Skip to main content
Erschienen in: Journal of Engineering Thermophysics 1/2024

01.03.2024

Horse Herd Optimization and LSTM Configuration for Minimizing Pressure Drop and Predicting Thermal Performance in Shell and U-Tube Heat Exchanger

verfasst von: Sh. K. Prasad, M. K. Sinha

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The industrial component that transfers heat from one fluid to another most frequently uses Shell and Tube Heat Exchangers (STHE). Enhancing the heat transfer efficiency of heat exchangers has garnered more attention as a result of scarce energy resources and high energy expenditures. In STHE, the pressure drop is considered an important issue that causes cracks and economic losses. An essential factor in improving the performance of a heat exchanger with low pressure drop was the angle and distance of the baffles. Several methods were developed to reduce pressure drop and speed up heat transfer. But those methods were not provide a satisfactory pressure drop reduction, so the optimal baffle configuration was still a task in the heat exchanger. In the proposed model, Horse-herd Optimization Algorithm (HOA) based baffle design and neural network based thermal performance prediction arrangement was developed to reduce the pressure drop and predict the rate of transferring heat. Shells and tubes were developed at the corresponding material, inside the shell, a baffle was designed to barrier the flow of cold water. The optimal solution of baffle configuration was solved through HOA, which finds the appropriate baffle’s distance and angle by reducing the pressure drop. After the water flow modelling, the seven key parameters values were observed, and create a dataset. Using this data, a thermal performance prediction system was developed to analyze each period input value to predict the net energy, heat transfer rate, and Nussle number. The proposed model provides 52 Pa pressure drop, 0.59 effectiveness, 0.59 NTU, 417 U, and 92% accuracy. The output of the suggested approach is contrasted with that of other current methods for validation. The proposed model offers a high heat transferring capacity and reduces pressure effects risk.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Slimene, M.B., Poncet, S., Bessrour, J., and Kallel, F., Numerical Investigation of the Flow Dynamics and Heat Transfer in a Rectangular Shell-and-Tube Heat Exchanger, Case Studies Thermal Engin., 2022, vol. 32, p. 101873.CrossRef Slimene, M.B., Poncet, S., Bessrour, J., and Kallel, F., Numerical Investigation of the Flow Dynamics and Heat Transfer in a Rectangular Shell-and-Tube Heat Exchanger, Case Studies Thermal Engin., 2022, vol. 32, p. 101873.CrossRef
2.
Zurück zum Zitat Mohammadi, M.H., Abbasi, H.R., Yavarinasab, A., and Pourrahmani, H., Thermal Optimization of Shell and Tube Heat Exchanger Using Porous Baffles, Appl. Thermal Engin., 2020, vol. 170, p. 115005.CrossRef Mohammadi, M.H., Abbasi, H.R., Yavarinasab, A., and Pourrahmani, H., Thermal Optimization of Shell and Tube Heat Exchanger Using Porous Baffles, Appl. Thermal Engin., 2020, vol. 170, p. 115005.CrossRef
3.
Zurück zum Zitat Chen, J., Zhao, P., Wang, Q., and Zeng, M., Experimental Investigation of Shell-Side Performance and Optimal Design of Shell-and-Tube Heat Exchanger with Different Flower Baffles, Heat Transfer Engin., 2021, vol. 42, no. 7, pp. 613–626.ADSCrossRef Chen, J., Zhao, P., Wang, Q., and Zeng, M., Experimental Investigation of Shell-Side Performance and Optimal Design of Shell-and-Tube Heat Exchanger with Different Flower Baffles, Heat Transfer Engin., 2021, vol. 42, no. 7, pp. 613–626.ADSCrossRef
4.
Zurück zum Zitat Yang, K., Zhu, N., Li, Y., and Du, N., Effect of Parameters on the Melting Performance of Triplex Tube Heat Exchanger Incorporating Phase Change Material, Renew. Energy, 2021, vol. 174, pp. 359–371.CrossRef Yang, K., Zhu, N., Li, Y., and Du, N., Effect of Parameters on the Melting Performance of Triplex Tube Heat Exchanger Incorporating Phase Change Material, Renew. Energy, 2021, vol. 174, pp. 359–371.CrossRef
5.
