Skip to main content
Erschienen in: Mechanics of Composite Materials 3/2017

06.07.2017

Hybrid Model for Homogenization of the Elastoplastic Properties of Isotropic Matrix Composites

verfasst von: A. F. Fedotov

Erschienen in: Mechanics of Composite Materials | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A hybrid homogenization model for calculating the effective elastoplastic properties of isotropic matrix composites is suggested. The hybrid model combines the continuous deformation models of heterogeneous solid and porous materials. A distinctive feature of the model is the calculation of concentration coefficients of the average Hill strains in terms of the effective volumes of strain averaging. The effective volumes of averaging are determined by solving the boundary-value problem on plastic deformation of a simplified structural model of a two-phase composite considering the porous state of matrix. A comparison of calculation results with experimental data upon constructing deformation diagrams for polymer-matrix and metal-matrix composites is carried out. The possibility of changing the properties of the metal matrix in producing composites is mentioned. Therefore, the adequacy of analytical models greatly depends on the accuracy of identification of material constants of the matrix. On the whole, the new model described the plastic deformation of matrix composites more accurately than the Mori–Tanaka model. The analytical model proposed has a simpler sampling scheme, a simple computation algorithm, and ensured the same calculation accuracy for the deformation diagram of an aluminum-matrix composite as the numerical finite-element model created by the ABAQUS software.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. D. Eshelby, The continuum Theory of Lattice Defects, Academic Press, New York (1956).CrossRef J. D. Eshelby, The continuum Theory of Lattice Defects, Academic Press, New York (1956).CrossRef
2.
Zurück zum Zitat T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metallurgica, 21, 571-574 (1973).CrossRef T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metallurgica, 21, 571-574 (1973).CrossRef
3.
Zurück zum Zitat Y. Benveniste, “A new approach to the application of Mori–Tanaka’s theory in composite materials,” Mech. Mater, 6, 147-157 (1987).CrossRef Y. Benveniste, “A new approach to the application of Mori–Tanaka’s theory in composite materials,” Mech. Mater, 6, 147-157 (1987).CrossRef
4.
Zurück zum Zitat P. Ponte Castaneda and J. R. Willis, “The effect of spatial distribution on the effective behavior of composite materials and cracked media,” J. Mech. Phys. Sol., 43, 1919-1951 (1995).CrossRef P. Ponte Castaneda and J. R. Willis, “The effect of spatial distribution on the effective behavior of composite materials and cracked media,” J. Mech. Phys. Sol., 43, 1919-1951 (1995).CrossRef
5.
Zurück zum Zitat G. Lielens, P. Pirotte, A. Couniot, et al, “Prediction of thermo-mechanical properties for compression moulded composites,” Compos. Pt. A: Appl. Sci. Manuf., 29, 63-70 (1998).CrossRef G. Lielens, P. Pirotte, A. Couniot, et al, “Prediction of thermo-mechanical properties for compression moulded composites,” Compos. Pt. A: Appl. Sci. Manuf., 29, 63-70 (1998).CrossRef
6.
Zurück zum Zitat R. Hill, “A self-consistent mechanics of composite materials,” J. Mech. Phys. Solids, 13, 213-222 (1965).CrossRef R. Hill, “A self-consistent mechanics of composite materials,” J. Mech. Phys. Solids, 13, 213-222 (1965).CrossRef
7.
Zurück zum Zitat B. Budiansky, “On the elastic moduli of some heterogeneous materials,” J. Mech. Phys. Solids, 13, 223-227 (1965).CrossRef B. Budiansky, “On the elastic moduli of some heterogeneous materials,” J. Mech. Phys. Solids, 13, 223-227 (1965).CrossRef
8.
Zurück zum Zitat R. M. Christensen, Mechanics of Composite Materials, John Wiley & Sons, New York (1979). R. M. Christensen, Mechanics of Composite Materials, John Wiley & Sons, New York (1979).
9.
Zurück zum Zitat A. N. Norris, “A differential scheme for the effective moduli of composites,” Mech. Mater., 4, 1-16 (1985).CrossRef A. N. Norris, “A differential scheme for the effective moduli of composites,” Mech. Mater., 4, 1-16 (1985).CrossRef
10.
Zurück zum Zitat H. J. Böhm, A Short Introduction to Basic Aspects of Continuum Micromechanics, TU Wien, Vienna (2015). H. J. Böhm, A Short Introduction to Basic Aspects of Continuum Micromechanics, TU Wien, Vienna (2015).
11.
Zurück zum Zitat A. F. Fedotov, “Prediction of the elastic moduli of composites with isolated inclusions by the method of effective volumes of averaging,” Mech. Compos. Mater., 50, No. 6, 777-778 (2014).CrossRef A. F. Fedotov, “Prediction of the elastic moduli of composites with isolated inclusions by the method of effective volumes of averaging,” Mech. Compos. Mater., 50, No. 6, 777-778 (2014).CrossRef
12.
Zurück zum Zitat C. L. Tucker and E. Liang, “Stiffness predictions for unidirectional short-fiber composites: review and evaluation,” Compos. Sci. Technol., 59, 655-671 (1999).CrossRef C. L. Tucker and E. Liang, “Stiffness predictions for unidirectional short-fiber composites: review and evaluation,” Compos. Sci. Technol., 59, 655-671 (1999).CrossRef
