Skip to main content
Erschienen in: Engineering with Computers 6/2022

23.02.2022 | Original Article

Highly efficient variant of SAV approach for two-phase incompressible conservative Allen–Cahn fluids

verfasst von: Junxiang Yang, Jianjun Chen, Zhijun Tan

Erschienen in: Engineering with Computers | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Herein, we construct efficient linear, totally decoupled, and energy dissipative schemes for two-phase incompressible conservative Allen–Cahn (CAC) fluid model. The binary CAC model has good potential in simulating fluid flow with interface because of the following merits: (i) mass conservation is satisfied, (ii) interfacial position can be easily captured. Comparing with the well-known fourth-order Cahn–Hilliard (CH) equation, the CAC equation is easy to solve since its second-order property. The scalar auxiliary variable (SAV)-type methods provide practical approach to develop linearly energy-stable schemes for phase-field problems. A variant of SAV approach considered in this work not only leads to accurate schemes for CAC fluid system, but also achieves highly efficient calculation. In each time step, only several linear and decoupled equations need to be computed. The linear multigrid algorithm is adopted to accelerate convergence. The unique solvability, modified energy dissipation law, and mass conservation in time-discretized version are analytically proved. Extensive numerical experiments are performed to validate the superior performance of the proposed methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Zong Y, Zhang C, Liang H, Wang L, Xu J (2020) Modeling surfactant-laden droplet dynamics by lattice Boltzmann method. Phys Fluids 32:122105 Zong Y, Zhang C, Liang H, Wang L, Xu J (2020) Modeling surfactant-laden droplet dynamics by lattice Boltzmann method. Phys Fluids 32:122105
5.
Zurück zum Zitat Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28(2):258–267MATH Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28(2):258–267MATH
6.
Zurück zum Zitat Xia Q, Yu Q, Li Y (2021) A second-order accurate, unconditionally energy stable numerical scheme for binary fluid flows on arbitrarily curved surfaces. Comput Methods Appl Mech Eng 384:113987MathSciNetMATH Xia Q, Yu Q, Li Y (2021) A second-order accurate, unconditionally energy stable numerical scheme for binary fluid flows on arbitrarily curved surfaces. Comput Methods Appl Mech Eng 384:113987MathSciNetMATH
7.
Zurück zum Zitat Gong Y, Zhao J, Wang Q (2017) An energy stable algorithm for a quasi-incompressible hydrodynamic phase-field model of viscous fluid mixtures with variable densities and viscosities. Commun Comput Phys 219:20–34MathSciNetMATH Gong Y, Zhao J, Wang Q (2017) An energy stable algorithm for a quasi-incompressible hydrodynamic phase-field model of viscous fluid mixtures with variable densities and viscosities. Commun Comput Phys 219:20–34MathSciNetMATH
8.
Zurück zum Zitat Liang H, Xu J, Chen J, Chai Z, Shi B (2019) Lattice Boltzmann modeling of wall-bounded ternary fluid flows. Appl Math Model 73:487–513MathSciNetMATH Liang H, Xu J, Chen J, Chai Z, Shi B (2019) Lattice Boltzmann modeling of wall-bounded ternary fluid flows. Appl Math Model 73:487–513MathSciNetMATH
9.
Zurück zum Zitat Chiu P-H (2019) A coupled phase field framework for solving incompressible two-phase flows. J Comput Phys 392:115–140MathSciNetMATH Chiu P-H (2019) A coupled phase field framework for solving incompressible two-phase flows. J Comput Phys 392:115–140MathSciNetMATH
10.
Zurück zum Zitat Han D, Brylev A, Yang X, Tan Z (2017) Numerical analysis of second-order, fully discrete energy stable schemes for phase field models of two-phase incompressible flows. J Sci Comput 70:965–989MathSciNetMATH Han D, Brylev A, Yang X, Tan Z (2017) Numerical analysis of second-order, fully discrete energy stable schemes for phase field models of two-phase incompressible flows. J Sci Comput 70:965–989MathSciNetMATH
11.