Zurück zum Zitat Liu, Y., Wen, J., Wang, S., and Tu, J., Numerical Investigation on the Shell and Tube Heat Exchanger with Baffle Leakage Zones Blocked, Int. J. Thermal Sci., 2021, vol. 165, p. 106959.CrossRef Liu, Y., Wen, J., Wang, S., and Tu, J., Numerical Investigation on the Shell and Tube Heat Exchanger with Baffle Leakage Zones Blocked, Int. J. Thermal Sci., 2021, vol. 165, p. 106959.CrossRef
6.
Zurück zum Zitat Xu, Z., Ning, X., Yu, Z., Ma, Y., Zhao, Z., and Zhao, B., Design Optimization of a Shell-and-Tube Heat Exchanger with Disc-and-Doughnut Baffles for Aero-Engine Using One Hybrid Method of NSGA II and MOPSO, Case Studies Thermal Engin., 2023, vol. 41, p. 102644.CrossRef Xu, Z., Ning, X., Yu, Z., Ma, Y., Zhao, Z., and Zhao, B., Design Optimization of a Shell-and-Tube Heat Exchanger with Disc-and-Doughnut Baffles for Aero-Engine Using One Hybrid Method of NSGA II and MOPSO, Case Studies Thermal Engin., 2023, vol. 41, p. 102644.CrossRef
7.
Zurück zum Zitat Kumar, P.M. and Chandrasekar, M., A Review on Helically Coiled Tube Heat Exchanger Using Nanofluids, Materials Today: Procs., 2020, vol. 21, pp. 137–141. Kumar, P.M. and Chandrasekar, M., A Review on Helically Coiled Tube Heat Exchanger Using Nanofluids, Materials Today: Procs., 2020, vol. 21, pp. 137–141.
8.
Zurück zum Zitat Qiu, L., Zhu, N., Feng, Y., Michaelides, E.E., Żyła, G., Jing, D., Zhang, X., Norris, P.M., Markides, C.N., and Mahian, O., A Review of Recent Advances in Thermophysical Properties at the Nanoscale: From Solid State to Colloids, Phys. Rep., 2020, vol. 843, pp. 1–81.ADSCrossRef Qiu, L., Zhu, N., Feng, Y., Michaelides, E.E., Żyła, G., Jing, D., Zhang, X., Norris, P.M., Markides, C.N., and Mahian, O., A Review of Recent Advances in Thermophysical Properties at the Nanoscale: From Solid State to Colloids, Phys. Rep., 2020, vol. 843, pp. 1–81.ADSCrossRef
9.
Zurück zum Zitat Attalla, M., and Maghrabie, H.M., An Experimental Study on Heat Transfer and Fluid Flow of Rough Plate Heat Exchanger Using Al2O3/water nanofluid, Exp. Heat Transfer, 2020, vol. 33, no. 3, pp. 261–281.ADSCrossRef Attalla, M., and Maghrabie, H.M., An Experimental Study on Heat Transfer and Fluid Flow of Rough Plate Heat Exchanger Using Al2O3/water nanofluid, Exp. Heat Transfer, 2020, vol. 33, no. 3, pp. 261–281.ADSCrossRef
10.
Zurück zum Zitat Marzouk, S.A., Abou Al-Sood, M.M., El-Fakharany, M.K., and El-Said, E.M., A Comparative Numerical Study of Shell and Multi-Tube Heat Exchanger Performance with Different Baffles Configurations, Int. J. Thermal Sci., 2022, vol. 179, p. 107655.CrossRef Marzouk, S.A., Abou Al-Sood, M.M., El-Fakharany, M.K., and El-Said, E.M., A Comparative Numerical Study of Shell and Multi-Tube Heat Exchanger Performance with Different Baffles Configurations, Int. J. Thermal Sci., 2022, vol. 179, p. 107655.CrossRef
11.
