Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 9/2023

04.08.2023 | Review Article-Mechanical Engineering

Hybrid Thermally Driven Sorption–Ejector Systems: A Comprehensive Overview

verfasst von: Majdi Amin

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 9/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The rapid increase in population and demand for human comfort causes a substantial increase in energy usage. Sorption technology and ejectors are the most concerned heat-driven system nowadays due to their low energy consumption, ability to be powered by a low-grade heat source, and environmental friendliness. However, it has low energy efficiency and a high initial cost compared with vapor compression cycles. Combining sorption–ejector systems can increase the overall thermal performance, provide the benefits of each cycle, and overcome the limitations of a single cycle. This study provides a comprehensive overview of the art of combining sorption, including absorption and adsorption, with ejector systems. The paper primarily focuses on the theory of operation and the background of absorption, adsorption, and ejector systems. Research and achievements on combined absorption–ejector systems are classified into combined single-ejector, multi-ejector, and other systems with absorption cooling systems. On the other hand, studies on adsorption–ejector systems are classified into combined adsorption cooling, adsorption desalination, and other systems with ejectors. A summary of the reviewed studies and the utilized working fluid is provided and discussed. Results showed that numerous experimental studies still need to be conducted to validate the theoretical data. At different design and operating conditions and system design, by using combined sorption–ejector systems, the power consumption can be decreased by 9.8%, cooling capacity reduced by 13.6%, and the coefficient of performance can be enhanced by 8–60% compared with the standalone sorption system. The overall COP of combined adsorption–ejector systems increased by 0.33 and 1.47 compared with the standalone ABCS, which is lower than that obtained from EJABS. The SDWP is enhanced by 51% compared with the standalone ADCS. The combined adsorption–ejector systems are compatible with several working fluids; however, LiBr-H2O solution predominates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Harby, K.: Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: An updated overview. Renew. Sustain. Energy Rev. 73, 1247–1264 (2017) Harby, K.: Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: An updated overview. Renew. Sustain. Energy Rev. 73, 1247–1264 (2017)
2.
Zurück zum Zitat Harby, K.; Almohammadi M, K.: Study of a new solar-powered combined absorption-adsorption cooling system (ABADS). Arab. J. Sci. Eng. 46, 2929–2945 (2021) Harby, K.; Almohammadi M, K.: Study of a new solar-powered combined absorption-adsorption cooling system (ABADS). Arab. J. Sci. Eng. 46, 2929–2945 (2021)
3.
Zurück zum Zitat Harby, K.; Doaa, R.G.; Nader, S.K.; Mohamed, S.H.: Performance improvement of vapor compression cooling systems using evaporative condenser: an overview. Renew. Sustain. Energy Rev. 58, 347–360 (2016) Harby, K.; Doaa, R.G.; Nader, S.K.; Mohamed, S.H.: Performance improvement of vapor compression cooling systems using evaporative condenser: an overview. Renew. Sustain. Energy Rev. 58, 347–360 (2016)
4.
Zurück zum Zitat Verde, M.; Harby, K.; Robert de Boer, J.M.; Corberán: Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part I- Modeling and experimental validation. Energy 116, 526–538 (2016) Verde, M.; Harby, K.; Robert de Boer, J.M.; Corberán: Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part I- Modeling and experimental validation. Energy 116, 526–538 (2016)
5.
Zurück zum Zitat Harby, K.; Fahad, A.: An investigation of energy savings in a split air-conditioner using commercial cooling pads with different thicknesses and wide range of climatic conditions. Energy 182, 321–336 (2019) Harby, K.; Fahad, A.: An investigation of energy savings in a split air-conditioner using commercial cooling pads with different thicknesses and wide range of climatic conditions. Energy 182, 321–336 (2019)
6.
Zurück zum Zitat Hamdy, M.; Askalany, A.; Harby, K.; Nader, K.: An overview on adsorption cooling systems powered by waste heat from internal combustion engine. Renew. Sustain. Energy Rev. 51, 1223–1234 (2015) Hamdy, M.; Askalany, A.; Harby, K.; Nader, K.: An overview on adsorption cooling systems powered by waste heat from internal combustion engine. Renew. Sustain. Energy Rev. 51, 1223–1234 (2015)
7.
Zurück zum Zitat Ehab, S.A.; Ahmed, A.A.; Harby, K.; Mohamed, R.D.; Ahmed, S.A.: Adsorption desalination-cooling system employing copper sulfate and driven by low grade heat sources. Appl. Therm. Eng. 136, 169–176 (2018) Ehab, S.A.; Ahmed, A.A.; Harby, K.; Mohamed, R.D.; Ahmed, S.A.: Adsorption desalination-cooling system employing copper sulfate and driven by low grade heat sources. Appl. Therm. Eng. 136, 169–176 (2018)
8.
Zurück zum Zitat Hassan, M.; El-Sharkawy, I.I.; Harby, K.: Study of an innovative combined absorption-adsorption cooling system employing the same evaporator and condenser. Case Stud. Therm. Eng. 42, 102690 (2022) Hassan, M.; El-Sharkawy, I.I.; Harby, K.: Study of an innovative combined absorption-adsorption cooling system employing the same evaporator and condenser. Case Stud. Therm. Eng. 42, 102690 (2022)
9.
Zurück zum Zitat Ahmed, S.A.; Askalany, A.; Harby, K.; Ahmed, M.S.: A state of the art of hybrid adsorption desalination-cooling systems. Renew. Sustain. Energy Rev. 58, 692–703 (2016) Ahmed, S.A.; Askalany, A.; Harby, K.; Ahmed, M.S.: A state of the art of hybrid adsorption desalination-cooling systems. Renew. Sustain. Energy Rev. 58, 692–703 (2016)
10.