Zurück zum Zitat Li H-L, Liu H-R, Ding H (2020) A fully 3D simulation of fluid-structure interaction with dynamic wetting and contact angle hysteresis. J Comput Phys 420:109709MathSciNetMATH Li H-L, Liu H-R, Ding H (2020) A fully 3D simulation of fluid-structure interaction with dynamic wetting and contact angle hysteresis. J Comput Phys 420:109709MathSciNetMATH
12.
Zurück zum Zitat Bai F, Han D, He X, Yang X (2020) Deformation and coalescence of ferrodroplets in Rosensweig model using the phase field and modified level set approaches under uniform magnetic fields. Commun Nonlinear Sci Numer Simul 85:105213MathSciNetMATH Bai F, Han D, He X, Yang X (2020) Deformation and coalescence of ferrodroplets in Rosensweig model using the phase field and modified level set approaches under uniform magnetic fields. Commun Nonlinear Sci Numer Simul 85:105213MathSciNetMATH
13.
Zurück zum Zitat Yan Y, Chen W, Wang C, Wise SM (2018) A second-order energy stable BDF numerical scheme for the Cahn–Hilliard equation. Commun Comput Phys 23(2):572–602MathSciNetMATH Yan Y, Chen W, Wang C, Wise SM (2018) A second-order energy stable BDF numerical scheme for the Cahn–Hilliard equation. Commun Comput Phys 23(2):572–602MathSciNetMATH
14.
Zurück zum Zitat Cheng K, Feng W, Wang C, Wise SM (2019) An energy stable fourth order finite difference scheme for the Cahn–Hilliard equation. J Comput Appl Math 362:574–595MathSciNetMATH Cheng K, Feng W, Wang C, Wise SM (2019) An energy stable fourth order finite difference scheme for the Cahn–Hilliard equation. J Comput Appl Math 362:574–595MathSciNetMATH
15.
Zurück zum Zitat Chen W, Feng W, Liu Y, Wang C, Wise SM (2019) A second order energy stable scheme for the Cahn–Hilliard–Hele–Shaw equations. Discrete Contin Dyn Syst Ser B 24(1):149–182MathSciNetMATH Chen W, Feng W, Liu Y, Wang C, Wise SM (2019) A second order energy stable scheme for the Cahn–Hilliard–Hele–Shaw equations. Discrete Contin Dyn Syst Ser B 24(1):149–182MathSciNetMATH
16.
Zurück zum Zitat Chen W, Wang C, Wang S, Wang X, Wise SM (2020) Energy stable numerical schemes for ternary Cahn–Hilliard system. J Sci Comput 84:27MathSciNetMATH Chen W, Wang C, Wang S, Wang X, Wise SM (2020) Energy stable numerical schemes for ternary Cahn–Hilliard system. J Sci Comput 84:27MathSciNetMATH
17.
Zurück zum Zitat Guo J, Wang C, Wise SM, Yue X (2016) An \(H^2\) convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn–Hilliard equation. Commun Math Sci 14(2):489–515MathSciNetMATH Guo J, Wang C, Wise SM, Yue X (2016) An \(H^2\) convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn–Hilliard equation. Commun Math Sci 14(2):489–515MathSciNetMATH
18.
Zurück zum Zitat Diegel AE, Wang C, Wise SM (2016) Stability and convergence of a second-order mixed finite element method for the Cahn–Hilliard equation. IMA J Numer Anal 36(4):1867–1897MathSciNetMATH Diegel AE, Wang C, Wise SM (2016) Stability and convergence of a second-order mixed finite element method for the Cahn–Hilliard equation. IMA J Numer Anal 36(4):1867–1897MathSciNetMATH
19.