Zurück zum Zitat Djeffal, F., Bordja, L., Rebhi, R., Inc, M., Ahmad, H., Tahrour, F., Ameur, H., Menni, Y., Lorenzini, G., Elagan, S.K., and Jawa, T.M., Numerical Investigation of Thermal-Flow Characteristics in Heat Exchanger with Various Tube Shapes, Appl. Sci., 2021, vol. 11, no. 20, p. 9477.CrossRef Djeffal, F., Bordja, L., Rebhi, R., Inc, M., Ahmad, H., Tahrour, F., Ameur, H., Menni, Y., Lorenzini, G., Elagan, S.K., and Jawa, T.M., Numerical Investigation of Thermal-Flow Characteristics in Heat Exchanger with Various Tube Shapes, Appl. Sci., 2021, vol. 11, no. 20, p. 9477.CrossRef
12.
Zurück zum Zitat Abbasi, H.R., Sedeh, E.S., Pourrahmani, H., and Mohammadi, M.H., Shape Optimization of Segmental Porous Baffles for Enhanced Thermo-Hydraulic Performance of Shell-and-Tube Heat Exchanger, Appl. Thermal Engin., 2020, vol. 180, p. 115835.CrossRef Abbasi, H.R., Sedeh, E.S., Pourrahmani, H., and Mohammadi, M.H., Shape Optimization of Segmental Porous Baffles for Enhanced Thermo-Hydraulic Performance of Shell-and-Tube Heat Exchanger, Appl. Thermal Engin., 2020, vol. 180, p. 115835.CrossRef
13.
Zurück zum Zitat Maghrabie, H.M., Attalla, M., and Mohsen, A.A., Performance Assessment of a Shell and Helically Coiled Tube Heat Exchanger with Variable Orientations Utilizing Different Nanofluids, Appl. Thermal Engin., 2021, vol. 182, p. 116013.CrossRef Maghrabie, H.M., Attalla, M., and Mohsen, A.A., Performance Assessment of a Shell and Helically Coiled Tube Heat Exchanger with Variable Orientations Utilizing Different Nanofluids, Appl. Thermal Engin., 2021, vol. 182, p. 116013.CrossRef
14.
Zurück zum Zitat Hojjat, M., Nanofluids as cOolant in a Shell and Tube Heat Exchanger: ANN Modeling and Multi-Objective Optimization, Appl. Math. Comput., 2020, vol. 365, p. 124710.MathSciNetCrossRef Hojjat, M., Nanofluids as cOolant in a Shell and Tube Heat Exchanger: ANN Modeling and Multi-Objective Optimization, Appl. Math. Comput., 2020, vol. 365, p. 124710.MathSciNetCrossRef
15.
Zurück zum Zitat Bahiraei, M., Naseri, M., and Monavari, A., A CFD Study on Thermohydraulic Characteristics of a Nanofluid in a Shell-and-Tube Heat Exchanger Fitted with New Unilateral Ladder Type Helical Baffles, Int. Commun. Heat Mass Transfer, 2021, vol. 124, p. 105248.CrossRef Bahiraei, M., Naseri, M., and Monavari, A., A CFD Study on Thermohydraulic Characteristics of a Nanofluid in a Shell-and-Tube Heat Exchanger Fitted with New Unilateral Ladder Type Helical Baffles, Int. Commun. Heat Mass Transfer, 2021, vol. 124, p. 105248.CrossRef
16.
Zurück zum Zitat Wang, D., Wang, H., Xing, J., and Wang, Y., Investigation of the Thermal-Hydraulic Characteristics in the Shell Side of Heat Exchanger with Quatrefoil Perforated Plate, Int. J. Thermal Sci., 2021, vol. 159, p. 106580.CrossRef Wang, D., Wang, H., Xing, J., and Wang, Y., Investigation of the Thermal-Hydraulic Characteristics in the Shell Side of Heat Exchanger with Quatrefoil Perforated Plate, Int. J. Thermal Sci., 2021, vol. 159, p. 106580.CrossRef
17.
Zurück zum Zitat Colak, A.B., Açıkgöz, Ö., Mercan, H., Dalkılıç, A.S., and Wongwises, S., Prediction of Heat Transfer Coefficient, Pressure Drop, and Overall Cost of Double-Pipe Heat Exchangers Using the Artificial Neural Network, Case Studies Thermal Engin., 2022, vol. 39, p. 102391. Colak, A.B., Açıkgöz, Ö., Mercan, H., Dalkılıç, A.S., and Wongwises, S., Prediction of Heat Transfer Coefficient, Pressure Drop, and Overall Cost of Double-Pipe Heat Exchangers Using the Artificial Neural Network, Case Studies Thermal Engin., 2022, vol. 39, p. 102391.
