Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 7/2021

10.03.2021

High‐performance silicon‐based PbSe-CQDs infrared photodetector

verfasst von: Pengyu Chen, Zhiming Wu, Yuanlin Shi, Chunyu Li, Jinquan Wang, Jun Yang, Xiang Dong, Jun Gou, Jun Wang, Yadong Jiang

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Silicon technology is dominant in electronics and optoelectronics. The cut-off wavelength of silicon is less than 1.1\(\upmu\)m due to the bandgap, limiting applications of silicon in communication, sensing, and light harvesting. A new strategy for infrared photodetection is presented by integrating silicon and PbSe colloidal quantum dots (CQDs), which combines advantages of silicon devices and PbSe-CQDs. In this study, we introduce a silicon-based photodetector that is sensitive to infrared light with spectral response from 405 nm to 1550 nm. The device can deliver a high responsivity of 648.7AW− 1 and a fast response of 32.3\(\upmu\)s at 1550 nm. Besides, the detectivity and the external quantum efficiency of the device reached 7.48 × 1010 Jones and 6.47 × 104%, respectively. The performance of the device originates from the photovoltage generated at the interface between the silicon and the quantum dots. This photovoltage changed the width of the depletion layer to realize detection. These results indicate that the silicon-based quantum dot infrared photodetectors prepared by this method have application prospects in the field of optoelectronics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Rogalski, Infrared detectors: an overview. Infrared Phys. Technol. 43, 187–210 (2002)CrossRef A. Rogalski, Infrared detectors: an overview. Infrared Phys. Technol. 43, 187–210 (2002)CrossRef
2.
Zurück zum Zitat J. Michel, J. Liu, L.C. Kimerling, High-performance Ge-on-Si photodetectors. Nat. Photonics 4, 527–534 (2010)CrossRef J. Michel, J. Liu, L.C. Kimerling, High-performance Ge-on-Si photodetectors. Nat. Photonics 4, 527–534 (2010)CrossRef
3.
Zurück zum Zitat H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, R.T. Chen, Recent advances in silicon-based passive and active optical interconnects. Opt. Express 23, 2487–2511 (2015)CrossRef H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, R.T. Chen, Recent advances in silicon-based passive and active optical interconnects. Opt. Express 23, 2487–2511 (2015)CrossRef
4.
Zurück zum Zitat A. Rogalski, HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 68, 2267 (2005)CrossRef A. Rogalski, HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 68, 2267 (2005)CrossRef
5.
Zurück zum Zitat B. Chen, W. Jiang, J. Yuan, A.L. Holmes, B.M. Onat, SWIR/MWIR InP-based pin photodiodes with InGaAs/GaAsSb type-II quantum wells. IEEE J. Quantum Electron. 47, 1244–1250 (2011)CrossRef B. Chen, W. Jiang, J. Yuan, A.L. Holmes, B.M. Onat, SWIR/MWIR InP-based pin photodiodes with InGaAs/GaAsSb type-II quantum wells. IEEE J. Quantum Electron. 47, 1244–1250 (2011)CrossRef
6.
Zurück zum Zitat W.-D. Hu, Q. Li, X.-S. Chen, W. Lu, Recent progress on advanced infrared photodetectors. Acta Physica Sinica 68, 120701 (2019)CrossRef W.-D. Hu, Q. Li, X.-S. Chen, W. Lu, Recent progress on advanced infrared photodetectors. Acta Physica Sinica 68, 120701 (2019)CrossRef
7.
Zurück zum Zitat A. Rogalski, J. Antoszewski, L. Faraone, Third-generation infrared photodetector arrays. J. Appl. Phys. 105, 4 (2009)CrossRef A. Rogalski, J. Antoszewski, L. Faraone, Third-generation infrared photodetector arrays. J. Appl. Phys. 105, 4 (2009)CrossRef
8.
Zurück zum Zitat A. Rogalski, Recent progress in infrared detector technologies. Infrared Phys. Technol. 54, 136–154 (2011)CrossRef A. Rogalski, Recent progress in infrared detector technologies. Infrared Phys. Technol. 54, 136–154 (2011)CrossRef
9.
Zurück zum Zitat A. Rogalski, History of infrared detectors. Opto-Electron. Rev. 20, 279–308 (2012)CrossRef A. Rogalski, History of infrared detectors. Opto-Electron. Rev. 20, 279–308 (2012)CrossRef
10.
Zurück zum Zitat E.H. Sargent, Infrared quantum dots. Adv. Mater. 17, 515–522 (2005)CrossRef E.H. Sargent, Infrared quantum dots. Adv. Mater. 17, 515–522 (2005)CrossRef
11.