Zurück zum Zitat Cheng K, Wang C, Wise SM, Yue X (2016) A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn–Hilliard equation and its solution by the homogeneous linear iteration method. J Sci Comput 69:1083–1114MathSciNetMATH Cheng K, Wang C, Wise SM, Yue X (2016) A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn–Hilliard equation and its solution by the homogeneous linear iteration method. J Sci Comput 69:1083–1114MathSciNetMATH
20.
Zurück zum Zitat Guo J, Wang C, Wise SM, Yue X (2021) An improved error analysis for a second-order numerical scheme for the Cahn–Hilliard equation. J Comput Appl Math 388:113300MathSciNetMATH Guo J, Wang C, Wise SM, Yue X (2021) An improved error analysis for a second-order numerical scheme for the Cahn–Hilliard equation. J Comput Appl Math 388:113300MathSciNetMATH
21.
Zurück zum Zitat Zhao S, Xiao X, Feng X (2020) A efficient time adaptivity based on chemical potential for surface Cahn–Hilliard equation using finite element approximation. Appl Math Comput 369:124901MathSciNetMATH Zhao S, Xiao X, Feng X (2020) A efficient time adaptivity based on chemical potential for surface Cahn–Hilliard equation using finite element approximation. Appl Math Comput 369:124901MathSciNetMATH
22.
Zurück zum Zitat Yang J, Kim J (2020) An unconditionally stable second-order accurate method for systems of Cahn–Hilliard equations. Commun Nonlinear Sci Numer Simulat 87:105276MathSciNetMATH Yang J, Kim J (2020) An unconditionally stable second-order accurate method for systems of Cahn–Hilliard equations. Commun Nonlinear Sci Numer Simulat 87:105276MathSciNetMATH
23.
Zurück zum Zitat Li X, Ju L, Meng X (2019) Convergence analysis of exponential time differencing schemes for the Cahn–Hilliard equation. Commun Comput Phys 26(5):1510–1529MathSciNetMATH Li X, Ju L, Meng X (2019) Convergence analysis of exponential time differencing schemes for the Cahn–Hilliard equation. Commun Comput Phys 26(5):1510–1529MathSciNetMATH
24.
Zurück zum Zitat Gong Y, Zhao J, Wang Q (2020) Arbitrarily high-order linear energy stable schemes for gradient flow models. J Comput Phys 419:109610MathSciNetMATH Gong Y, Zhao J, Wang Q (2020) Arbitrarily high-order linear energy stable schemes for gradient flow models. J Comput Phys 419:109610MathSciNetMATH
25.
Zurück zum Zitat Liu Z, Li X (2019) Efficient modified techniques of invariant energy quadratization approach for gradient flows. Appl Math Lett 98:206–214MathSciNetMATH Liu Z, Li X (2019) Efficient modified techniques of invariant energy quadratization approach for gradient flows. Appl Math Lett 98:206–214MathSciNetMATH
26.
Zurück zum Zitat Zhu G, Chen H, Yao J, Sun S (2019) Efficient energy-stable schemes for the hydrodynamics coupled phase-field model. Appl Math Model 70:82–108MathSciNetMATH Zhu G, Chen H, Yao J, Sun S (2019) Efficient energy-stable schemes for the hydrodynamics coupled phase-field model. Appl Math Model 70:82–108MathSciNetMATH
28.
Zurück zum Zitat Sun M, Feng X, Wang K (2020) Numerical simulation of binary fluid-surfactant phase field model coupled with geometric curvature on the curved surface. Comput Methods Appl Mech Eng 367:113123MathSciNetMATH Sun M, Feng X, Wang K (2020) Numerical simulation of binary fluid-surfactant phase field model coupled with geometric curvature on the curved surface. Comput Methods Appl Mech Eng 367:113123MathSciNetMATH
29.
