Skip to main content
Erschienen in: Journal of Engineering Thermophysics 1/2024

01.03.2024

Numerical Study of Heat Transfer in a Lattice Matrix with Varying the Crossing Angle

verfasst von: A. V. Barsukov, V. V. Terekhov, V. I. Terekhov

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The development of methods for intensifying heat transfer is a priority task in various technological processes in the energy sector and aerospace engineering. One of the effective ways to enhance heat transfer is to install mutually intersecting ribs on opposite walls of the channels (vortex matrices or latticework). The use of such channels leads to formation of a complex three-dimensional turbulent flow, which contributes to a significant enhancement of heat transfer. Most of available literature publications deal with the study of the integral characteristics of hydraulic losses and the degree of heat transfer enhancement depending on a large number of defining parameters. At that, the local flow structure and heat transfer have not been fully investigated. In particular, this conclusion relates to understanding the mechanism of the flow from subchannels formed by parallel ribs on opposite walls and interaction of these flows with the lateral bounding walls of the latticework. In this work, the main attention is paid to the study of the flow processes without the influence of the side walls of the channel. The results of numerical calculations of separated turbulent flow in a latticework obtained using the RANS and LES methods and the OpenFOAM package are presented here. Calculations were performed for the angles of rib crossing \(2\beta=60\div120\) on opposite heat transfer surfaces and the Reynolds number Re = \(5,000\div15,000\), determined from the average flow rate and channel height. Data on the flow structure in a cell of a latticework were obtained. It is shown how the angle of crossing affects the interaction of flows in the lower and upper subchannels. The distribution of local heat transfer on the channel wall and the dependence of the average Nusselt number on the angle of crossing and the Reynolds number were obtained.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mousa, M.H., Miljkovic, N., and Nawaz, K., Review of Heat Transfer Enhancement Techniques for Single Phase Flows, Renew. Sust. Energ. Rev., 2021, vol. 137, p. 110566; https://doi.org/10.1016/ j.rser.2020.110566CrossRef Mousa, M.H., Miljkovic, N., and Nawaz, K., Review of Heat Transfer Enhancement Techniques for Single Phase Flows, Renew. Sust. Energ. Rev., 2021, vol. 137, p. 110566; https://​doi.​org/​10.​1016/​ j.rser.2020.110566CrossRef
2.
Zurück zum Zitat Terekhov, V.I., Dyachenko, A.Yu., Smulsky, Ya.J., Bogatko, T.V., and Yarygina, N.I., Heat Transfer in Subsonic Separated Flows, Springer, 2022.CrossRef Terekhov, V.I., Dyachenko, A.Yu., Smulsky, Ya.J., Bogatko, T.V., and Yarygina, N.I., Heat Transfer in Subsonic Separated Flows, Springer, 2022.CrossRef
3.
Zurück zum Zitat Liang, C., Rao, Y., Luo, J., and Luo, X., Experimental and Numerical Study of Turbulent Flow and Heat Transfer in a Wedge-Shaped Channel with Guiding Pin Fins for Turbine Blade Trailing Edge Cooling, Int. J. Heat Mass Transfer, 2021, vol. 178, p. 121590; https://doi.org/10.1016/ j.ijheatmasstransfer.2021.121590CrossRef Liang, C., Rao, Y., Luo, J., and Luo, X., Experimental and Numerical Study of Turbulent Flow and Heat Transfer in a Wedge-Shaped Channel with Guiding Pin Fins for Turbine Blade Trailing Edge Cooling, Int. J. Heat Mass Transfer, 2021, vol. 178, p. 121590; https://​doi.​org/​10.​1016/​ j.ijheatmasstransfer.2021.121590CrossRef
4.
Zurück zum Zitat Ligrani, P.M., Oliveira M.M., and Blaskovich, T., Comparison of Heat Transfer Augmentation Techniques, AIAA J., 2003, vol. 41, pp. 337–362; https://doi.org/10.2514/2.1964ADSCrossRef Ligrani, P.M., Oliveira M.M., and Blaskovich, T., Comparison of Heat Transfer Augmentation Techniques, AIAA J., 2003, vol. 41, pp. 337–362; https://​doi.​org/​10.​2514/​2.​1964ADSCrossRef
5.