Zurück zum Zitat Hirota, Y.; Sugiyama, Y.; Kubota, M.; Watanabe, F.; Kobayashi, N.; Hasatani, M.; Kanamori, M.: Development of a suction-pump-assisted thermal and electrical hybrid adsorption heat pump. Appl. Therm. Eng. 28, 1687–1693 (2008) Hirota, Y.; Sugiyama, Y.; Kubota, M.; Watanabe, F.; Kobayashi, N.; Hasatani, M.; Kanamori, M.: Development of a suction-pump-assisted thermal and electrical hybrid adsorption heat pump. Appl. Therm. Eng. 28, 1687–1693 (2008)
11.
Zurück zum Zitat Verde, M.; Harby, K.; Corberán, J.M.: Optimization of thermal design and geometrical parameters of a flat tube-fin adsorbent bed for automobile air-conditioning. Appl. Therm. Eng. 111, 489–502 (2017) Verde, M.; Harby, K.; Corberán, J.M.: Optimization of thermal design and geometrical parameters of a flat tube-fin adsorbent bed for automobile air-conditioning. Appl. Therm. Eng. 111, 489–502 (2017)
12.
Zurück zum Zitat AfonsoClito, F.A.: Refrigeration system classification, research and development. Appl. Therm. Eng. 26, 1961–1971 (2006) AfonsoClito, F.A.: Refrigeration system classification, research and development. Appl. Therm. Eng. 26, 1961–1971 (2006)
13.
Zurück zum Zitat Allouhi, A.; Kousksou, T.; Jamil, A.; Bruel, P.; Mourad, Y.; Zeraouli, Y.: Solar driven cooling systems: an updated review. Renew. Sustain. Energy Rev. 44, 159–181 (2015) Allouhi, A.; Kousksou, T.; Jamil, A.; Bruel, P.; Mourad, Y.; Zeraouli, Y.: Solar driven cooling systems: an updated review. Renew. Sustain. Energy Rev. 44, 159–181 (2015)
14.
Zurück zum Zitat Aristov, Y.I.: Adsorptive transformation and storage of renewable heat: review of current trends in adsorption dynamics. Renew. Energy 110, 105–114 (2017) Aristov, Y.I.: Adsorptive transformation and storage of renewable heat: review of current trends in adsorption dynamics. Renew. Energy 110, 105–114 (2017)
15.
Zurück zum Zitat Hamza, K.M.; Saud, G.: Hybrid ejector-absorption refrigeration systems: a review. Energies 14, 6576 (2021) Hamza, K.M.; Saud, G.: Hybrid ejector-absorption refrigeration systems: a review. Energies 14, 6576 (2021)
16.
Zurück zum Zitat Varga, S.; Oliveira, A.C.; Palmero-Marrero, A.; Vrba, J.: Preliminary experimental results with a solar driven ejector air conditioner in Portugal. Renew. Energy 109, 83–92 (2017) Varga, S.; Oliveira, A.C.; Palmero-Marrero, A.; Vrba, J.: Preliminary experimental results with a solar driven ejector air conditioner in Portugal. Renew. Energy 109, 83–92 (2017)
17.
Zurück zum Zitat Bilal, A.Q.; Muhammad, I.; Mohamed, A.A.: Experimental energetic analysis of a vapor compression refrigeration system with dedicated mechanical sub-cooling. Appl. Energy 102, 1035–1041 (2013) Bilal, A.Q.; Muhammad, I.; Mohamed, A.A.: Experimental energetic analysis of a vapor compression refrigeration system with dedicated mechanical sub-cooling. Appl. Energy 102, 1035–1041 (2013)
18.
Zurück zum Zitat Ehab, S.A.; Ahmed, A.A.; Harby, K.; Mohamed, R.D.; Bahgat, R.M.; Ahmed, A.: Experimental adsorption water desalination system utilizing activated clay for low grade heat source applications. J. Energy Storage 43, 103219 (2021) Ehab, S.A.; Ahmed, A.A.; Harby, K.; Mohamed, R.D.; Bahgat, R.M.; Ahmed, A.: Experimental adsorption water desalination system utilizing activated clay for low grade heat source applications. J. Energy Storage 43, 103219 (2021)
19.
Zurück zum Zitat Konstantinos, B.: Solar ejector cooling systems: a review. Renew. Energy 164, 566–602 (2021) Konstantinos, B.: Solar ejector cooling systems: a review. Renew. Energy 164, 566–602 (2021)
20.
Zurück zum Zitat Herold, K.E.; Radermacher, R.: Absorption heat pumps. Mech. Eng. 111, 68–71 (1989) Herold, K.E.; Radermacher, R.: Absorption heat pumps. Mech. Eng. 111, 68–71 (1989)
21.
Zurück zum Zitat Elsafty, A.; AL-DAINI, A.J.: Economical comparison between a solar powered vapour absorption air-conditioning system and a vapour compression system in the Middle East. Renew. Energy 25, 569–583 (2002) Elsafty, A.; AL-DAINI, A.J.: Economical comparison between a solar powered vapour absorption air-conditioning system and a vapour compression system in the Middle East. Renew. Energy 25, 569–583 (2002)
22.
Zurück zum Zitat Abdulrahman, T.M.; Sohif, M.; Sulaiman, M.Y.; Sopian, K.; Abduljalil, A.A.: Survey of liquid desiccant dehumidification system based on integrated vapor compression technology for building applications. Energy and Build. 62, 1–14 (2013) Abdulrahman, T.M.; Sohif, M.; Sulaiman, M.Y.; Sopian, K.; Abduljalil, A.A.: Survey of liquid desiccant dehumidification system based on integrated vapor compression technology for building applications. Energy and Build. 62, 1–14 (2013)
23.
