Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 9/2023

10.03.2023 | Research Article-Mechanical Engineering

Numerical Study of Turbulent Nanofluid Flow in Double-Tube Heat Exchanger: The Role of Second Law Analysis

verfasst von: Morteza Mohammadi

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 9/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper flow features and heat transfer characteristics of finned and finless double-tube counter flow heat exchanger at wide range of Reynolds numbers were numerically analyzed. Various fins configurations combined with use of water-based TiO2 nanofluid at different nanoparticles volume concentrations were employed in this study to show their effects on nanofluid Nusselt number, friction factor and thermal performance index. Furthermore, the thermal perfection and the overall assessment of heat exchanger were also taken into account in the light of thermodynamics second law efficiency which is defined as a ratio of recovered to expended exergy. The results showed that thermo-hydrodynamical performance of heat exchanger was intensively dependent to the thickness of embedded fins. Employed sensitivity analysis revealed that fins with large thicknesses equal or larger than 10 mm provide better thermal performance than fins with small thicknesses (i.e. t = 1 mm). Furthermore, the use of circular fin with thickness as large as 10 mm at the highest Reynolds number up to about 87,500 led to pronounce both Nusselt number and flow resistance up to 15% and 4.64 folds, respectively. On the other hand, using smooth heat exchanger operating at the lowest Reynolds number (i.e. Re = 3400) filled with 1% TiO2 water-based nanofluid led to obtain the highest recovered exergy and thermodynamic second law efficiency up to 0.46 W and 10.33%, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mahian, O.; Kianifar, A.; Kalogirou, S.A.; Pop, I.; Wongwises, S.: A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf. 57(2), 582–594 (2013) Mahian, O.; Kianifar, A.; Kalogirou, S.A.; Pop, I.; Wongwises, S.: A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf. 57(2), 582–594 (2013)
2.
Zurück zum Zitat Azmi, W.H.; Sharif, M.Z.; Yusof, T.M.; Mamat, R.; Redhwan, A.A.M.: Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system–a review. Renew. Sustain. Energy Rev. 69, 415–428 (2017) Azmi, W.H.; Sharif, M.Z.; Yusof, T.M.; Mamat, R.; Redhwan, A.A.M.: Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system–a review. Renew. Sustain. Energy Rev. 69, 415–428 (2017)
3.
Zurück zum Zitat Sharma, S.: Fabricating an experimental setup to investigate the performance of an automobile car radiator by using aluminum/water nanofluid. J. Therm. Anal. Calorim. 133(3), 1387–1406 (2018) Sharma, S.: Fabricating an experimental setup to investigate the performance of an automobile car radiator by using aluminum/water nanofluid. J. Therm. Anal. Calorim. 133(3), 1387–1406 (2018)
4.
Zurück zum Zitat Ghanbari, S.; Javaherdeh, K.: Investigation of applying nanoporous graphene non-Newtonian nanofluid on rheological properties and thermal performance in a turbulent annular flow with perforated baffles. J. Therm. Anal. Calorim. 139(1), 629–647 (2020) Ghanbari, S.; Javaherdeh, K.: Investigation of applying nanoporous graphene non-Newtonian nanofluid on rheological properties and thermal performance in a turbulent annular flow with perforated baffles. J. Therm. Anal. Calorim. 139(1), 629–647 (2020)
5.
Zurück zum Zitat Ahmad, S.; Pop, I.: Mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium filled with nanofluids. Int. Commun. Heat Mass Transfer 37(8), 987–991 (2010) Ahmad, S.; Pop, I.: Mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium filled with nanofluids. Int. Commun. Heat Mass Transfer 37(8), 987–991 (2010)
6.
Zurück zum Zitat Tuncer, A.D.; Sözen, A.; Khanlari, A.; Gürbüz, E.Y.; Variyenli, H.I.: Upgrading the performance of a new shell and helically coiled heat exchanger by using longitudinal fins. Appl. Therm. Eng. 191, 116876 (2021) Tuncer, A.D.; Sözen, A.; Khanlari, A.; Gürbüz, E.Y.; Variyenli, H.I.: Upgrading the performance of a new shell and helically coiled heat exchanger by using longitudinal fins. Appl. Therm. Eng. 191, 116876 (2021)
7.