Zurück zum Zitat Kaewchoothong, N., Maliwan, K., Takeishi, K., and Nuntadusit, C., Effect of Inclined Ribs on Heat Transfer Coefficient in Stationary Square Channel, Theor. Appl. Mech. Lett., 2017, vol. 7, pp. 344–350; https://doi.org/10.1016/j.taml.2017.09.013CrossRef Kaewchoothong, N., Maliwan, K., Takeishi, K., and Nuntadusit, C., Effect of Inclined Ribs on Heat Transfer Coefficient in Stationary Square Channel, Theor. Appl. Mech. Lett., 2017, vol. 7, pp. 344–350; https://​doi.​org/​10.​1016/​j.​taml.​2017.​09.​013CrossRef
6.
Zurück zum Zitat Jiang, G., Shi, X., and Gao, J., Study on Flow and Heat Transfer Characteristics of the Mist/Steam Two-Phase Flow in Rectangular Channels with 60 Deg. Ribs, 2018, Int. J. Heat Mass Transfer, vol. 120, pp. 1101–1117; https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.082CrossRef Jiang, G., Shi, X., and Gao, J., Study on Flow and Heat Transfer Characteristics of the Mist/Steam Two-Phase Flow in Rectangular Channels with 60 Deg. Ribs, 2018, Int. J. Heat Mass Transfer, vol. 120, pp. 1101–1117; https://​doi.​org/​10.​1016/​j.​ijheatmasstransf​er.​2017.​12.​082CrossRef
7.
Zurück zum Zitat Wang, S., Du, W., Luo, L., Qiu, D., Zhang, X., and Li, S., Flow Structure and Heat Transfer Characteristics of a Dimpled Wedge Channel with a Bleed Hole in Dimple at Different Orientations and Locations, Int. J. Heat Mass Tramsfer, 2018, vol. 117, pp. 1216–1230; https://doi.org/10.1016/ j.ijheatmasstransfer.2017.10.087CrossRef Wang, S., Du, W., Luo, L., Qiu, D., Zhang, X., and Li, S., Flow Structure and Heat Transfer Characteristics of a Dimpled Wedge Channel with a Bleed Hole in Dimple at Different Orientations and Locations, Int. J. Heat Mass Tramsfer, 2018, vol. 117, pp. 1216–1230; https://​doi.​org/​10.​1016/​ j.ijheatmasstransfer.2017.10.087CrossRef
8.
Zurück zum Zitat Yoon, H.S., Park, S.H., Choi, C., and Ha, M.Y., Numerical Study on Characteristics of Flow and Heat Transfer in a Cooling Passage with a Tear-Drop Dimple Surface, Int. J. Therm. Sci., 2015, vol. 89, pp. 121–135; https://doi.org/10.1016/j.ijthermalsci.2014.11.002CrossRef Yoon, H.S., Park, S.H., Choi, C., and Ha, M.Y., Numerical Study on Characteristics of Flow and Heat Transfer in a Cooling Passage with a Tear-Drop Dimple Surface, Int. J. Therm. Sci., 2015, vol. 89, pp. 121–135; https://​doi.​org/​10.​1016/​j.​ijthermalsci.​2014.​11.​002CrossRef
9.
Zurück zum Zitat Chen, L., Asai, K., Nonomura, T., Xi, G., and Liu, T., A Review of Backward–Facing Step (BFS) Flow Mechanisms, Heat Transfer and Control, Therm. Sci. Eng. Prog., 2018, vol. 6, pp. 194–216; https://doi.org/10.1016/j.tsep.2018.04.004CrossRef Chen, L., Asai, K., Nonomura, T., Xi, G., and Liu, T., A Review of Backward–Facing Step (BFS) Flow Mechanisms, Heat Transfer and Control, Therm. Sci. Eng. Prog., 2018, vol. 6, pp. 194–216; https://​doi.​org/​10.​1016/​j.​tsep.​2018.​04.​004CrossRef
10.
Zurück zum Zitat Gao, N., Sun, H., and Ewing, D., Heat Transfer to Impinging Round Jets with Triangular Tabs, Int. J. Heat Mass Tramsfer, 2003, vol. 46, pp. 2557–2569; https://doi.org/10.1016/S0017-9310(03)00034-6CrossRef Gao, N., Sun, H., and Ewing, D., Heat Transfer to Impinging Round Jets with Triangular Tabs, Int. J. Heat Mass Tramsfer, 2003, vol. 46, pp. 2557–2569; https://​doi.​org/​10.​1016/​S0017-9310(03)00034-6CrossRef
11.