Zurück zum Zitat Abdulrahman, T.M.; Sohif, M.; Sulaiman, M.Y.; Sopian, K.; Abduljalil, A.A.: Historical review of liquid desiccant evaporation cooling technology. Energy and Build. 67, 22–33 (2013) Abdulrahman, T.M.; Sohif, M.; Sulaiman, M.Y.; Sopian, K.; Abduljalil, A.A.: Historical review of liquid desiccant evaporation cooling technology. Energy and Build. 67, 22–33 (2013)
24.
Zurück zum Zitat Jahar, S.: Ejector enhanced vapor compression refrigeration and heat pump systems-A review. Renew. Sustain. Energy Rev. 16, 6647–6659 (2012) Jahar, S.: Ejector enhanced vapor compression refrigeration and heat pump systems-A review. Renew. Sustain. Energy Rev. 16, 6647–6659 (2012)
25.
Zurück zum Zitat Garousi, F.L.; Mahmoudi, S.M.; Rosen, M.A.: Analysis of crystallization risk in double effect absorption refrigeration systems. Appl. Therm. Eng. 31, 1712–1717 (2011) Garousi, F.L.; Mahmoudi, S.M.; Rosen, M.A.: Analysis of crystallization risk in double effect absorption refrigeration systems. Appl. Therm. Eng. 31, 1712–1717 (2011)
26.
Zurück zum Zitat Wang, L.W.; Wang, R.Z.; Olivera, R.G.: A review on adsorption working pairs for refrigeration. Renew. Sustain. Energy Rev. 13, 518–534 (2009) Wang, L.W.; Wang, R.Z.; Olivera, R.G.: A review on adsorption working pairs for refrigeration. Renew. Sustain. Energy Rev. 13, 518–534 (2009)
27.
Zurück zum Zitat Fan, Y.; Luo, L.; Souyri, B.: Review of solar sorption refrigeration technologies: development and applications. Renew. Sustain. Energy Rev. 11, 1758–1775 (2007) Fan, Y.; Luo, L.; Souyri, B.: Review of solar sorption refrigeration technologies: development and applications. Renew. Sustain. Energy Rev. 11, 1758–1775 (2007)
28.
Zurück zum Zitat Srikhirin, P.; Aphornratana, S.; Chungpaibulpatana, S.: A review of absorption refrigeration technologies. Renew. Sustain. Energy Rev. 5, 343–372 (2001) Srikhirin, P.; Aphornratana, S.; Chungpaibulpatana, S.: A review of absorption refrigeration technologies. Renew. Sustain. Energy Rev. 5, 343–372 (2001)
29.
Zurück zum Zitat Horuz, I.: A comparison between ammonia-water and water-lithium bromide solutions in vapor absorption refrigeration systems. Int. Commun. Heat Mass Trans. 25, 711–721 (1998) Horuz, I.: A comparison between ammonia-water and water-lithium bromide solutions in vapor absorption refrigeration systems. Int. Commun. Heat Mass Trans. 25, 711–721 (1998)
30.
Zurück zum Zitat Mansoori, G.A.; Patel, V.: Thermodynamic basis for the choice of working fluids for solar absorption cooling systems. Sol. Energy 22, 483–491 (1979) Mansoori, G.A.; Patel, V.: Thermodynamic basis for the choice of working fluids for solar absorption cooling systems. Sol. Energy 22, 483–491 (1979)
31.
Zurück zum Zitat Herold K.E., Radermacher R. and Klein S.: Absorption Chillers and Heat Pumps, CRC Press, INC, ISBN 9: 8493–9427. (1996) Herold K.E., Radermacher R. and Klein S.: Absorption Chillers and Heat Pumps, CRC Press, INC, ISBN 9: 8493–9427. (1996)
32.
Zurück zum Zitat Fern, A.J.; Sieres, J.: The importance of the ammonia purification process in ammonia-water absorption systems. Energy Convers. Manage. 47, 1975–1987 (2006) Fern, A.J.; Sieres, J.: The importance of the ammonia purification process in ammonia-water absorption systems. Energy Convers. Manage. 47, 1975–1987 (2006)
33.
Zurück zum Zitat Hulse, G.E.: Refroidissement d’un wagon frigorifique a merchandises par un system a adsorption utilisant le gel de silice. Revue Generale de Froid 10, 281–287 (1929) Hulse, G.E.: Refroidissement d’un wagon frigorifique a merchandises par un system a adsorption utilisant le gel de silice. Revue Generale de Froid 10, 281–287 (1929)
34.
Zurück zum Zitat Miller, E.B.: The development of silica-gel, refrigerating engineering. Am. Soc. Refrigerating Eng. 17, 103–108 (1929) Miller, E.B.: The development of silica-gel, refrigerating engineering. Am. Soc. Refrigerating Eng. 17, 103–108 (1929)
35.
Zurück zum Zitat Critoph R.E., Carbon-ammonia systems-previous experience, current projects and challenges for the future. Proceedings of the international sorption and heat pump conference (ISHPC 2002), China. Critoph R.E., Carbon-ammonia systems-previous experience, current projects and challenges for the future. Proceedings of the international sorption and heat pump conference (ISHPC 2002), China.
36.
Zurück zum Zitat Harby, K.; Ehab, S.A.; Almohammadi, K.M.: A novel combined reverse osmosis and hybrid absorption desalination-cooling system to increase overall water recovery and energy efficiency. J. Clean. Prod. 287, 125014 (2021) Harby, K.; Ehab, S.A.; Almohammadi, K.M.: A novel combined reverse osmosis and hybrid absorption desalination-cooling system to increase overall water recovery and energy efficiency. J. Clean. Prod. 287, 125014 (2021)
37.