Zurück zum Zitat A.J. Nozik, Multiple exciton generation in semiconductor quantum dots. Chem. Phys. Lett. 457, 3–11 (2008)CrossRef A.J. Nozik, Multiple exciton generation in semiconductor quantum dots. Chem. Phys. Lett. 457, 3–11 (2008)CrossRef
12.
Zurück zum Zitat S. Bin Hafiz, M. Scimeca, A. Sahu, D.K. Ko, Colloidal quantum dots for thermal infrared sensing and imaging. Nano Converg. 6, 22 (2019) S. Bin Hafiz, M. Scimeca, A. Sahu, D.K. Ko, Colloidal quantum dots for thermal infrared sensing and imaging. Nano Converg. 6, 22 (2019)
13.
Zurück zum Zitat J. Hu, Y. Shi, Z. Zhang, R. Zhi, S. Yang, B. Zou, Recent progress of infrared photodetectors based on lead chalcogenide colloidal quantum dots. Chin. Phys. B 28, 020701 (2019)CrossRef J. Hu, Y. Shi, Z. Zhang, R. Zhi, S. Yang, B. Zou, Recent progress of infrared photodetectors based on lead chalcogenide colloidal quantum dots. Chin. Phys. B 28, 020701 (2019)CrossRef
14.
Zurück zum Zitat J. Qiu, B. Weng, L.L. McDowell, Z. Shi, Low-cost uncooled MWIR PbSe quantum dots photodiodes. RSC Adv. 9, 42516–42523 (2019)CrossRef J. Qiu, B. Weng, L.L. McDowell, Z. Shi, Low-cost uncooled MWIR PbSe quantum dots photodiodes. RSC Adv. 9, 42516–42523 (2019)CrossRef
15.
Zurück zum Zitat K. Xu, W. Zhou, Z. Ning, Integrated structure and device engineering for high performance and scalable quantum dot infrared photodetectors. Small 16, 2003397 (2020)CrossRef K. Xu, W. Zhou, Z. Ning, Integrated structure and device engineering for high performance and scalable quantum dot infrared photodetectors. Small 16, 2003397 (2020)CrossRef
16.
Zurück zum Zitat V. Wood, M.J. Panzer, J. Chen, M.S. Bradley, J.E. Halpert, M.G. Bawendi, V. Bulović, Inkjet-printed quantum dot–polymer composites for full-color ac-driven displays. Adv. Mater. 21, 2151–2155 (2009)CrossRef V. Wood, M.J. Panzer, J. Chen, M.S. Bradley, J.E. Halpert, M.G. Bawendi, V. Bulović, Inkjet-printed quantum dot–polymer composites for full-color ac-driven displays. Adv. Mater. 21, 2151–2155 (2009)CrossRef
17.
Zurück zum Zitat I.J. Kramer, J.C. Minor, G. Moreno-Bautista, L. Rollny, P. Kanjanaboos, D. Kopilovic, S.M. Thon, G.H. Carey, K.W. Chou, D. Zhitomirsky, Efficient spray-coated colloidal quantum dot solar cells. Adv. Mater. 27, 116–121 (2015)CrossRef I.J. Kramer, J.C. Minor, G. Moreno-Bautista, L. Rollny, P. Kanjanaboos, D. Kopilovic, S.M. Thon, G.H. Carey, K.W. Chou, D. Zhitomirsky, Efficient spray-coated colloidal quantum dot solar cells. Adv. Mater. 27, 116–121 (2015)CrossRef
18.
Zurück zum Zitat N. Huo, S. Gupta, G. Konstantatos, MoS2–HgTe quantum dot hybrid photodetectors beyond 2 µm. Adv. Mater. 29, 1606576 (2017)CrossRef N. Huo, S. Gupta, G. Konstantatos, MoS2–HgTe quantum dot hybrid photodetectors beyond 2 µm. Adv. Mater. 29, 1606576 (2017)CrossRef
19.
Zurück zum Zitat G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F.P.G. De Arquer, F. Gatti, F.H. Koppens, Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012)CrossRef G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F.P.G. De Arquer, F. Gatti, F.H. Koppens, Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012)CrossRef
20.
Zurück zum Zitat J. Schornbaum, B. Winter, S.P. Schießl, F. Gannott, G. Katsukis, D.M. Guldi, E. Spiecker, J. Zaumseil, Epitaxial growth of PbSe quantum dots on MoS2 nanosheets and their near-infrared photoresponse. Adv. Funct. Mater. 24, 5798–5806 (2014)CrossRef J. Schornbaum, B. Winter, S.P. Schießl, F. Gannott, G. Katsukis, D.M. Guldi, E. Spiecker, J. Zaumseil, Epitaxial growth of PbSe quantum dots on MoS2 nanosheets and their near-infrared photoresponse. Adv. Funct. Mater. 24, 5798–5806 (2014)CrossRef
21.