Zurück zum Zitat Terekhov, V.I., Dyachenko, A.Yu., Smulsky, Ya.J., and Sunden, B., Intensification of Heat Transfer Behind the Backward–Facing Step Using Tabs, Thermal Sci. Engin. Progr., 2022, vol. 35, p. 101475; https://doi.org/10.1016/j.tsep.2022.101475CrossRef Terekhov, V.I., Dyachenko, A.Yu., Smulsky, Ya.J., and Sunden, B., Intensification of Heat Transfer Behind the Backward–Facing Step Using Tabs, Thermal Sci. Engin. Progr., 2022, vol. 35, p. 101475; https://​doi.​org/​10.​1016/​j.​tsep.​2022.​101475CrossRef
12.
Zurück zum Zitat Nagoga, G.P., Kopylov, I.S., and Rukin, M.V., Heat Transfer and Hydraulic Resistance in Tracts of Coplanar-Crossing Channels Interuniversity, in Sci. Collection: Work Processes in Cooled Turbomachines of Gas Turbine Engines, Kazan: 1989, pp. 35–41. Nagoga, G.P., Kopylov, I.S., and Rukin, M.V., Heat Transfer and Hydraulic Resistance in Tracts of Coplanar-Crossing Channels Interuniversity, in Sci. Collection: Work Processes in Cooled Turbomachines of Gas Turbine Engines, Kazan: 1989, pp. 35–41.
13.
Zurück zum Zitat Gorelov, V., Goikhenberg, M., and Malkov, V., The Investigation of Heat Transfer in Cooled Blades of Gas Turbines, AIAA-90-2144, 1990; https://doi.org/10.2514/6.1990-2144 Gorelov, V., Goikhenberg, M., and Malkov, V., The Investigation of Heat Transfer in Cooled Blades of Gas Turbines, AIAA-90-2144, 1990; https://​doi.​org/​10.​2514/​6.​1990-2144
14.
Zurück zum Zitat Kudryavtsev, V.M., Orlin, S.A., and Posnov, S.A., Experimental Research of Flow Resistance in Circuits with Complanar Channels, Izv. Vyssh. Uchebn. Zaved., Mashinostr. [Proc. Univ., Mech. Eng.], 1983, vol. 4, pp. 54–58. Kudryavtsev, V.M., Orlin, S.A., and Posnov, S.A., Experimental Research of Flow Resistance in Circuits with Complanar Channels, Izv. Vyssh. Uchebn. Zaved., Mashinostr. [Proc. Univ., Mech. Eng.], 1983, vol. 4, pp. 54–58.
15.
Zurück zum Zitat Aleksandrenkov, V.P., Efficiency of Heat Transfer Intensification in Circular Finned Cooling Circuits of Combustion Chambers, Vestn. Bauman Mosk. Gos. Tekh. Univ., Mashinostr., 2013, vol. 3, pp. 111–121.CrossRef Aleksandrenkov, V.P., Efficiency of Heat Transfer Intensification in Circular Finned Cooling Circuits of Combustion Chambers, Vestn. Bauman Mosk. Gos. Tekh. Univ., Mashinostr., 2013, vol. 3, pp. 111–121.CrossRef
16.
Zurück zum Zitat Aleksandrenkov, V.P., Thermohydraulic Efficiency of Complanar Cooling Circuits for Liquid-Propellant Engine Chambers, Vestn. Bauman Mosk. Gos. Tekh. Univ., Mashinostr., 2015, vol. 2, pp. 44–56.CrossRef Aleksandrenkov, V.P., Thermohydraulic Efficiency of Complanar Cooling Circuits for Liquid-Propellant Engine Chambers, Vestn. Bauman Mosk. Gos. Tekh. Univ., Mashinostr., 2015, vol. 2, pp. 44–56.CrossRef
17.
Zurück zum Zitat Carcasci, C., Facchini, B., Pievaroli, M., Tarchi, L., Ceccherini, A., and Innocenti, L., Heat Transfer and Pressure Loss Measurements of Matrix Cooling Geometries for Gas Turbine Airfoils, J. Turbomach., 2014, vol. 136, p. 121005; https://doi.org/10.1115/1.4028237CrossRef Carcasci, C., Facchini, B., Pievaroli, M., Tarchi, L., Ceccherini, A., and Innocenti, L., Heat Transfer and Pressure Loss Measurements of Matrix Cooling Geometries for Gas Turbine Airfoils, J. Turbomach., 2014, vol. 136, p. 121005; https://​doi.​org/​10.​1115/​1.​4028237CrossRef
18.