Zurück zum Zitat Almohammadi, K.M.; Harby, K.: Operational conditions optimization of a proposed solar-powered adsorption cooling system: experimental, modeling, and optimization algorithm techniques. Energy 206, 118007 (2020) Almohammadi, K.M.; Harby, K.: Operational conditions optimization of a proposed solar-powered adsorption cooling system: experimental, modeling, and optimization algorithm techniques. Energy 206, 118007 (2020)
38.
Zurück zum Zitat Aristov, Y.I.: Challenging offers of material science for adsorption heat transformation: a review. Appl. Therm. Eng. 50, 1610–1618 (2013) Aristov, Y.I.: Challenging offers of material science for adsorption heat transformation: a review. Appl. Therm. Eng. 50, 1610–1618 (2013)
39.
Zurück zum Zitat El-sharkawy, M.M.; Askalany, A.; Harby, K.; Ahmed, M.S.: Adsorption isotherms and kinetics of a mixture of Pentafluoroethane, 1,1,1,2-Tetrafluoroethane and Difluoromethane (HFC-407C) onto granular activated carbon. Appl. Therm. Eng. 93, 988–994 (2016) El-sharkawy, M.M.; Askalany, A.; Harby, K.; Ahmed, M.S.: Adsorption isotherms and kinetics of a mixture of Pentafluoroethane, 1,1,1,2-Tetrafluoroethane and Difluoromethane (HFC-407C) onto granular activated carbon. Appl. Therm. Eng. 93, 988–994 (2016)
40.
Zurück zum Zitat Mohamed, G.; Askalany, A.; Harby, K.; Ahmed, M.S.: Adsorption isotherms and kinetics of HFC-404A onto bituminous based granular activated carbon for storage and cooling applications. Appl. Therm. Eng. 105, 639–645 (2016) Mohamed, G.; Askalany, A.; Harby, K.; Ahmed, M.S.: Adsorption isotherms and kinetics of HFC-404A onto bituminous based granular activated carbon for storage and cooling applications. Appl. Therm. Eng. 105, 639–645 (2016)
41.
Zurück zum Zitat Lu, Z.; Wang, R.; Xia, Z.; Gong, L.: Experimental investigation adsorption chillers using micro-porous silica gel–water and compound adsorbent-methanol. Energy Convers. Manage. 65, 430–437 (2013) Lu, Z.; Wang, R.; Xia, Z.; Gong, L.: Experimental investigation adsorption chillers using micro-porous silica gel–water and compound adsorbent-methanol. Energy Convers. Manage. 65, 430–437 (2013)
42.
Zurück zum Zitat Yeboah, S.K.; Darkwa, J.: A critical review of thermal enhancement of packed beds for water vapour adsorption. Renew. Sustain. Energy Rev. 58, 1500–1520 (2016) Yeboah, S.K.; Darkwa, J.: A critical review of thermal enhancement of packed beds for water vapour adsorption. Renew. Sustain. Energy Rev. 58, 1500–1520 (2016)
43.
Zurück zum Zitat Hong, S.W.; Kwon, O.K.; Chung, J.D.: Application of an embossed plate heat exchanger to adsorption chiller. Int. J. Refrig 65, 142–153 (2016) Hong, S.W.; Kwon, O.K.; Chung, J.D.: Application of an embossed plate heat exchanger to adsorption chiller. Int. J. Refrig 65, 142–153 (2016)
44.
Zurück zum Zitat Palomba, V.; Vasta, S.; Giacoppo, G.; Calabrese, L.; Gullì, G.; La Rosa, D.; Angelo, F.: Design of an innovative graphite exchanger for adsorption heat pumps and chillers. Energy Procedia 81, 1030–1040 (2015) Palomba, V.; Vasta, S.; Giacoppo, G.; Calabrese, L.; Gullì, G.; La Rosa, D.; Angelo, F.: Design of an innovative graphite exchanger for adsorption heat pumps and chillers. Energy Procedia 81, 1030–1040 (2015)
45.
Zurück zum Zitat Hadj, A.A.; Benhaoua, B.; Balghouthi, M.: Simulation of tubular adsorber for adsorption refrigeration system powered by solar energy in sub-Sahara region of Algeria. Energy Convers. Manage. 106, 31–40 (2015) Hadj, A.A.; Benhaoua, B.; Balghouthi, M.: Simulation of tubular adsorber for adsorption refrigeration system powered by solar energy in sub-Sahara region of Algeria. Energy Convers. Manage. 106, 31–40 (2015)
46.
Zurück zum Zitat Vasta S., Palomba V., Frazzica A., Costa F., Freni A., Dynamic simulation and performance analysis of solar cooling systems in Italy. Energy Procedia 2015;81. Vasta S., Palomba V., Frazzica A., Costa F., Freni A., Dynamic simulation and performance analysis of solar cooling systems in Italy. Energy Procedia 2015;81.
47.
Zurück zum Zitat Freni, F.; Giacobbe, F.; Missori, S.; Montanini, R.; Sili, A.: Infrared thermography as a non destructive technique for the detection of titanium casting defects. Metall Italiana 103, 23–29 (2011) Freni, F.; Giacobbe, F.; Missori, S.; Montanini, R.; Sili, A.: Infrared thermography as a non destructive technique for the detection of titanium casting defects. Metall Italiana 103, 23–29 (2011)
48.
