15(4), 547–556 (2005)CrossRef K.T. Lee, J.C. Lytle, N.S. Ergang et al., Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries. Adv. Funct. Mater. 15(4), 547–556 (2005)CrossRef
38.
Zurück zum Zitat J. Liu, Y. Wen, Y. Wang et al., Carbon-encapsulated pyrite as stable and earth-abundant high energy cathode material for rechargeable lithium batteries. Adv. Mater. 26(34), 6025–6030 (2014)CrossRef J. Liu, Y. Wen, Y. Wang et al., Carbon-encapsulated pyrite as stable and earth-abundant high energy cathode material for rechargeable lithium batteries. Adv. Mater. 26(34), 6025–6030 (2014)CrossRef
39.
Zurück zum Zitat L. Qie, W. Chen, H. Xu et al., Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ. Sci. 6(8), 2497–2504 (2013)CrossRef L. Qie, W. Chen, H. Xu et al., Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ. Sci. 6(8), 2497–2504 (2013)CrossRef
40.
Zurück zum Zitat W. Lv, F. Wen, J. Xiang et al., Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries. Electrochim. Acta 176, 533–541 (2015)CrossRef W. Lv, F. Wen, J. Xiang et al., Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries. Electrochim. Acta 176, 533–541 (2015)CrossRef
41.
Zurück zum Zitat M.M. Doeff, Y. Hu, F. McLarnon et al., Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem. Solid State Lett. 6(10), A207–A209 (2003)CrossRef M.M. Doeff, Y. Hu, F. McLarnon et al., Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem. Solid State Lett. 6(10), A207–A209 (2003)CrossRef
42.
Zurück zum Zitat X.L. Wu, T. Wen, H.L. Guo et al., Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 7(4), 3589–3597 (2013)CrossRef X.L. Wu, T. Wen, H.L. Guo et al., Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 7(4), 3589–3597 (2013)CrossRef
43.
Zurück zum Zitat L. Wang, Y. Zheng, Q. Zhang et al., Template-free synthesis of hierarchical porous carbon derived from low-cost biomass for high-performance supercapacitors. RSC Adv. 4(93), 51072–51079 (2014)CrossRef L. Wang, Y. Zheng, Q. Zhang et al., Template-free synthesis of hierarchical porous carbon derived from low-cost biomass for high-performance supercapacitors. RSC Adv. 4(93), 51072–51079 (2014)CrossRef
44.
Zurück zum Zitat X. Fuku, K. Kaviyarasu, N. Matinise et al., Punicalagin green functionalized Cu/Cu 2 O/ZnO/CuO nanocomposite for potential electrochemical transducer and catalyst. Nanoscale Res. Lett. 11(1), 386 (2016)CrossRef X. Fuku, K. Kaviyarasu, N. Matinise et al., Punicalagin green functionalized Cu/Cu 2 O/ZnO/CuO nanocomposite for potential electrochemical transducer and catalyst. Nanoscale Res. Lett. 11(1), 386 (2016)CrossRef
45.
Zurück zum Zitat K. Kaviyarasu, E. Manikandan, M. Maaza, Synthesis of CdS flower-like hierarchical microspheres as electrode material for electrochemical performance. J. Alloys Compd. 648, 559–563 (2015)CrossRef K. Kaviyarasu, E. Manikandan, M. Maaza, Synthesis of CdS flower-like hierarchical microspheres as electrode material for electrochemical performance. J. Alloys Compd. 648, 559–563 (2015)CrossRef
46.
Zurück zum Zitat Y.S. Hu, P. Adelhelm, B.M. Smarsly et al., Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability. Adv. Funct. Mater. 17(12), 1873–1878 (2007)CrossRef Y.S. Hu, P. Adelhelm, B.M. Smarsly et al., Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability. Adv. Funct. Mater. 17(12), 1873–1878 (2007)CrossRef
47.
Zurück zum Zitat G. Ji, Y. Ma, J.Y. Lee, Mitigating the initial capacity loss (ICL) problem in high-capacity lithium ion battery anode materials. J. Mater. Chem. 21(27), 9819–9824 (2011)CrossRef G. Ji, Y. Ma, J.Y. Lee, Mitigating the initial capacity loss (ICL) problem in high-capacity lithium ion battery anode materials. J. Mater. Chem. 21(27), 9819–9824 (2011)CrossRef
48.
Zurück zum Zitat L. Wang, J. Xue, B. Gao et al., Rice husk derived carbon–silica composites as anodes for lithium ion batteries. RSC Adv. 4(110), 64744–64746 (2014)CrossRef L. Wang, J. Xue, B. Gao et al., Rice husk derived carbon–silica composites as anodes for lithium ion batteries. RSC Adv. 4(110), 64744–64746 (2014)CrossRef
49.
Zurück zum Zitat N.A. Kaskhedikar, J. Maier, Lithium storage in carbon nanostructures. Adv. Mater. 21(25–26), 2664–2680 (2009)CrossRef N.A. Kaskhedikar, J. Maier, Lithium storage in carbon nanostructures. Adv. Mater. 21(25–26), 2664–2680 (2009)CrossRef
50.
Zurück zum Zitat Y.J. Hwang, S.K. Jeong, K.S. Nahm et al., Pyrolytic carbon derived from coffee shells as anode materials for lithium batteries. J. Phys. Chem. Solids 68(2), 182–188 (2007)CrossRef Y.J. Hwang, S.K. Jeong, K.S. Nahm et al., Pyrolytic carbon derived from coffee shells as anode materials for lithium batteries. J. Phys. Chem. Solids 68(2), 182–188 (2007)CrossRef
51.
Zurück zum Zitat L. Chen, Y. Zhang, C. Lin et al., Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries. J. Mater. Chem. A 2(25), 9684–9690 (2014)CrossRef L. Chen, Y. Zhang, C. Lin et al., Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries. J. Mater. Chem. A 2(25), 9684–9690 (2014)CrossRef
Metadaten
Titel
Hierarchically porous carbon derived from wheat straw for high rate lithium ion battery anodes
verfasst von
Peng Yan
Fanrong Ai
Chuanliang Cao
Zhongmin Luo
Publikationsdatum
05.07.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 15/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01778-z

Weitere Artikel der Ausgabe 15/2019

Journal of Materials Science: Materials in Electronics 15/2019 Zur Ausgabe

Neuer Inhalt