Zurück zum Zitat Roy, N.C.: Natural convection of nanofluids in a square enclosure with different shapes of inner geometry. Phys. Fluids 30(11), 113605 (2018) Roy, N.C.: Natural convection of nanofluids in a square enclosure with different shapes of inner geometry. Phys. Fluids 30(11), 113605 (2018)
8.
Zurück zum Zitat Roy, N.C.: MHD natural convection of a hybrid nanofluid in an enclosure with multiple heat sources. Alex. Eng. J. 61(2), 1679–1694 (2022) Roy, N.C.: MHD natural convection of a hybrid nanofluid in an enclosure with multiple heat sources. Alex. Eng. J. 61(2), 1679–1694 (2022)
9.
Zurück zum Zitat Roy, N.C.: Augmentation in heat transfer for a hybrid nanofluid flow over a roughened surface. Case Stud. Therm. Eng. 27, 101215 (2021) Roy, N.C.: Augmentation in heat transfer for a hybrid nanofluid flow over a roughened surface. Case Stud. Therm. Eng. 27, 101215 (2021)
10.
Zurück zum Zitat Bahiraei, M.; Mazaheri, N.; Rizehvandi, A.: Application of a hybrid nanofluid containing graphene nanoplatelet–platinum composite powder in a triple-tube heat exchanger equipped with inserted ribs. Appl. Therm. Eng. 149, 588–601 (2019) Bahiraei, M.; Mazaheri, N.; Rizehvandi, A.: Application of a hybrid nanofluid containing graphene nanoplatelet–platinum composite powder in a triple-tube heat exchanger equipped with inserted ribs. Appl. Therm. Eng. 149, 588–601 (2019)
11.
Zurück zum Zitat Pak, B.C.; Cho, Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. Int. J. 11(2), 151–170 (1998) Pak, B.C.; Cho, Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. Int. J. 11(2), 151–170 (1998)
12.
Zurück zum Zitat Duangthongsuk, W.; Wongwises, S.: Effect of thermophysical properties models on the predicting of the convective heat transfer coefficient for low concentration nanofluid. Int. Commun. Heat Mass Transf. 35(10), 1320–1326 (2008) Duangthongsuk, W.; Wongwises, S.: Effect of thermophysical properties models on the predicting of the convective heat transfer coefficient for low concentration nanofluid. Int. Commun. Heat Mass Transf. 35(10), 1320–1326 (2008)
13.
Zurück zum Zitat Duangthongsuk, W.; Wongwises, S.: An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime. Int. J. Heat Mass Transf. 53(1–3), 334–344 (2010) Duangthongsuk, W.; Wongwises, S.: An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime. Int. J. Heat Mass Transf. 53(1–3), 334–344 (2010)
14.
Zurück zum Zitat Qi, C.; Luo, T.; Liu, M.; Fan, F.; Yan, Y.: Experimental study on the flow and heat transfer characteristics of nanofluids in double-tube heat exchangers based on thermal efficiency assessment. Energy Convers. Manag. 197, 111877 (2019) Qi, C.; Luo, T.; Liu, M.; Fan, F.; Yan, Y.: Experimental study on the flow and heat transfer characteristics of nanofluids in double-tube heat exchangers based on thermal efficiency assessment. Energy Convers. Manag. 197, 111877 (2019)
15.
Zurück zum Zitat Bahmani, M.H.; Sheikhzadeh, G.; Zarringhalam, M.; Akbari, O.A.; Alrashed, A.A.; Ahmadi Sheikh Shabani, G.; Goodarzi, M.: Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger. Ad. Powder Technol. 29(2), 273–282 (2018) Bahmani, M.H.; Sheikhzadeh, G.; Zarringhalam, M.; Akbari, O.A.; Alrashed, A.A.; Ahmadi Sheikh Shabani, G.; Goodarzi, M.: Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger. Ad. Powder Technol. 29(2), 273–282 (2018)
16.
Zurück zum Zitat Rashidi, S.; Eskandarian, M.; Mahian, O.; Poncet, S.J.J.O.T.A.: Combination of nanofluid and inserts for heat transfer enhancement. J. Therm. Anal. Calorim. 135(1), 437–460 (2019) Rashidi, S.; Eskandarian, M.; Mahian, O.; Poncet, S.J.J.O.T.A.: Combination of nanofluid and inserts for heat transfer enhancement. J. Therm. Anal. Calorim. 135(1), 437–460 (2019)
17.