13.
Zurück zum Zitat N. N. Malinin, Applied Theory of Plasticity and Creep, Mashinostrojenie, Moscow (1975). N. N. Malinin, Applied Theory of Plasticity and Creep, Mashinostrojenie, Moscow (1975).
14.
Zurück zum Zitat L. Nilsen, Mechanical Properties of Polymers and Polymer Compositions, Dekker, New York (1974). L. Nilsen, Mechanical Properties of Polymers and Polymer Compositions, Dekker, New York (1974).
15.
Zurück zum Zitat A. F. Fedotov, “Analysis of the adequacy and selection of phenomenological models of the elastic properties of porous powder materials,” J. Mater. Sci., 52, iss. 5, 2964-2973 (2017). A. F. Fedotov, “Analysis of the adequacy and selection of phenomenological models of the elastic properties of porous powder materials,” J. Mater. Sci., 52, iss. 5, 2964-2973 (2017).
16.
Zurück zum Zitat Р. Barai and G. J. Weng, “A theory of plasticity for carbon nanotube reinforced composites,” Int. J. Plast., 27, 539-559, (2011).CrossRef Р. Barai and G. J. Weng, “A theory of plasticity for carbon nanotube reinforced composites,” Int. J. Plast., 27, 539-559, (2011).CrossRef
17.
Zurück zum Zitat G. P. Tandon and G. J. Weng, “A theory of particle-reinforced plasticity,” J. Appl. Mech., 55, 126-135 (1988).CrossRef G. P. Tandon and G. J. Weng, “A theory of particle-reinforced plasticity,” J. Appl. Mech., 55, 126-135 (1988).CrossRef
18.
Zurück zum Zitat I. Doghri and A. Ouaar, “Homogenization of two-phase elasto-plastic composite materials and structures. Study of tangent operators, cyclic plasticity and numerical algorithms,” Int. J. of Solids and Structures, 40, 1681-1712 (2003).CrossRef I. Doghri and A. Ouaar, “Homogenization of two-phase elasto-plastic composite materials and structures. Study of tangent operators, cyclic plasticity and numerical algorithms,” Int. J. of Solids and Structures, 40, 1681-1712 (2003).CrossRef
19.
Zurück zum Zitat T. Fudzi and M. Dzako. Fracture Mechanics of Composite Materials [Russian translation], , M., Mir, (1982). T. Fudzi and M. Dzako. Fracture Mechanics of Composite Materials [Russian translation], , M., Mir, (1982).
20.
Zurück zum Zitat N. Chawla and Y.-L. Shen, “Mechanical behavior of particle reinforced metal matrix composites,” Adv. Eng. Mater., 3, No. 6, 357-370 (2001).CrossRef N. Chawla and Y.-L. Shen, “Mechanical behavior of particle reinforced metal matrix composites,” Adv. Eng. Mater., 3, No. 6, 357-370 (2001).CrossRef
21.
Zurück zum Zitat D. Saraev and S. Schmauder, “Finite element modelling of Al/SiCp metal matrix composites with particles aligned in stripes –– a 2D-3D comparison,” Int. J. Plast., 19, 733-747 (2003).CrossRef D. Saraev and S. Schmauder, “Finite element modelling of Al/SiCp metal matrix composites with particles aligned in stripes –– a 2D-3D comparison,” Int. J. Plast., 19, 733-747 (2003).CrossRef
22.
Zurück zum Zitat I. G. Watson, P. D. Lee, R. J. Dashwood, and P. Young, “Simulation of the mechanical properties of an aluminum matrix composite using X-ray microtomography,” Metall. Mater. Trans. A, 37A, 551-558 (2006).CrossRef I. G. Watson, P. D. Lee, R. J. Dashwood, and P. Young, “Simulation of the mechanical properties of an aluminum matrix composite using X-ray microtomography,” Metall. Mater. Trans. A, 37A, 551-558 (2006).CrossRef
23.
Zurück zum Zitat A. M. Rajendran and S. J. Bless, Plastic Flow and Failure Modeling Under High Strain Rate Loading, Univ. of Dayton Res. Institute Dayton, Ohio (1988). A. M. Rajendran and S. J. Bless, Plastic Flow and Failure Modeling Under High Strain Rate Loading, Univ. of Dayton Res. Institute Dayton, Ohio (1988).
24.
Zurück zum Zitat Properties of Elements. Handbook [in Russian], ed. M. E. Dritsa, Metallurgy, Moscow (1985). Properties of Elements. Handbook [in Russian], ed. M. E. Dritsa, Metallurgy, Moscow (1985).
25.
Zurück zum Zitat C. Gonzalez, J. Segurado, and J. LLorca, “Numerical simulation of elasto-plastic deformation of composites: evolution of stress micro) elds and implications for homogenization models,” J. Mech. Phys. Solids, 52, 1573-1593 (2004). C. Gonzalez, J. Segurado, and J. LLorca, “Numerical simulation of elasto-plastic deformation of composites: evolution of stress micro) elds and implications for homogenization models,” J. Mech. Phys. Solids, 52, 1573-1593 (2004).
26.
Zurück zum Zitat N. P. Cheng, S. M. Zeng, and Z. Y. Liu, “Preparation, microstructures and deformation behavior of SiCр/6066Al composites produced by PM route,” J. of Materials Proc. Tech., 202, 27-40 (2008).CrossRef N. P. Cheng, S. M. Zeng, and Z. Y. Liu, “Preparation, microstructures and deformation behavior of SiCр/6066Al composites produced by PM route,” J. of Materials Proc. Tech., 202, 27-40 (2008).CrossRef
Metadaten
Titel
Hybrid Model for Homogenization of the Elastoplastic Properties of Isotropic Matrix Composites
verfasst von
A. F. Fedotov
Publikationsdatum
06.07.2017
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 3/2017
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-017-9667-7

Weitere Artikel der Ausgabe 3/2017

Mechanics of Composite Materials 3/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.