Zurück zum Zitat X. Song, Y. Zhang, H. Zhang, Y. Yu, M. Cao, Y. Che, J. Wang, J. Yang, X. Ding, J. Yao, Improved photoelectronic performance of graphene, polymer and PbSe quantum dot infrared photodetectors. Mater. Lett. 178, 52–55 (2016)CrossRef X. Song, Y. Zhang, H. Zhang, Y. Yu, M. Cao, Y. Che, J. Wang, J. Yang, X. Ding, J. Yao, Improved photoelectronic performance of graphene, polymer and PbSe quantum dot infrared photodetectors. Mater. Lett. 178, 52–55 (2016)CrossRef
22.
Zurück zum Zitat Y. Zhang, M. Cao, X. Song, J. Wang, Y. Che, H. Dai, X. Ding, G. Zhang, J. Yao, Multiheterojunction phototransistors based on graphene–PbSe quantum dot hybrids. J. Phys. Chem. C 119, 21739–21743 (2015)CrossRef Y. Zhang, M. Cao, X. Song, J. Wang, Y. Che, H. Dai, X. Ding, G. Zhang, J. Yao, Multiheterojunction phototransistors based on graphene–PbSe quantum dot hybrids. J. Phys. Chem. C 119, 21739–21743 (2015)CrossRef
23.
Zurück zum Zitat J. Gao, S.C. Nguyen, N.D. Bronstein, A.P. Alivisatos, Solution-processed, high-speed, and high-quantum-efficiency quantum dot infrared photodetectors. ACS Photon. 3, 1217–1222 (2016)CrossRef J. Gao, S.C. Nguyen, N.D. Bronstein, A.P. Alivisatos, Solution-processed, high-speed, and high-quantum-efficiency quantum dot infrared photodetectors. ACS Photon. 3, 1217–1222 (2016)CrossRef
24.
Zurück zum Zitat H. Zhang, Y. Zhang, X. Song, Y. Yu, M. Cao, Y. Che, J. Wang, J. Yang, H. Dai, G. Zhang, High performance PbSe colloidal quantum dot vertical field effect phototransistors. Nanotechnology 27, 425204 (2016)CrossRef H. Zhang, Y. Zhang, X. Song, Y. Yu, M. Cao, Y. Che, J. Wang, J. Yang, H. Dai, G. Zhang, High performance PbSe colloidal quantum dot vertical field effect phototransistors. Nanotechnology 27, 425204 (2016)CrossRef
25.
Zurück zum Zitat K. Xu, X. Xiao, W. Zhou, X. Jiang, Q. Wei, H. Chen, Z. Deng, J. Huang, B. Chen, Z. Ning, Inverted Si: PbS colloidal quantum dot heterojunction-based infrared photodetector. ACS Appl. Mater. Interfaces. 12, 15414–15421 (2020)CrossRef K. Xu, X. Xiao, W. Zhou, X. Jiang, Q. Wei, H. Chen, Z. Deng, J. Huang, B. Chen, Z. Ning, Inverted Si: PbS colloidal quantum dot heterojunction-based infrared photodetector. ACS Appl. Mater. Interfaces. 12, 15414–15421 (2020)CrossRef
26.
Zurück zum Zitat V. Adinolfi, E.H. Sargent, Photovoltage field-effect transistors. Nature 542, 324–327 (2017)CrossRef V. Adinolfi, E.H. Sargent, Photovoltage field-effect transistors. Nature 542, 324–327 (2017)CrossRef
27.
Zurück zum Zitat Y. Shi, Z. Wu, Z. Xiang, P. Chen, C. Li, H. Zhou, X. Dong, J. Gou, J. Wang, Y. Jiang, Silicon-based PbS-CQDs infrared photodetector with high sensitivity and fast response. Nanotechnology 31, 485206 (2020)CrossRef Y. Shi, Z. Wu, Z. Xiang, P. Chen, C. Li, H. Zhou, X. Dong, J. Gou, J. Wang, Y. Jiang, Silicon-based PbS-CQDs infrared photodetector with high sensitivity and fast response. Nanotechnology 31, 485206 (2020)CrossRef
28.