Zurück zum Zitat Hamza, N.F.A.; Aljabair, S.: Evaluation of thermal performance factor by hybrid nanofluid and twisted tape inserts in heat exchanger. Heliyon. 2022, e11950 (2022) Hamza, N.F.A.; Aljabair, S.: Evaluation of thermal performance factor by hybrid nanofluid and twisted tape inserts in heat exchanger. Heliyon. 2022, e11950 (2022)
18.
Zurück zum Zitat Sivasankaran, S.; Bhuvaneswari, M.: Numerical study on influence of water based hybrid nanofluid and porous media on heat transfer and pressure loss. Case Stud. Therm. Eng. 34, 102022 (2022) Sivasankaran, S.; Bhuvaneswari, M.: Numerical study on influence of water based hybrid nanofluid and porous media on heat transfer and pressure loss. Case Stud. Therm. Eng. 34, 102022 (2022)
19.
Zurück zum Zitat Rabby, M.I.I.; Sharif, M.A.R.; Hossain, F.: Numerical study of laminar convective heat transfer from a corrugated pipe into an Al2O3–AlN/H2O hybrid nanofluid. Case Stud. Therm. Eng. 39, 102454 (2022) Rabby, M.I.I.; Sharif, M.A.R.; Hossain, F.: Numerical study of laminar convective heat transfer from a corrugated pipe into an Al2O3–AlN/H2O hybrid nanofluid. Case Stud. Therm. Eng. 39, 102454 (2022)
20.
Zurück zum Zitat Elias, M.M.; Shahrul, I.M.; Mahbubul, I.M.; Saidur, R.; Rahim, N.A.: Effect of different nanoparticle shapes on shell and tube heat exchanger using different baffle angles and operated with nanofluid. Int. J. Heat Mass Transf. 70, 289–297 (2014) Elias, M.M.; Shahrul, I.M.; Mahbubul, I.M.; Saidur, R.; Rahim, N.A.: Effect of different nanoparticle shapes on shell and tube heat exchanger using different baffle angles and operated with nanofluid. Int. J. Heat Mass Transf. 70, 289–297 (2014)
21.
Zurück zum Zitat Targui, N.; Kahalerras, H.: Analysis of a double pipe heat exchanger performance by use of porous baffles and pulsating flow. Energy Convers. Manag. 76, 43–54 (2013) Targui, N.; Kahalerras, H.: Analysis of a double pipe heat exchanger performance by use of porous baffles and pulsating flow. Energy Convers. Manag. 76, 43–54 (2013)
22.
Zurück zum Zitat Bashi, M.; Rashidi, S.; Esfahani, J.A.: Exergy analysis for a plate-fin triangular duct enhanced by a porous material. Appl. Therm. Eng. 110, 1448–1461 (2017) Bashi, M.; Rashidi, S.; Esfahani, J.A.: Exergy analysis for a plate-fin triangular duct enhanced by a porous material. Appl. Therm. Eng. 110, 1448–1461 (2017)
23.
Zurück zum Zitat Mozafarie, S.S.; Javaherdeh, K.; Ghanbari, O.: Numerical simulation of nanofluid turbulent flow in a double-pipe heat exchanger equipped with circular fins. J. Therm. Anal. Calorim. 143(6), 4299–4311 (2021) Mozafarie, S.S.; Javaherdeh, K.; Ghanbari, O.: Numerical simulation of nanofluid turbulent flow in a double-pipe heat exchanger equipped with circular fins. J. Therm. Anal. Calorim. 143(6), 4299–4311 (2021)
24.
Zurück zum Zitat Hatami, M.; Ganji, D.D.; Gorji-Bandpy, M.: Experimental and numerical analysis of the optimized finned-tube heat exchanger for OM314 diesel exhaust exergy recovery. Energy Convers. Manag. 97, 26–41 (2015) Hatami, M.; Ganji, D.D.; Gorji-Bandpy, M.: Experimental and numerical analysis of the optimized finned-tube heat exchanger for OM314 diesel exhaust exergy recovery. Energy Convers. Manag. 97, 26–41 (2015)
25.