Zurück zum Zitat Dua, W., Luo, L., Wanga, S., Liub, J., and Sunden, B., Heat Transfer and Flow Structure in a Detached Latticework Duct, Appl. Thermal Engin., 2019, vol. 155, pp. 24–39; https://doi.org/10.1016/ j.applthermaleng.2019.03.148CrossRef Dua, W., Luo, L., Wanga, S., Liub, J., and Sunden, B., Heat Transfer and Flow Structure in a Detached Latticework Duct, Appl. Thermal Engin., 2019, vol. 155, pp. 24–39; https://​doi.​org/​10.​1016/​ j.applthermaleng.2019.03.148CrossRef
19.
Zurück zum Zitat Acharya, S., Zhou, F., Lagrone, J., Mahmood, G., and Bunker, R.S., Latticework (Vortex) Cooling Effectiveness: Rotating Channel Experiments, J. Turbomach., 2005, vol. 127, pp. 471–478; https://doi.org/10.1115/1.1860381CrossRef Acharya, S., Zhou, F., Lagrone, J., Mahmood, G., and Bunker, R.S., Latticework (Vortex) Cooling Effectiveness: Rotating Channel Experiments, J. Turbomach., 2005, vol. 127, pp. 471–478; https://​doi.​org/​10.​1115/​1.​1860381CrossRef
20.
Zurück zum Zitat Deng, H., Wang, K., Zhu, J., and Pan, W., Experimental Study on Heat Transfer and Flow Resistance in Improved Latticework Cooling Channels, J. Therm. Sci., 2013, vol. 22, pp. 250–256; 10.1007/s11630-013-0620-3ADSCrossRef Deng, H., Wang, K., Zhu, J., and Pan, W., Experimental Study on Heat Transfer and Flow Resistance in Improved Latticework Cooling Channels, J. Therm. Sci., 2013, vol. 22, pp. 250–256; 10.1007/s11630-013-0620-3ADSCrossRef
21.
Zurück zum Zitat Tsuru, T., Ishida, K., Fujita, J., and Takeishi, K., Three-Dimensional Visualization of Flow Characteristics Using a Magnetic Resonance Imaging (MRI) in a Lattice Cooling Channel, J. Turbomach., 2019, vol. 141, p. 061003; https://doi.org/10.1115/1.4041908CrossRef Tsuru, T., Ishida, K., Fujita, J., and Takeishi, K., Three-Dimensional Visualization of Flow Characteristics Using a Magnetic Resonance Imaging (MRI) in a Lattice Cooling Channel, J. Turbomach., 2019, vol. 141, p. 061003; https://​doi.​org/​10.​1115/​1.​4041908CrossRef
22.
Zurück zum Zitat Luo, J., Rao, Y., Yang, L., Yang, M., and Su, H., Computational Analysis of Turbulent Flow and Heat Transfer in Latticework Cooling Structures under Various Flow Configurations, Int. J. Thermal Sci., 2021, vol. 164, p. 106912; https://doi.org/10.1016/j.ijthermalsci.2021.106912CrossRef Luo, J., Rao, Y., Yang, L., Yang, M., and Su, H., Computational Analysis of Turbulent Flow and Heat Transfer in Latticework Cooling Structures under Various Flow Configurations, Int. J. Thermal Sci., 2021, vol. 164, p. 106912; https://​doi.​org/​10.​1016/​j.​ijthermalsci.​2021.​106912CrossRef
23.
Zurück zum Zitat Terekhov, V.I., Zolotukhin, A.V., and Chohar, I.A., Experimental Study of a Flow Structure in Coplanar Channels, J. Phys. Conf. Ser., 2020, vol. 1683, p. 022088; DOI:10.1088/1742-6596/1683/2/022088CrossRef Terekhov, V.I., Zolotukhin, A.V., and Chohar, I.A., Experimental Study of a Flow Structure in Coplanar Channels, J. Phys. Conf. Ser., 2020, vol. 1683, p. 022088; DOI:10.1088/1742-6596/1683/2/022088CrossRef
24.
Zurück zum Zitat Zolotukhin, A.V., Chokhar, I.A., and Terekhov, V.I., Experimental Study of the Flow Turbulent Structure in a Cell of a Lattice Matrix, Thermophys. Aeromech., 2022, vol. 29, pp. 1013–1020; DOI:10.1134/S0869864322060221ADSCrossRef Zolotukhin, A.V., Chokhar, I.A., and Terekhov, V.I., Experimental Study of the Flow Turbulent Structure in a Cell of a Lattice Matrix, Thermophys. Aeromech., 2022, vol. 29, pp. 1013–1020; DOI:10.1134/S0869864322060221ADSCrossRef
25.