Zurück zum Zitat Zhang C, Ouyang J, Wang C, Wise SM (2020) Numerical comparison of modified-energy stable SAV-type schemes and classical BDF methods on benchmark problems for the functionalized Cahn–Hilliard equation. J Comput Phys 423:109772MathSciNetMATH Zhang C, Ouyang J, Wang C, Wise SM (2020) Numerical comparison of modified-energy stable SAV-type schemes and classical BDF methods on benchmark problems for the functionalized Cahn–Hilliard equation. J Comput Phys 423:109772MathSciNetMATH
30.
Zurück zum Zitat Han D, Jiang N (2020) A second order, linear, unconditionally stable, Crank–Nicolson–Leapfrog scheme for phase field models of two-phase incompressible flows. Appl Math Lett 108:106521MathSciNetMATH Han D, Jiang N (2020) A second order, linear, unconditionally stable, Crank–Nicolson–Leapfrog scheme for phase field models of two-phase incompressible flows. Appl Math Lett 108:106521MathSciNetMATH
31.
Zurück zum Zitat Chen L, Zhao J (2020) A novel second-order linear scheme for the Cahn–Hilliard–Navier–Stokes equations. J Comput Phys 423:109782MathSciNetMATH Chen L, Zhao J (2020) A novel second-order linear scheme for the Cahn–Hilliard–Navier–Stokes equations. J Comput Phys 423:109782MathSciNetMATH
32.
Zurück zum Zitat Wang X, Kou J, Gao H (2021) Linear energy stable and miximum pribciple preserving semi-implicit scheme for Allen–Cahn equation with double well potential. Commun Nonlinear Sci Numer Simulat 98:105766MATH Wang X, Kou J, Gao H (2021) Linear energy stable and miximum pribciple preserving semi-implicit scheme for Allen–Cahn equation with double well potential. Commun Nonlinear Sci Numer Simulat 98:105766MATH
33.
Zurück zum Zitat Kim J, Lee S, Choi Y (2014) A conservative Allen–Cahn equation with a space-time dependent Lagrange multiplier. Int J Eng Sci 84:11–17MathSciNetMATH Kim J, Lee S, Choi Y (2014) A conservative Allen–Cahn equation with a space-time dependent Lagrange multiplier. Int J Eng Sci 84:11–17MathSciNetMATH
34.
Zurück zum Zitat Jeong D, Kim J (2017) Conservative Allen–Cahn–Navier–Stokes systems for incompressible two-phase fluid flows. Comput Fluid 156:239–246MathSciNetMATH Jeong D, Kim J (2017) Conservative Allen–Cahn–Navier–Stokes systems for incompressible two-phase fluid flows. Comput Fluid 156:239–246MathSciNetMATH
35.
Zurück zum Zitat Lee HG (2016) High-order and mass conservative methods for the conservative Allen–Cahn equation. Comput Math Appl 72:620–631MathSciNetMATH Lee HG (2016) High-order and mass conservative methods for the conservative Allen–Cahn equation. Comput Math Appl 72:620–631MathSciNetMATH
36.
Zurück zum Zitat Yang J, Jeong D, Kim J (2021) A fast and practical adaptive finite difference method for the conservative Allen–Cahn model in two-phase flow system. Int J Multiphase Flow 137:103561MathSciNet Yang J, Jeong D, Kim J (2021) A fast and practical adaptive finite difference method for the conservative Allen–Cahn model in two-phase flow system. Int J Multiphase Flow 137:103561MathSciNet
37.
Zurück zum Zitat Joshi V, Jaiman RK (2018) An adaptive variational procedure for the conservative and positivity preserving Allen–Cahn phase-field model. J Comput Phys 366:478–504MathSciNetMATH Joshi V, Jaiman RK (2018) An adaptive variational procedure for the conservative and positivity preserving Allen–Cahn phase-field model. J Comput Phys 366:478–504MathSciNetMATH
38.