Zurück zum Zitat Chen, H.; Ding, Y.; He, Y.; Tan, C.: Rheological behavior of ethylene glycol based titania nanofluids. Chem. Phys. Lett. 444(4–6), 333–337 (2007) Chen, H.; Ding, Y.; He, Y.; Tan, C.: Rheological behavior of ethylene glycol based titania nanofluids. Chem. Phys. Lett. 444(4–6), 333–337 (2007)
26.
Zurück zum Zitat Yang, L.; Hu, Y.: Toward TiO2 nanofluids—part 1: preparation and properties. Nanoscale Res. Lett. 12(1), 1–21 (2017) Yang, L.; Hu, Y.: Toward TiO2 nanofluids—part 1: preparation and properties. Nanoscale Res. Lett. 12(1), 1–21 (2017)
27.
Zurück zum Zitat Mohammadi, M.; Abadeh, A.; Nemati-Farouji, R.; Passandideh-Fard, M.: An optimization of heat transfer of nanofluid flow in a helically coiled pipe using Taguchi method. J. Therm. Anal. Calorim. 138(2), 1779–1792 (2019) Mohammadi, M.; Abadeh, A.; Nemati-Farouji, R.; Passandideh-Fard, M.: An optimization of heat transfer of nanofluid flow in a helically coiled pipe using Taguchi method. J. Therm. Anal. Calorim. 138(2), 1779–1792 (2019)
28.
Zurück zum Zitat Shih, T.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J.: A new k-ϵ eddy viscosity model for high Reynolds number turbulent flows. Comput. Fluids 24(3), 227–238 (1995)MATH Shih, T.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J.: A new k-ϵ eddy viscosity model for high Reynolds number turbulent flows. Comput. Fluids 24(3), 227–238 (1995)MATH
29.
Zurück zum Zitat Jayakumar, J.S.; Mahajani, S.M.; Mandal, J.C.; Iyer, K.N.; Vijayan, P.K.: CFD analysis of single-phase flows inside helically coiled tubes. Comput. Chem. Eng. 34(4), 430–446 (2010) Jayakumar, J.S.; Mahajani, S.M.; Mandal, J.C.; Iyer, K.N.; Vijayan, P.K.: CFD analysis of single-phase flows inside helically coiled tubes. Comput. Chem. Eng. 34(4), 430–446 (2010)
30.
Zurück zum Zitat Aly, W.I.A.: Numerical study on turbulent heat transfer and pressure drop of nanofluid in coiled tube-in-tube heat exchangers. Energy Convers. Manag. 79, 304–316 (2014) Aly, W.I.A.: Numerical study on turbulent heat transfer and pressure drop of nanofluid in coiled tube-in-tube heat exchangers. Energy Convers. Manag. 79, 304–316 (2014)
31.
Zurück zum Zitat Sekrani, G.; Poncet, S.; Proulx, P.: Modeling of convective turbulent heat transfer of water-based Al2O3 nanofluids in an uniformly heated pipe. Chem. Eng. Sci. 176, 205–219 (2018) Sekrani, G.; Poncet, S.; Proulx, P.: Modeling of convective turbulent heat transfer of water-based Al2O3 nanofluids in an uniformly heated pipe. Chem. Eng. Sci. 176, 205–219 (2018)
32.
Zurück zum Zitat Khanafer, K.; Vafai, K.: A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat Mass Transf. 54(19–20), 4410–4428 (2011)MATH Khanafer, K.; Vafai, K.: A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat Mass Transf. 54(19–20), 4410–4428 (2011)MATH
33.
Zurück zum Zitat Corcione, M.: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manag. 52(1), 789–793 (2011) Corcione, M.: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manag. 52(1), 789–793 (2011)
34.
Zurück zum Zitat Wang, X.; Xu, X.; Choi, S.U.S.: Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Transf. 13(4), 474–480 (1999) Wang, X.; Xu, X.; Choi, S.U.S.: Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Transf. 13(4), 474–480 (1999)
35.
Zurück zum Zitat Xuan, Y.; Roetzel, W.: Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transf. 43(19), 3701–3707 (2000)MATH Xuan, Y.; Roetzel, W.: Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transf. 43(19), 3701–3707 (2000)MATH
36.
Zurück zum Zitat Hamilton, R.L.; Crosser, O.K.: Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1(3), 187–191 (1962) Hamilton, R.L.; Crosser, O.K.: Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1(3), 187–191 (1962)
37.