18.
Zurück zum Zitat El-Said, E.M., Elsheikh, A.H., and El-Tahan, H.R., Effect of Curved Segmental Baffle on a Shell and Tube Heat Exchanger Thermohydraulic Performance: Numerical Investigation, Int. J. Thermal Sci., 2021, vol. 165, p. 106922.CrossRef El-Said, E.M., Elsheikh, A.H., and El-Tahan, H.R., Effect of Curved Segmental Baffle on a Shell and Tube Heat Exchanger Thermohydraulic Performance: Numerical Investigation, Int. J. Thermal Sci., 2021, vol. 165, p. 106922.CrossRef
19.
Zurück zum Zitat Wang, J., Liu, T., Xu, C., Wang, J., and Feng, L.F., Numerical Investigation on Hydrodynamics and Heat Transfer of Highly Viscous Fluid in Sulzer Mixer Reactor, Int. J. Heat Mass Transfer, 2021, vol. 171, p. 121101.CrossRef Wang, J., Liu, T., Xu, C., Wang, J., and Feng, L.F., Numerical Investigation on Hydrodynamics and Heat Transfer of Highly Viscous Fluid in Sulzer Mixer Reactor, Int. J. Heat Mass Transfer, 2021, vol. 171, p. 121101.CrossRef
20.
Zurück zum Zitat Gurubalan, A. and Simonson, C.J., A Comprehensive Review of Dehumidifiers and Regenerators for Liquid Desiccant Air Conditioning System, Energy Convers. Manag., 2021, vol. 240, p. 114234.CrossRef Gurubalan, A. and Simonson, C.J., A Comprehensive Review of Dehumidifiers and Regenerators for Liquid Desiccant Air Conditioning System, Energy Convers. Manag., 2021, vol. 240, p. 114234.CrossRef
21.
Zurück zum Zitat Bhardwaj, A.K., Kumar, R., Kumar, S., Goel, B., and Chauhan, R., Energy and Exergy Analyses of Drying Medicinal Herb in a Novel Forced Convection Solar Dryer Integrated with SHSM and PCM, Sust. Energy Technol. Assess., 2021, vol. 45, p. 101119.CrossRef Bhardwaj, A.K., Kumar, R., Kumar, S., Goel, B., and Chauhan, R., Energy and Exergy Analyses of Drying Medicinal Herb in a Novel Forced Convection Solar Dryer Integrated with SHSM and PCM, Sust. Energy Technol. Assess., 2021, vol. 45, p. 101119.CrossRef
22.
Zurück zum Zitat Sehgal, S., Alvarado, J.L., Hassan, I.G., and Kadam, S.T., A Comprehensive Review of Recent Developments in Falling-Film, Spray, Bubble and Microchannel Absorbers for Absorption Systems, Renew. Sust. Energy Rev., 2021, vol. 142, p. 110807.CrossRef Sehgal, S., Alvarado, J.L., Hassan, I.G., and Kadam, S.T., A Comprehensive Review of Recent Developments in Falling-Film, Spray, Bubble and Microchannel Absorbers for Absorption Systems, Renew. Sust. Energy Rev., 2021, vol. 142, p. 110807.CrossRef
23.
Zurück zum Zitat Yu, C., Zhang, H., Wang, Y., Zeng, M., and Gao, B., Numerical Study on Turbulent Heat Transfer Performance of twisted Oval Tube with Different Cross Sectioned Wire Coil, Case Studies Thermal Engin., 2020, vol. 22, p. 100759.CrossRef Yu, C., Zhang, H., Wang, Y., Zeng, M., and Gao, B., Numerical Study on Turbulent Heat Transfer Performance of twisted Oval Tube with Different Cross Sectioned Wire Coil, Case Studies Thermal Engin., 2020, vol. 22, p. 100759.CrossRef
24.