Zurück zum Zitat J.M. Pietryga, R.D. Schaller, D. Werder, M.H. Stewart, V.I. Klimov, J.A. Hollingsworth, Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots. J. Am. Chem. Soc. 126, 11752–11753 (2004)CrossRef J.M. Pietryga, R.D. Schaller, D. Werder, M.H. Stewart, V.I. Klimov, J.A. Hollingsworth, Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots. J. Am. Chem. Soc. 126, 11752–11753 (2004)CrossRef
29.
Zurück zum Zitat F.W. Wise, Lead salt quantum dots: the limit of strong quantum confinement. Acc. Chem. Res. 33, 773–780 (2000)CrossRef F.W. Wise, Lead salt quantum dots: the limit of strong quantum confinement. Acc. Chem. Res. 33, 773–780 (2000)CrossRef
30.
Zurück zum Zitat N. Guo, L. Xiao, F. Gong, M. Luo, F. Wang, Y. Jia, H. Chang, J. Liu, Q. Li, Y. Wu, Light-driven WSe2-ZnO junction field-effect transistors for high-performance photodetection. Advanced Science 7, 1901637 (2020)CrossRef N. Guo, L. Xiao, F. Gong, M. Luo, F. Wang, Y. Jia, H. Chang, J. Liu, Q. Li, Y. Wu, Light-driven WSe2-ZnO junction field-effect transistors for high-performance photodetection. Advanced Science 7, 1901637 (2020)CrossRef
31.
Zurück zum Zitat A. Nag, M.V. Kovalenko, J.-S. Lee, W. Liu, B. Spokoyny, D.V. Talapin, Metal-free inorganic ligands for colloidal nanocrystals: S2–, HS–, Se2–, HSe–, Te2–, HTe–, TeS32–, OH–, and NH2–as surface ligands. J. Am. Chem. Soc. 133, 10612–10620 (2011)CrossRef A. Nag, M.V. Kovalenko, J.-S. Lee, W. Liu, B. Spokoyny, D.V. Talapin, Metal-free inorganic ligands for colloidal nanocrystals: S2–, HS–, Se2–, HSe–, Te2–, HTe–, TeS32–, OH–, and NH2–as surface ligands. J. Am. Chem. Soc. 133, 10612–10620 (2011)CrossRef
32.
Zurück zum Zitat G.W. Guglietta, B.T. Diroll, E.A. Gaulding, J.L. Fordham, S. Li, C.B. Murray, J.B. Baxter, Lifetime, mobility, and diffusion of photoexcited carriers in ligand-exchanged lead selenide nanocrystal films measured by time-resolved terahertz spectroscopy. ACS Nano 9, 1820–1828 (2015)CrossRef G.W. Guglietta, B.T. Diroll, E.A. Gaulding, J.L. Fordham, S. Li, C.B. Murray, J.B. Baxter, Lifetime, mobility, and diffusion of photoexcited carriers in ligand-exchanged lead selenide nanocrystal films measured by time-resolved terahertz spectroscopy. ACS Nano 9, 1820–1828 (2015)CrossRef
33.
Zurück zum Zitat Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A.R. Kirmani, J.-P. Sun, J. Minor, Air-stable n-type colloidal quantum dot solids. Nat. Mater. 13, 822–828 (2014)CrossRef Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A.R. Kirmani, J.-P. Sun, J. Minor, Air-stable n-type colloidal quantum dot solids. Nat. Mater. 13, 822–828 (2014)CrossRef
34.
Zurück zum Zitat J. Tang, K.W. Kemp, S. Hoogland, K.S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10, 765–771 (2011)CrossRef J. Tang, K.W. Kemp, S. Hoogland, K.S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10, 765–771 (2011)CrossRef
35.
Zurück zum Zitat W.W. Yu, J.C. Falkner, B.S. Shih, V.L. Colvin, Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent. Chem. Mater. 16, 3318–3322 (2004)CrossRef W.W. Yu, J.C. Falkner, B.S. Shih, V.L. Colvin, Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent. Chem. Mater. 16, 3318–3322 (2004)CrossRef
36.
Zurück zum Zitat C. Fu, H. Wang, T. Song, L. Zhang, W. Li, B. He, S. Yang, B. Zou, Stability enhancement of PbSe quantum dots via post-synthetic ammonium chloride treatment for a high-performance infrared photodetector. Nanotechnology 27, 065201 (2015)CrossRef C. Fu, H. Wang, T. Song, L. Zhang, W. Li, B. He, S. Yang, B. Zou, Stability enhancement of PbSe quantum dots via post-synthetic ammonium chloride treatment for a high-performance infrared photodetector. Nanotechnology 27, 065201 (2015)CrossRef
37.