Zurück zum Zitat Huang Z, Lin G, Ardenaki AM (2020) Consistent and conservative scheme for incompressible two-phase flows using the conservative Allen–Cahn model. J Comput Phys 420:109718MathSciNetMATH Huang Z, Lin G, Ardenaki AM (2020) Consistent and conservative scheme for incompressible two-phase flows using the conservative Allen–Cahn model. J Comput Phys 420:109718MathSciNetMATH
39.
Zurück zum Zitat Aihara S, Takaki T, Takada N (2019) Multi-phase-field modeling using a conservative Allen–Cahn equation for multiphase flow. Comput Fluid 178:141–151MathSciNetMATH Aihara S, Takaki T, Takada N (2019) Multi-phase-field modeling using a conservative Allen–Cahn equation for multiphase flow. Comput Fluid 178:141–151MathSciNetMATH
40.
Zurück zum Zitat Li J, Ju L, Cai Y, Feng X (2021) Unconditionally maximum bound principle preserving linear schemes for the conservative Allen–Cahn equation with nonlocal constraint. J Sci Comput 87:98MathSciNetMATH Li J, Ju L, Cai Y, Feng X (2021) Unconditionally maximum bound principle preserving linear schemes for the conservative Allen–Cahn equation with nonlocal constraint. J Sci Comput 87:98MathSciNetMATH
41.
Zurück zum Zitat Jiang K, Ju L, Li J, Li X (2021) Unconditionally stable exponential time differencing schemes for the mass-conserving Allen-Cahn equation with nonlocal and local effects. Numer Method Partial Differential Equ. https://doi.org/10.1002/num.22827 Jiang K, Ju L, Li J, Li X (2021) Unconditionally stable exponential time differencing schemes for the mass-conserving Allen-Cahn equation with nonlocal and local effects. Numer Method Partial Differential Equ. https://​doi.​org/​10.​1002/​num.​22827
42.
Zurück zum Zitat Zhang J, Yang X (2020) Unconditionally energy stable large time stepping method for the \(L^2\)-gradient flow based ternary phase-field model with precise nonlocal volume conservation. Comput Methods Appl Mech Eng 361:112743MATH Zhang J, Yang X (2020) Unconditionally energy stable large time stepping method for the \(L^2\)-gradient flow based ternary phase-field model with precise nonlocal volume conservation. Comput Methods Appl Mech Eng 361:112743MATH
43.
Zurück zum Zitat Yang X (2021) Efficient, second-order in time, and energy stable scheme for a new hydrodynamically coupled three components volume-conserved Allen–Cahn phase-field model. Math Model Method Appl Sci 31(4):753–787MathSciNetMATH Yang X (2021) Efficient, second-order in time, and energy stable scheme for a new hydrodynamically coupled three components volume-conserved Allen–Cahn phase-field model. Math Model Method Appl Sci 31(4):753–787MathSciNetMATH
44.
Zurück zum Zitat Liu Z, Li X (2021) A highly efficient and accurate exponential semi-implicit scalar auxiliary variable (ESI-SAV) approach for dissipative system. J Comput Phys 447:110703MathSciNetMATH Liu Z, Li X (2021) A highly efficient and accurate exponential semi-implicit scalar auxiliary variable (ESI-SAV) approach for dissipative system. J Comput Phys 447:110703MathSciNetMATH
45.
Zurück zum Zitat Deville MO, Fischer PF, Mund EH (2002) High-order methods for incompressible fluid flow. Cambridge University Press, Cambridge, p 9MATH Deville MO, Fischer PF, Mund EH (2002) High-order methods for incompressible fluid flow. Cambridge University Press, Cambridge, p 9MATH
46.
Zurück zum Zitat Chen W, Liu Y, Wang C, Wise SM (2016) Convergence analysis of a fully discrete finite difference scheme for the Cahn–Hilliard–Hele–Shaw equation. Math Comput 85:2231–2257MathSciNetMATH Chen W, Liu Y, Wang C, Wise SM (2016) Convergence analysis of a fully discrete finite difference scheme for the Cahn–Hilliard–Hele–Shaw equation. Math Comput 85:2231–2257MathSciNetMATH
47.