Zurück zum Zitat Tamainot-Telto, Z.; Metcalf, S.J.; Critoph, R.E.: Novel compact sorption generators for car air conditioning. Int. J. Refrig 32, 727–733 (2009) Tamainot-Telto, Z.; Metcalf, S.J.; Critoph, R.E.: Novel compact sorption generators for car air conditioning. Int. J. Refrig 32, 727–733 (2009)
49.
Zurück zum Zitat Chauhan, P.R.; Kaushik, S.C.; Tyagi, S.K.: Current status and technological advancements in adsorption refrigeration systems: A review. Renew. Sustain. Energy Rev. 154, 111808 (2022) Chauhan, P.R.; Kaushik, S.C.; Tyagi, S.K.: Current status and technological advancements in adsorption refrigeration systems: A review. Renew. Sustain. Energy Rev. 154, 111808 (2022)
50.
Zurück zum Zitat Kneass, S.L., Practice and Theory of the Injector; Kessinger Publications: Whitefish, MT, USA, 2007; ISBN 978–0–548–47587–4. Kneass, S.L., Practice and Theory of the Injector; Kessinger Publications: Whitefish, MT, USA, 2007; ISBN 978–0–548–47587–4.
51.
Zurück zum Zitat Giorgio, B.; Riccardo, M.; Fabio, I.: Ejector refrigeration: A comprehensive review. Renew. Sustain. Energy Rev. 53, 373–407 (2016) Giorgio, B.; Riccardo, M.; Fabio, I.: Ejector refrigeration: A comprehensive review. Renew. Sustain. Energy Rev. 53, 373–407 (2016)
52.
Zurück zum Zitat Chen, X.; Omer, S.; Worall, M.; Riffat, S.: Recent developments in ejector refrigeration technologies. Renew. Sustain. Energy Rev. 19, 629–651 (2013) Chen, X.; Omer, S.; Worall, M.; Riffat, S.: Recent developments in ejector refrigeration technologies. Renew. Sustain. Energy Rev. 19, 629–651 (2013)
53.
Zurück zum Zitat Al-Alili, A.; Hwang, Y.; Radermacher, R.: Review of solar thermal air conditioning technologies. Int. J. Refrig 39, 4–22 (2014) Al-Alili, A.; Hwang, Y.; Radermacher, R.: Review of solar thermal air conditioning technologies. Int. J. Refrig 39, 4–22 (2014)
54.
Zurück zum Zitat Abdulateef, J.M.; Sopian, K.; Alghoul, M.A.; Sulaiman, M.Y.: Review on solar-driven ejector refrigeration technologies. Renew. Sustain. Energy Rev. 13, 1338–1349 (2009) Abdulateef, J.M.; Sopian, K.; Alghoul, M.A.; Sulaiman, M.Y.: Review on solar-driven ejector refrigeration technologies. Renew. Sustain. Energy Rev. 13, 1338–1349 (2009)
55.
Zurück zum Zitat Sarkar, J.: Ejector enhanced vapor compression refrigeration and heat pump systems-a review. Renew. Sustain. Energy Rev. 16, 6647–6659 (2012) Sarkar, J.: Ejector enhanced vapor compression refrigeration and heat pump systems-a review. Renew. Sustain. Energy Rev. 16, 6647–6659 (2012)
56.
Zurück zum Zitat Little, A.B.; Garimella, S.: A review of ejector technology for refrigeration applications. Int. J. Refrig 19, 1–15 (2011) Little, A.B.; Garimella, S.: A review of ejector technology for refrigeration applications. Int. J. Refrig 19, 1–15 (2011)
57.
Zurück zum Zitat Chunnanond., Kanjanapon S.A., Ejectors applications in refrigeration technology. Renewable and sustainable energy reviews. 2004;8:129–155. Chunnanond., Kanjanapon S.A., Ejectors applications in refrigeration technology. Renewable and sustainable energy reviews. 2004;8:129–155.
58.
Zurück zum Zitat Chen, L.T.: A new ejector-absorber cycle to improve the COP of an absorption Refrigeration system. Appl. Energy 30, 37–51 (1988) Chen, L.T.: A new ejector-absorber cycle to improve the COP of an absorption Refrigeration system. Appl. Energy 30, 37–51 (1988)
59.
Zurück zum Zitat Jiang, L.; Gu, Z.; Feng, X.; Li, Y.: Thermo-economical analysis between new absorption-ejector hybrid refrigeration system and small double-effect absorption system. Appl. Therm. Eng. 22, 1027–1036 (2002) Jiang, L.; Gu, Z.; Feng, X.; Li, Y.: Thermo-economical analysis between new absorption-ejector hybrid refrigeration system and small double-effect absorption system. Appl. Therm. Eng. 22, 1027–1036 (2002)
60.
Zurück zum Zitat Sun, D.W.; Eames, I.W.; Aphornratana, S.: Evaluation of a novel combined ejector-absorption refrigeration cycle-I: computer simulation. Int. J. Refrig 19, 172–180 (1996) Sun, D.W.; Eames, I.W.; Aphornratana, S.: Evaluation of a novel combined ejector-absorption refrigeration cycle-I: computer simulation. Int. J. Refrig 19, 172–180 (1996)
61.
Zurück zum Zitat Hong, D.; Chen, G.; Tang, L.; He, Y.: A novel ejector-absorption combined refrigeration cycle. Int. J. Refrig 34, 1596–1603 (2011) Hong, D.; Chen, G.; Tang, L.; He, Y.: A novel ejector-absorption combined refrigeration cycle. Int. J. Refrig 34, 1596–1603 (2011)
62.