Zurück zum Zitat Yu, W.; Choi, S.U.S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J. Nanopart. Res. 5(1), 167–171 (2003) Yu, W.; Choi, S.U.S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J. Nanopart. Res. 5(1), 167–171 (2003)
38.
Zurück zum Zitat Timofeeva, E.V.; Gavrilov, A.N.; McCloskey, J.M.; Tolmachev, Y.V.; Sprunt, S.; Lopatina, L.M.; Selinger, J.V.: Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys. Rev. E 76(6), 061203 (2007) Timofeeva, E.V.; Gavrilov, A.N.; McCloskey, J.M.; Tolmachev, Y.V.; Sprunt, S.; Lopatina, L.M.; Selinger, J.V.: Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys. Rev. E 76(6), 061203 (2007)
39.
Zurück zum Zitat Brinkman, H.C.: The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20(4), 571–571 (1952) Brinkman, H.C.: The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20(4), 571–571 (1952)
40.
Zurück zum Zitat Batchelor, G.K.: The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech. 83(1), 97–117 (1977)MathSciNet Batchelor, G.K.: The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech. 83(1), 97–117 (1977)MathSciNet
41.
Zurück zum Zitat Çengel, Y.A.; Cimbala, J.M.: Fluid Mechanics: Fundamentals and Applications. McGraw-Hill Higher Education, New York (2010) Çengel, Y.A.; Cimbala, J.M.: Fluid Mechanics: Fundamentals and Applications. McGraw-Hill Higher Education, New York (2010)
42.
Zurück zum Zitat Gnielinski, V.: New equations for heat and mass transfer in turbulent pipe and channel flow. Int. Chem. Eng. 16(2), 359–368 (1976) Gnielinski, V.: New equations for heat and mass transfer in turbulent pipe and channel flow. Int. Chem. Eng. 16(2), 359–368 (1976)
43.
Zurück zum Zitat Petukhov, B.S.; Irvine, T.F.; Hartnett, J.P.: Advances in heat transfer. Academic, New York. 6, 503–564 (1970) Petukhov, B.S.; Irvine, T.F.; Hartnett, J.P.: Advances in heat transfer. Academic, New York. 6, 503–564 (1970)
44.
Zurück zum Zitat Bergman, T.L.; Incropera, F.P.; DeWitt, D.P.; Lavine, A.S.: Fundamentals of Heat and Mass Transfer. Wiley, New York (2011) Bergman, T.L.; Incropera, F.P.; DeWitt, D.P.; Lavine, A.S.: Fundamentals of Heat and Mass Transfer. Wiley, New York (2011)
45.
Zurück zum Zitat Etghani, M.M.; Baboli, S.A.H.: Numerical investigation and optimization of heat transfer and exergy loss in shell and helical tube heat exchanger. Appl. Therm. Eng. 121, 294–301 (2017) Etghani, M.M.; Baboli, S.A.H.: Numerical investigation and optimization of heat transfer and exergy loss in shell and helical tube heat exchanger. Appl. Therm. Eng. 121, 294–301 (2017)
46.
Zurück zum Zitat Alimoradi, A.: Investigation of exergy efficiency in shell and helically coiled tube heat exchangers. Cast Stud. Therm. Eng. 10, 1–8 (2017) Alimoradi, A.: Investigation of exergy efficiency in shell and helically coiled tube heat exchangers. Cast Stud. Therm. Eng. 10, 1–8 (2017)
47.
Zurück zum Zitat Cengel, Y.A.; Boles, M.A.: Thermodynamics: An Engineering Approach, 7th edn. McGraw-Hill Education, New York (2011) Cengel, Y.A.; Boles, M.A.: Thermodynamics: An Engineering Approach, 7th edn. McGraw-Hill Education, New York (2011)
48.
Zurück zum Zitat Colebrook, C.F.: Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws. J. Inst. Civ. Eng. 11, 133–156 (1939) Colebrook, C.F.: Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws. J. Inst. Civ. Eng. 11, 133–156 (1939)
Metadaten
Titel
Numerical Study of Turbulent Nanofluid Flow in Double-Tube Heat Exchanger: The Role of Second Law Analysis
verfasst von
Morteza Mohammadi
Publikationsdatum
10.03.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 9/2023
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-023-07732-w

Weitere Artikel der Ausgabe 9/2023

Arabian Journal for Science and Engineering 9/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.