Zurück zum Zitat Liu Y, Chen W, Wang C, Wise SM (2017) Error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system. Numer Math 135:679–709MathSciNetMATH Liu Y, Chen W, Wang C, Wise SM (2017) Error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system. Numer Math 135:679–709MathSciNetMATH
48.
Zurück zum Zitat Diegel AE, Wang C, Wang X, Wise SM (2017) Convergence analysis and error estimates for a second order accurate finite element method for the Cahn–Hilliard–Navier–Stokes system. Numer Math 137:495–534MathSciNetMATH Diegel AE, Wang C, Wang X, Wise SM (2017) Convergence analysis and error estimates for a second order accurate finite element method for the Cahn–Hilliard–Navier–Stokes system. Numer Math 137:495–534MathSciNetMATH
49.
Zurück zum Zitat Shen J, Xu J (2018) Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J Numer Anal 56(5):2895–2912MathSciNetMATH Shen J, Xu J (2018) Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J Numer Anal 56(5):2895–2912MathSciNetMATH
50.
Zurück zum Zitat Li X, Shen J, Rui H (2019) Energy stability and convergence of SAV block-centered finite difference method for gradient flows. Math Comput 88:2047–2068MathSciNetMATH Li X, Shen J, Rui H (2019) Energy stability and convergence of SAV block-centered finite difference method for gradient flows. Math Comput 88:2047–2068MathSciNetMATH
51.
Zurück zum Zitat Wang M, Huang Q, Wang C (2021) A second order accurate scalar auxiliary variable (SAV) numerical method for the square phase field crystal equation. J Sci Comput 88:33MathSciNetMATH Wang M, Huang Q, Wang C (2021) A second order accurate scalar auxiliary variable (SAV) numerical method for the square phase field crystal equation. J Sci Comput 88:33MathSciNetMATH
52.
Zurück zum Zitat Huang F, Shen J (2021) Stability and error analysis of a class of high-order IMEX schemes for Navier–Stokes equations with periodic boundary conditions. SIAM J Numer Anal 59(6):2926–2954MathSciNetMATH Huang F, Shen J (2021) Stability and error analysis of a class of high-order IMEX schemes for Navier–Stokes equations with periodic boundary conditions. SIAM J Numer Anal 59(6):2926–2954MathSciNetMATH
53.
Zurück zum Zitat Li X, Shen J (2020) On a SAV-MAC scheme for the Cahn–Hilliard–Navier-Stokes phase-field model and its error analysis for the corresponding Cahn–Hilliard–Stokes case. Math Model Meth Appl Sci 30(12):2263–2297MathSciNetMATH Li X, Shen J (2020) On a SAV-MAC scheme for the Cahn–Hilliard–Navier-Stokes phase-field model and its error analysis for the corresponding Cahn–Hilliard–Stokes case. Math Model Meth Appl Sci 30(12):2263–2297MathSciNetMATH
54.
Zurück zum Zitat Trottenberg U, Oosterlee C, Schüller A (2001) Multigrid. Academic press, New YorkMATH Trottenberg U, Oosterlee C, Schüller A (2001) Multigrid. Academic press, New YorkMATH
55.
Zurück zum Zitat Shu CW, Osher S (1989) Efficient implementation of essentially non-oscillatory shock capturing schemes II. J Comput Phys 83:32–78MathSciNetMATH Shu CW, Osher S (1989) Efficient implementation of essentially non-oscillatory shock capturing schemes II. J Comput Phys 83:32–78MathSciNetMATH
56.
Zurück zum Zitat Bronsard L, Stoth B (1997) Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg–Landau equation. SIAM J Math Anal 28:769–807MathSciNetMATH Bronsard L, Stoth B (1997) Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg–Landau equation. SIAM J Math Anal 28:769–807MathSciNetMATH
57.