Zurück zum Zitat Jelinek, M.; Borde, I.: Single-and double-stage absorption cycles based on fluorocarbon refrigerants and organic absorbents. Appl. Therm. Eng. 18, 765–71 (1998) Jelinek, M.; Borde, I.: Single-and double-stage absorption cycles based on fluorocarbon refrigerants and organic absorbents. Appl. Therm. Eng. 18, 765–71 (1998)
63.
Zurück zum Zitat Eames, I.W.; Wu, S.: Experimental proof of concept testing of an innovative heat powered vapour recompression absorption refrigerator cycle. Appl. Therm. Eng. 20, 721–736 (2000) Eames, I.W.; Wu, S.: Experimental proof of concept testing of an innovative heat powered vapour recompression absorption refrigerator cycle. Appl. Therm. Eng. 20, 721–736 (2000)
64.
Zurück zum Zitat Wu, S.; Eames, I.W.: A novel absorption-recompression refrigeration cycle. Appl. Therm. Eng. 18, 1149–1157 (1998) Wu, S.; Eames, I.W.: A novel absorption-recompression refrigeration cycle. Appl. Therm. Eng. 18, 1149–1157 (1998)
65.
Zurück zum Zitat Sözen, A.; Kurt, M.; Akçayol, M.A.; Özalp, M.: Performance prediction of a solar driven ejector-absorption cycle using fuzzy logic. Renew. Energy 29, 53–71 (2004) Sözen, A.; Kurt, M.; Akçayol, M.A.; Özalp, M.: Performance prediction of a solar driven ejector-absorption cycle using fuzzy logic. Renew. Energy 29, 53–71 (2004)
66.
Zurück zum Zitat Sözen, A.; Arcaklioğlu, E.: Exergy analysis of an ejector-absorption heat transformer using artificial neural network approach. Appl. Therm. Eng. 27, 481–491 (2007) Sözen, A.; Arcaklioğlu, E.: Exergy analysis of an ejector-absorption heat transformer using artificial neural network approach. Appl. Therm. Eng. 27, 481–491 (2007)
67.
Zurück zum Zitat Jelinek, M.; Levy, A.; Borde, I.: Performance of a triple-pressure-level absorption cycle with R125-N, N′-dimethylethylurea. Appl. Energy 71, 171–189 (2002) Jelinek, M.; Levy, A.; Borde, I.: Performance of a triple-pressure-level absorption cycle with R125-N, N′-dimethylethylurea. Appl. Energy 71, 171–189 (2002)
68.
Zurück zum Zitat Garousi, F.L.; Mosaffa, A.H.; Infante, F.C.; Rosen, M.A.: Thermodynamic analysis and comparison of combined ejector-absorption and single effect absorption refrigeration systems. Appl. Energy 133, 335–346 (2014) Garousi, F.L.; Mosaffa, A.H.; Infante, F.C.; Rosen, M.A.: Thermodynamic analysis and comparison of combined ejector-absorption and single effect absorption refrigeration systems. Appl. Energy 133, 335–346 (2014)
69.
Zurück zum Zitat Reddy P.P., Murthy S.S.: Studies on an ejector-absorption refrigeration cycle with new working fluid pairs. World Climate and Energy Event, 15–17. (2005) Reddy P.P., Murthy S.S.: Studies on an ejector-absorption refrigeration cycle with new working fluid pairs. World Climate and Energy Event, 15–17. (2005)
70.
Zurück zum Zitat Vereda, C.; Ventas, R.; Lecuona, A.; Venegas, M.: Study of an ejector-absorption refrigeration cycle with an adaptable ejector nozzle for different working conditions. Appl. Energy 97, 305–312 (2012) Vereda, C.; Ventas, R.; Lecuona, A.; Venegas, M.: Study of an ejector-absorption refrigeration cycle with an adaptable ejector nozzle for different working conditions. Appl. Energy 97, 305–312 (2012)
71.
Zurück zum Zitat Vereda, C.; Ventas, R.; Lecuona, A.; López, R.: Single-effect absorption refrigeration cycle boosted with an ejector-adiabatic absorber using a single solution pump. Int. J. Refrig 38, 22–29 (2014) Vereda, C.; Ventas, R.; Lecuona, A.; López, R.: Single-effect absorption refrigeration cycle boosted with an ejector-adiabatic absorber using a single solution pump. Int. J. Refrig 38, 22–29 (2014)
72.
Zurück zum Zitat Sirwan, R.; Alghoul, M.A.; Sopian, K.; Ali, Y.; Abdulateef, J.: Evaluation of adding flash tank to solar combined ejector–absorption refrigeration system. Sol. Energy 91, 283–296 (2013) Sirwan, R.; Alghoul, M.A.; Sopian, K.; Ali, Y.; Abdulateef, J.: Evaluation of adding flash tank to solar combined ejector–absorption refrigeration system. Sol. Energy 91, 283–296 (2013)
73.
Zurück zum Zitat Abed, A.M.; Alghoul, M.A.; Al-Shamani, A.N.; Sopian, K.: Evaluating ejector efficiency working under intermediate pressure of flash tank–absorption cooling cycle: parametric study. Chem. Eng. Process. 95, 222–234 (2015) Abed, A.M.; Alghoul, M.A.; Al-Shamani, A.N.; Sopian, K.: Evaluating ejector efficiency working under intermediate pressure of flash tank–absorption cooling cycle: parametric study. Chem. Eng. Process. 95, 222–234 (2015)
74.
Zurück zum Zitat Majdi, H.S.: Performance evaluation of combined ejector LiBr/H2O absorption cooling cycle. Case Stud. Therm. Eng. 7, 25–35 (2016) Majdi, H.S.: Performance evaluation of combined ejector LiBr/H2O absorption cooling cycle. Case Stud. Therm. Eng. 7, 25–35 (2016)
75.