Zurück zum Zitat Karabulut, K., Heat Transfer and Pressure Drop Evaluation of Different Triangular Baffle Placement Angles in Cross-Corrugated Triangular Channels, Thermal Sci., 2020, vol. 24, no. 1, Part A, pp. 355–365.CrossRef Karabulut, K., Heat Transfer and Pressure Drop Evaluation of Different Triangular Baffle Placement Angles in Cross-Corrugated Triangular Channels, Thermal Sci., 2020, vol. 24, no. 1, Part A, pp. 355–365.CrossRef
25.
Zurück zum Zitat Vivekanandan, M., Venkatesh, R., Periyasamy, R., Mohankumar, S., and Devakumar, L., Experimental and CFD Investigation of Helical Coil Heat Exchanger with Flower Baffle, Materials Today: Procs., 2021, vol. 37, pp. 2174–2182. Vivekanandan, M., Venkatesh, R., Periyasamy, R., Mohankumar, S., and Devakumar, L., Experimental and CFD Investigation of Helical Coil Heat Exchanger with Flower Baffle, Materials Today: Procs., 2021, vol. 37, pp. 2174–2182.
26.
Zurück zum Zitat Cai, H.F., Jiang, Y.Y., Wang, T., Liang, S.Q., Guo, C., and Zhu, Y.M., An Optimization of Microtube Heat Exchangers for Supercritical CO2 Cooling Based on Numerical and Theoretical Analysis, Int. Comm. Heat Mass Transfer, 2021, vol. 127, p. 105532.CrossRef Cai, H.F., Jiang, Y.Y., Wang, T., Liang, S.Q., Guo, C., and Zhu, Y.M., An Optimization of Microtube Heat Exchangers for Supercritical CO2 Cooling Based on Numerical and Theoretical Analysis, Int. Comm. Heat Mass Transfer, 2021, vol. 127, p. 105532.CrossRef
27.
Zurück zum Zitat Aydin, A., Yas˛sar, H., Engin, T., and Buyukkaya, E., Optimization and CFD Analysis of a Shell-and-Tube Heat Exchanger with a Multi Segmental Baffle, Thermal Sci., 2022, vol. 26, no. 1, Part A, pp. 1–12.CrossRef Aydin, A., Yas˛sar, H., Engin, T., and Buyukkaya, E., Optimization and CFD Analysis of a Shell-and-Tube Heat Exchanger with a Multi Segmental Baffle, Thermal Sci., 2022, vol. 26, no. 1, Part A, pp. 1–12.CrossRef
28.
Zurück zum Zitat Saijal, K.K. and Danish, T., Design Optimization of a Shell and Tube Heat Exchanger with Staggered Baffles Using Neural Network and Genetic Algorithm, Procs. of the Institution of Mechanical Engineers, Part C: J. Mech. Engin. Sci., 2021, vol. 235, no. 22, pp. 5931–5946. Saijal, K.K. and Danish, T., Design Optimization of a Shell and Tube Heat Exchanger with Staggered Baffles Using Neural Network and Genetic Algorithm, Procs. of the Institution of Mechanical Engineers, Part C: J. Mech. Engin. Sci., 2021, vol. 235, no. 22, pp. 5931–5946.
29.
Zurück zum Zitat MiarNaeimi, F., Azizyan, G., and Rashki, M., Horse Herd Optimization Algorithm: A Nature-Inspired Algorithm for High-Dimensional Optimization Problems, Knowledge-Based Systems, 2021, vol. 213, p. 106711.CrossRef MiarNaeimi, F., Azizyan, G., and Rashki, M., Horse Herd Optimization Algorithm: A Nature-Inspired Algorithm for High-Dimensional Optimization Problems, Knowledge-Based Systems, 2021, vol. 213, p. 106711.CrossRef
30.
Zurück zum Zitat Liu, X., Zhu, H., Yu, C., Jin, H., Wang, C., and Ou, G., Analysis on the Corrosion Failure of U-Tube Heat Exchanger in Hydrogenation Unit, Engin. Failure Analysis, 2021, vol. 125, p. 105448.CrossRef Liu, X., Zhu, H., Yu, C., Jin, H., Wang, C., and Ou, G., Analysis on the Corrosion Failure of U-Tube Heat Exchanger in Hydrogenation Unit, Engin. Failure Analysis, 2021, vol. 125, p. 105448.CrossRef
31.