Zurück zum Zitat J.Y. Woo, J.-H. Ko, J.H. Song, K. Kim, H. Choi, Y.-H. Kim, D.C. Lee, S. Jeong, Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe (100). J. Am. Chem. Soc. 136, 8883–8886 (2014)CrossRef J.Y. Woo, J.-H. Ko, J.H. Song, K. Kim, H. Choi, Y.-H. Kim, D.C. Lee, S. Jeong, Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe (100). J. Am. Chem. Soc. 136, 8883–8886 (2014)CrossRef
38.
Zurück zum Zitat C. Pidgeon, C. Ciesla, B. Murdin, Suppression of non-radiative processes in semiconductor mid-infrared emitters and detectors. Prog. Quantum Electron. 21, 361–419 (1997)CrossRef C. Pidgeon, C. Ciesla, B. Murdin, Suppression of non-radiative processes in semiconductor mid-infrared emitters and detectors. Prog. Quantum Electron. 21, 361–419 (1997)CrossRef
39.
Zurück zum Zitat D. Yang, L. Zhang, S. Yang, B. Zou, Influence of the dielectric PMMA layer on the detectivity of pentacene-based photodetector with field-effect transistor configuration in visible region. IEEE Photon. J. 5, 6801709–6801709 (2013)CrossRef D. Yang, L. Zhang, S. Yang, B. Zou, Influence of the dielectric PMMA layer on the detectivity of pentacene-based photodetector with field-effect transistor configuration in visible region. IEEE Photon. J. 5, 6801709–6801709 (2013)CrossRef
40.
Zurück zum Zitat H. Gutleben, S. Lucas, C. Cheng, W. Choyke, J. Yates Jr., Thermal stability of the methyl group adsorbed on Si (100): CH3I surface chemistry. Surf Sci. 257, 146–156 (1991)CrossRef H. Gutleben, S. Lucas, C. Cheng, W. Choyke, J. Yates Jr., Thermal stability of the methyl group adsorbed on Si (100): CH3I surface chemistry. Surf Sci. 257, 146–156 (1991)CrossRef
41.
Zurück zum Zitat S. Masala, V. Adinolfi, J.P. Sun, S.D. Gobbo, O. Voznyy, I.J. Kramer, I.G. Hill, E.H. Sargent, The silicon: colloidal quantum dot heterojunction. Adv. Mater. 27, 7445–7450 (2015)CrossRef S. Masala, V. Adinolfi, J.P. Sun, S.D. Gobbo, O. Voznyy, I.J. Kramer, I.G. Hill, E.H. Sargent, The silicon: colloidal quantum dot heterojunction. Adv. Mater. 27, 7445–7450 (2015)CrossRef
42.
Zurück zum Zitat X. Gong, M. Tong, Y. Xia, W. Cai, J.S. Moon, Y. Cao, G. Yu, C.-L. Shieh, B. Nilsson, A.J. Heeger, High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325, 1665–1667 (2009)CrossRef X. Gong, M. Tong, Y. Xia, W. Cai, J.S. Moon, Y. Cao, G. Yu, C.-L. Shieh, B. Nilsson, A.J. Heeger, High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325, 1665–1667 (2009)CrossRef
43.
Zurück zum Zitat H. Fang, W. Hu, Photogating in low dimensional photodetectors. Adv. Sci.ence 4, 1700323 (2017) H. Fang, W. Hu, Photogating in low dimensional photodetectors. Adv. Sci.ence 4, 1700323 (2017)
44.
Zurück zum Zitat D.V. Talapin, C.B. Murray, PbSe nanocrystal solids for n-and p-channel thin film field-effect transistors. Science 310, 86–89 (2005)CrossRef D.V. Talapin, C.B. Murray, PbSe nanocrystal solids for n-and p-channel thin film field-effect transistors. Science 310, 86–89 (2005)CrossRef
45.
Zurück zum Zitat A. Shabaev, A.L. Efros, A.L. Efros, Dark and photo-conductivity in ordered array of nanocrystals. Nano Lett. 13, 5454–5461 (2013)CrossRef A. Shabaev, A.L. Efros, A.L. Efros, Dark and photo-conductivity in ordered array of nanocrystals. Nano Lett. 13, 5454–5461 (2013)CrossRef
Metadaten
Titel
High‐performance silicon‐based PbSe-CQDs infrared photodetector
verfasst von
Pengyu Chen
Zhiming Wu
Yuanlin Shi
Chunyu Li
Jinquan Wang
Jun Yang
Xiang Dong
Jun Gou
Jun Wang
Yadong Jiang
Publikationsdatum
10.03.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 7/2021
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-05609-y

Weitere Artikel der Ausgabe 7/2021

Journal of Materials Science: Materials in Electronics 7/2021 Zur Ausgabe