Zurück zum Zitat Abed, A.M.; Alghoul, M.A.; Sirawn, R.; Al-Shamani, A.N.; Sopian, K.: Performance enhancement of ejector-absorption cooling cycle by rearrangement of solution streamlines and adding RHE. Appl. Therm. Eng. 77, 65–75 (2015) Abed, A.M.; Alghoul, M.A.; Sirawn, R.; Al-Shamani, A.N.; Sopian, K.: Performance enhancement of ejector-absorption cooling cycle by rearrangement of solution streamlines and adding RHE. Appl. Therm. Eng. 77, 65–75 (2015)
76.
Zurück zum Zitat Sözen, A.; Özalp, M.: Solar-driven ejector-absorption cooling system. Appl. Energy 80, 97–113 (2005) Sözen, A.; Özalp, M.: Solar-driven ejector-absorption cooling system. Appl. Energy 80, 97–113 (2005)
77.
Zurück zum Zitat Abed, A.M.; Alghoul, M.A.; Sopian, K.: Performance evaluation of flash tank absorption cooling cycle using two ejectors. Appl. Therm. Eng. 101, 47–60 (2016) Abed, A.M.; Alghoul, M.A.; Sopian, K.: Performance evaluation of flash tank absorption cooling cycle using two ejectors. Appl. Therm. Eng. 101, 47–60 (2016)
78.
Zurück zum Zitat Liang, X.; Zhou, S.; Deng, J.; He, G.; Cai, D.: Thermodynamic analysis of a novel combined double ejector-absorption refrigeration system using ammonia/salt working pairs without mechanical pumps. Energy 185, 895–909 (2019) Liang, X.; Zhou, S.; Deng, J.; He, G.; Cai, D.: Thermodynamic analysis of a novel combined double ejector-absorption refrigeration system using ammonia/salt working pairs without mechanical pumps. Energy 185, 895–909 (2019)
79.
Zurück zum Zitat Yazi, W.; Tian, C.; Yingbo, L.; Huaibo, S.Y.: A novel cooling and power cycle based on the absorption power cycle and booster-assisted ejector refrigeration cycle driven by a low-grade heat source: energy, exergy and exergoeconomic analysis. Energy Convers. Manage. 204, 112321 (2020) Yazi, W.; Tian, C.; Yingbo, L.; Huaibo, S.Y.: A novel cooling and power cycle based on the absorption power cycle and booster-assisted ejector refrigeration cycle driven by a low-grade heat source: energy, exergy and exergoeconomic analysis. Energy Convers. Manage. 204, 112321 (2020)
80.
Zurück zum Zitat Rashidi, J.; Yoo, C.K.: A novel Kalina power-cooling cycle with an ejector absorption refrigeration cycle: thermodynamic modelling and pinch analysis. Energy Convers. Manage. 162, 225–238 (2018) Rashidi, J.; Yoo, C.K.: A novel Kalina power-cooling cycle with an ejector absorption refrigeration cycle: thermodynamic modelling and pinch analysis. Energy Convers. Manage. 162, 225–238 (2018)
81.
Zurück zum Zitat Khaliq, A.; Kumar, R.; Mokheimer, E.M.: Investigation on a solar thermal power and ejector-absorption refrigeration system based on first and second law analyses. Energy 164, 1030–1043 (2018) Khaliq, A.; Kumar, R.; Mokheimer, E.M.: Investigation on a solar thermal power and ejector-absorption refrigeration system based on first and second law analyses. Energy 164, 1030–1043 (2018)
82.
Zurück zum Zitat Hadi, R.; Hadi, G.; Shahram, V.; Javad, J.: Thermodynamic and thermoeconomic analysis and optimization of a novel combined cooling and power (CCP) cycle by integrating of ejector refrigeration and Kalina cycles. Energy 139, 262–276 (2017) Hadi, R.; Hadi, G.; Shahram, V.; Javad, J.: Thermodynamic and thermoeconomic analysis and optimization of a novel combined cooling and power (CCP) cycle by integrating of ejector refrigeration and Kalina cycles. Energy 139, 262–276 (2017)
83.
Zurück zum Zitat Wang, J.; Dai, Y.; Zhang, T.; Ma, S.: Parametric analysis for a new combined power and ejector-absorption refrigeration cycle. Energy 34, 1587–1593 (2009) Wang, J.; Dai, Y.; Zhang, T.; Ma, S.: Parametric analysis for a new combined power and ejector-absorption refrigeration cycle. Energy 34, 1587–1593 (2009)
84.
Zurück zum Zitat Alami, A.; Makhlouf, M.; Lousdad, A.; Khalfi, A.; Benzaama, M.H.: Energetic and exergetic analyses of adsorption heat transformer ameliorated by ejector. J. Braz. Soc. Mech. Sci. Eng. 38, 2077–2084 (2016) Alami, A.; Makhlouf, M.; Lousdad, A.; Khalfi, A.; Benzaama, M.H.: Energetic and exergetic analyses of adsorption heat transformer ameliorated by ejector. J. Braz. Soc. Mech. Sci. Eng. 38, 2077–2084 (2016)
85.
Zurück zum Zitat Zhang, X.J.; Wang, R.Z.: A new combined adsorption-ejector refrigeration and heating hybrid system powered by solar energy. Appl. Therm. Eng. 22, 1245–1258 (2002) Zhang, X.J.; Wang, R.Z.: A new combined adsorption-ejector refrigeration and heating hybrid system powered by solar energy. Appl. Therm. Eng. 22, 1245–1258 (2002)
86.