Zurück zum Zitat Yeo, D., and Yeo, D., A Summary of Industrial Verification, Validation, and Uncertainty Quantification Procedures in Computational Fluid Dynamics, US Department of Commerce, National Institute of Standards and Technology, 2020. Yeo, D., and Yeo, D., A Summary of Industrial Verification, Validation, and Uncertainty Quantification Procedures in Computational Fluid Dynamics, US Department of Commerce, National Institute of Standards and Technology, 2020.
32.
Zurück zum Zitat Ugli Malikov, A.K., Cho, Y., Kim, Y.H., Kim, J., and Kim, H.K., A Novel Ultrasonic Inspection Method of the Heat Exchangers Based on Circumferential Waves and Deep Neural Networks, Sci. Progress, 2023, vol. 106, no. 1, p. 00368504221146081. Ugli Malikov, A.K., Cho, Y., Kim, Y.H., Kim, J., and Kim, H.K., A Novel Ultrasonic Inspection Method of the Heat Exchangers Based on Circumferential Waves and Deep Neural Networks, Sci. Progress, 2023, vol. 106, no. 1, p. 00368504221146081.
33.
Zurück zum Zitat Bagherzadeh, S.A., Sulgani, M.T., Nikkhah, V., Bahrami, M., Karimipour, A., and Jiang, Y., Minimize Pressure Drop and Maximize Heat Transfer Coefficient by the New Proposed Multi-Objective Optimization/Statistical Model Composed of “ANN + Genetic Algorithm” Based on Empirical Data of CuO/Paraffin Nanofluid in a Pipe, Phys. A: Stat. Mech. Its Appl., 2019, vol. 527, p. 121056.CrossRef Bagherzadeh, S.A., Sulgani, M.T., Nikkhah, V., Bahrami, M., Karimipour, A., and Jiang, Y., Minimize Pressure Drop and Maximize Heat Transfer Coefficient by the New Proposed Multi-Objective Optimization/Statistical Model Composed of “ANN + Genetic Algorithm” Based on Empirical Data of CuO/Paraffin Nanofluid in a Pipe, Phys. A: Stat. Mech. Its Appl., 2019, vol. 527, p. 121056.CrossRef
34.
Zurück zum Zitat Cao, X., Chen, D., Du, T., Liu, Z., and Ji, S., Numerical Investigation and Experimental Validation of Thermo-Hydraulic and Thermodynamic Performances of Helical Baffle Heat Exchangers with Different Baffle Configurations, Int. J. Heat Mass Transfer, 2020, vol. 160, p. 120181.CrossRef Cao, X., Chen, D., Du, T., Liu, Z., and Ji, S., Numerical Investigation and Experimental Validation of Thermo-Hydraulic and Thermodynamic Performances of Helical Baffle Heat Exchangers with Different Baffle Configurations, Int. J. Heat Mass Transfer, 2020, vol. 160, p. 120181.CrossRef
35.
Zurück zum Zitat Biçer, N., Engin, T., Yaşar, H., Büyükkaya, E., Aydın, A., and Topuz, A., Design Optimization of a Shell-and-Tube Heat Exchanger with Novel Three-Zonal Baffle by Using CFD and Taguchi Method, Int. J. Thermal Sci., 2020, vol. 155, p. 106417.CrossRef Biçer, N., Engin, T., Yaşar, H., Büyükkaya, E., Aydın, A., and Topuz, A., Design Optimization of a Shell-and-Tube Heat Exchanger with Novel Three-Zonal Baffle by Using CFD and Taguchi Method, Int. J. Thermal Sci., 2020, vol. 155, p. 106417.CrossRef
Metadaten
Titel
Horse Herd Optimization and LSTM Configuration for Minimizing Pressure Drop and Predicting Thermal Performance in Shell and U-Tube Heat Exchanger
verfasst von
Sh. K. Prasad
M. K. Sinha
Publikationsdatum
01.03.2024
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 1/2024
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232824010107

Weitere Artikel der Ausgabe 1/2024

Journal of Engineering Thermophysics 1/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.