Zurück zum Zitat Durbin, P.A., Near-Wall Turbulence Closure Modeling without Damping Function, Theor. Comput. Fluid Dyn., 1991, vol. 3, pp. 1–13; DOI: 10.1007/BF00271513ADSCrossRef Durbin, P.A., Near-Wall Turbulence Closure Modeling without Damping Function, Theor. Comput. Fluid Dyn., 1991, vol. 3, pp. 1–13; DOI: 10.1007/BF00271513ADSCrossRef
26.
Zurück zum Zitat Barsukov, A.V., Terekhov, V.V., and Terekhov, V.I., Numerical Simulation of Flow Dynamics and Heat Transfer in a Rectangular Channel with Periodic Ribs on One of One of the Walls, J. Phys. Conf. Ser., 2021, vol. 2119, pp. 012028; DOI:10.1088/1742-6596/2119/1/012028CrossRef Barsukov, A.V., Terekhov, V.V., and Terekhov, V.I., Numerical Simulation of Flow Dynamics and Heat Transfer in a Rectangular Channel with Periodic Ribs on One of One of the Walls, J. Phys. Conf. Ser., 2021, vol. 2119, pp. 012028; DOI:10.1088/1742-6596/2119/1/012028CrossRef
27.
Zurück zum Zitat Barsukov, A.V., Terekhov, V.V., and Terekhov, V.I., Effect of a Passive Disturbance on the Flow Structure and Heat Transfer in the Separation Region Behind a Backward-Facing Step, High Temp., 2021, vol. 59, pp. 115–120; https://doi.org/10.1134/S0018151X21010028CrossRef Barsukov, A.V., Terekhov, V.V., and Terekhov, V.I., Effect of a Passive Disturbance on the Flow Structure and Heat Transfer in the Separation Region Behind a Backward-Facing Step, High Temp., 2021, vol. 59, pp. 115–120; https://​doi.​org/​10.​1134/​S0018151X2101002​8CrossRef
28.
Zurück zum Zitat Barsukov, A.V., Terekhov, V.V., and Terekhov, V.I., Numerical Investigation of the Structure of Turbulent Flow and Heat Transfer in a Planar Channel with Hexagonal Honeycomb of Varying Depth. J. Appl. Ind. Math., 2023, vol. 17, pp. 242–250; doi.org/10.1134/S1990478923020023MathSciNetCrossRef Barsukov, A.V., Terekhov, V.V., and Terekhov, V.I., Numerical Investigation of the Structure of Turbulent Flow and Heat Transfer in a Planar Channel with Hexagonal Honeycomb of Varying Depth. J. Appl. Ind. Math., 2023, vol. 17, pp. 242–250; doi.org/10.1134/S1990478923020023MathSciNetCrossRef
29.
Zurück zum Zitat Deardoff, J.W., The Use of Subgrid Transport Equations in a Three Dimensional Model of Atmospheric Turbulence, ASME J. Fluids Eng., 1973, vol. 95, pp. 429–438; https://doi.org/10.1115/1.3447047CrossRef Deardoff, J.W., The Use of Subgrid Transport Equations in a Three Dimensional Model of Atmospheric Turbulence, ASME J. Fluids Eng., 1973, vol. 95, pp. 429–438; https://​doi.​org/​10.​1115/​1.​3447047CrossRef
30.
Zurück zum Zitat Philippov, M.V., Chokhar, I.A., Zolotukhin, A.V., Terekhov V.I., and Baranov, I.N., Experimental Study of the Three-Dimensional Flow Structure in Matrix Channels, J. Phys. Conf. Ser., 2021, vol. 2057, p. 012027; DOI:10.1088/1742-6596/2057/1/012027CrossRef Philippov, M.V., Chokhar, I.A., Zolotukhin, A.V., Terekhov V.I., and Baranov, I.N., Experimental Study of the Three-Dimensional Flow Structure in Matrix Channels, J. Phys. Conf. Ser., 2021, vol. 2057, p. 012027; DOI:10.1088/1742-6596/2057/1/012027CrossRef
Metadaten
Titel
Numerical Study of Heat Transfer in a Lattice Matrix with Varying the Crossing Angle
verfasst von
A. V. Barsukov
V. V. Terekhov
V. I. Terekhov
Publikationsdatum
01.03.2024
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 1/2024
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232824010156

Weitere Artikel der Ausgabe 1/2024

Journal of Engineering Thermophysics 1/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.