Zurück zum Zitat Desevaux, P.; Prenel, J.P.; Hostache, G.: Flow visualization methods for investigation an induced flow ejector. Journal of Flow Visualization and Image Processing 2, 61–74 (1995) Desevaux, P.; Prenel, J.P.; Hostache, G.: Flow visualization methods for investigation an induced flow ejector. Journal of Flow Visualization and Image Processing 2, 61–74 (1995)
87.
Zurück zum Zitat Li, C.H.; Wang, R.Z.; Lu, Y.Z.: Investigation of a novel combined cycle of solar powered adsorption–ejection refrigeration system. Renew. Energy 26, 611–622 (2002) Li, C.H.; Wang, R.Z.; Lu, Y.Z.: Investigation of a novel combined cycle of solar powered adsorption–ejection refrigeration system. Renew. Energy 26, 611–622 (2002)
88.
Zurück zum Zitat Gautam and Satyabrata S., A comprehensive thermodynamic analysis and performance evaluation of a transcritical ejector expansion CO2 adsorption refrigeration system integrated with thermoelectric sub-cooler. The Journal of Supercritical Fluids 182:105517 (2022) Gautam and Satyabrata S., A comprehensive thermodynamic analysis and performance evaluation of a transcritical ejector expansion CO2 adsorption refrigeration system integrated with thermoelectric sub-cooler. The Journal of Supercritical Fluids 182:105517 (2022)
89.
Zurück zum Zitat Ehab, S.A.; Ramy, H.M.; Ahmed, A.: A daily freshwater production of 50 m3/ton of silica gel using an adsorption-ejector combination powered by low-grade heat. J. Clean. Prod. 282, 124494 (2021) Ehab, S.A.; Ramy, H.M.; Ahmed, A.: A daily freshwater production of 50 m3/ton of silica gel using an adsorption-ejector combination powered by low-grade heat. J. Clean. Prod. 282, 124494 (2021)
90.
Zurück zum Zitat Askalany, A.A.; Ali, E.S.: A new approach integration of ejector within adsorption desalination cycle reaching COP higher than one. Sustain. Energy Technol Assess. 41, 100766 (2020) Askalany, A.A.; Ali, E.S.: A new approach integration of ejector within adsorption desalination cycle reaching COP higher than one. Sustain. Energy Technol Assess. 41, 100766 (2020)
91.
Zurück zum Zitat Ehab, S.A.; Hafiz, M.A.; Muhammad, S.; Ahmed, A.A.: A novel ejectors integration with two-stages adsorption desalination: Away to scavenge the ambient energy. Sustain. Energy Technol. Assess. 48, 101658 (2021) Ehab, S.A.; Hafiz, M.A.; Muhammad, S.; Ahmed, A.A.: A novel ejectors integration with two-stages adsorption desalination: Away to scavenge the ambient energy. Sustain. Energy Technol. Assess. 48, 101658 (2021)
92.
Zurück zum Zitat Ahmed, A.; Ehab, S.A.; Ramy, H.M.: A novel cycle for adsorption desalination system with two stages-ejector for higher water production and efficiency. Desalination 496, 114753 (2020) Ahmed, A.; Ehab, S.A.; Ramy, H.M.: A novel cycle for adsorption desalination system with two stages-ejector for higher water production and efficiency. Desalination 496, 114753 (2020)
93.
Zurück zum Zitat Ehab, S.A.; Ramy, H.M.; Naef, A.A.; Qasem, S.M.; Ahmed, A.: Solar-powered ejector-based adsorption desalination system integrated with a humidification-dehumidification system. Energy Convers. Manage. 238, 114113 (2021) Ehab, S.A.; Ramy, H.M.; Naef, A.A.; Qasem, S.M.; Ahmed, A.: Solar-powered ejector-based adsorption desalination system integrated with a humidification-dehumidification system. Energy Convers. Manage. 238, 114113 (2021)
94.
Zurück zum Zitat Chen, J.F.; Dai, Y.J.; Wang, R.Z.: Experimental and analytical study on an air-cooled single effect LiBr-H2O absorption chiller driven by evacuated glass tube solar collector for cooling application in residential buildings. Sol. Energy 151, 110–118 (2017) Chen, J.F.; Dai, Y.J.; Wang, R.Z.: Experimental and analytical study on an air-cooled single effect LiBr-H2O absorption chiller driven by evacuated glass tube solar collector for cooling application in residential buildings. Sol. Energy 151, 110–118 (2017)
95.
Zurück zum Zitat Al-Hamed, K.H.; Dincer, I.: Investigation of a concentrated solar-geothermal integrated system with a combined ejector absorption refrigeration cycle for a small community. Int. J. Refrig 106, 407–426 (2019) Al-Hamed, K.H.; Dincer, I.: Investigation of a concentrated solar-geothermal integrated system with a combined ejector absorption refrigeration cycle for a small community. Int. J. Refrig 106, 407–426 (2019)
96.
Zurück zum Zitat Yosaf, S.; Ozcan, H.: Effect of ejector location in absorption refrigeration cycles using different binary working fluids. Int. J. Air-Condition. Refrigerat. 27, 1950003 (2019) Yosaf, S.; Ozcan, H.: Effect of ejector location in absorption refrigeration cycles using different binary working fluids. Int. J. Air-Condition. Refrigerat. 27, 1950003 (2019)
Metadaten
Titel
Hybrid Thermally Driven Sorption–Ejector Systems: A Comprehensive Overview
verfasst von
Majdi Amin
Publikationsdatum
04.08.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 9/2023
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-023-08062-7

Weitere Artikel der Ausgabe 9/2023

Arabian Journal for Science and Engineering 9/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.