Zurück zum Zitat Lee HG, Kim J (2012) A comparison study of the boussinesq and the variable density models on buoyancy-driven flows. J Eng Math 75:15–27MathSciNetMATH Lee HG, Kim J (2012) A comparison study of the boussinesq and the variable density models on buoyancy-driven flows. J Eng Math 75:15–27MathSciNetMATH
58.
Zurück zum Zitat Zhu G, Kou J, Yao B, Wu YS, Yao J, Sun S (2019) Thermodynamically consistent modelling of two-phase flows with moving contact line and soluble surfactants. J Fluid Mech 879:327–359MathSciNetMATH Zhu G, Kou J, Yao B, Wu YS, Yao J, Sun S (2019) Thermodynamically consistent modelling of two-phase flows with moving contact line and soluble surfactants. J Fluid Mech 879:327–359MathSciNetMATH
59.
Zurück zum Zitat Yang J, Kim J (2021) A variant of stabilized-scalar auxiliary variable (S-SAV) approach for a modified phase-field surfactant model. Comput Phys Commun 261:107825MathSciNet Yang J, Kim J (2021) A variant of stabilized-scalar auxiliary variable (S-SAV) approach for a modified phase-field surfactant model. Comput Phys Commun 261:107825MathSciNet
60.
Zurück zum Zitat Zhu G, Kou J, Yao J, Li A, Sun S (2020) A phase-field moving contact line model with soluble surfactants. J Comput Phys 405:109170MathSciNetMATH Zhu G, Kou J, Yao J, Li A, Sun S (2020) A phase-field moving contact line model with soluble surfactants. J Comput Phys 405:109170MathSciNetMATH
61.
Zurück zum Zitat Qin Y, Xu Z, Zhang H, Zhang Z (2020) Fully decoupled, linear and unconditionally energy stable schemes for the binary fluid-surfactant model. Commun Comput Phys 28:1389–1414MathSciNetMATH Qin Y, Xu Z, Zhang H, Zhang Z (2020) Fully decoupled, linear and unconditionally energy stable schemes for the binary fluid-surfactant model. Commun Comput Phys 28:1389–1414MathSciNetMATH
62.
Zurück zum Zitat Yang J, Kim J (2021) An efficient stabilized multiple auxiliary variables method for the Cahn–Hilliard–Darcy two-phase flow system. Comput Fluid 223:104948 Yang J, Kim J (2021) An efficient stabilized multiple auxiliary variables method for the Cahn–Hilliard–Darcy two-phase flow system. Comput Fluid 223:104948
63.
Zurück zum Zitat Zheng L, Zheng S, Zhai Q (2020) Multiphase flows of \(N\) immiscible incompressible fluids: Conservative Allen–Cahn equation and lattice Boltzmann equation method. Phys Rev E 101:013305 Zheng L, Zheng S, Zhai Q (2020) Multiphase flows of \(N\) immiscible incompressible fluids: Conservative Allen–Cahn equation and lattice Boltzmann equation method. Phys Rev E 101:013305
64.
Zurück zum Zitat Yang J, Kim J (2021) Numerical study of the ternary Cahn–Hilliard fluids by using an efficient modified scalar auxiliary variable approach. Commun Nonlinear Sci Numer Simulat 102:105923MathSciNetMATH Yang J, Kim J (2021) Numerical study of the ternary Cahn–Hilliard fluids by using an efficient modified scalar auxiliary variable approach. Commun Nonlinear Sci Numer Simulat 102:105923MathSciNetMATH
Metadaten
Titel
Highly efficient variant of SAV approach for two-phase incompressible conservative Allen–Cahn fluids
verfasst von
Junxiang Yang
Jianjun Chen
Zhijun Tan
Publikationsdatum
23.02.2022
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 6/2022
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-022-01618-5

Weitere Artikel der Ausgabe 6/2022

Engineering with Computers 6/2022 Zur Ausgabe

Neuer Inhalt