Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 9/2023

01.02.2023 | Research Article-Mechanical Engineering

The Nonuniform Rotation Non-evacuated Wickless Heat Pipe Within Nanofluid Vortex Field

verfasst von: Fikret Alic

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 9/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The evaporator of the rotating wickless heat pipe (WHP) is vertically placed in the central core of the nanofluid vortex, while its finned condenser transfers heat to ambient air. The vortex of nanofluid (Al2O3 nanoparticles and water) is previously heated and establishes a vortex movement inside a cylindrical vertical vessel. Thus, the saturation of the working fluid inside the WHP is enabled, provided that the temperature of the nanofluid is higher than the saturation temperature of the working fluid (ethanol) in the WHP. The angular speed of the rotating WHP is changed in a controlled manner, with the aim of establishing its influence on the nanofluid temperature and WHP efficiency. The tangential velocity of the vortex nanofluid motion changed, by the controlled change in the angular speed of the stir bar at the bottom of the vessel placed. By changing the angular speeds of WHP and stir bar, and the volume fractional ratio of Al2O3 nanoparticles inside the base fluid, it aims to obtain the transient values of nanofluid temperature and WHP efficiency. Analytical modeling and experimental testing were established to achieve the stated goal. As a result of the conducted analysis, nanofluid temperatures and WHP efficiency at nonuniform rotation non-evacuated wickless heat pipe within the nanofluid vortex field were obtained. This work indicated the possibility of various changes in WHP efficiency. Based on the conducted analysis, the rotation of WHP affects the intensity of heat exchange of its evaporator and condenser. The nanofluid temperature decreases by a value of 0.5% after 200 s, when accelerating the WHP and stir bar, while the required nanofluid temperature, under the same conditions, increases by 2.1%. In the case of deceleration of WHP and stir bar, the required nanofluid temperature decreases by 3.8%, after 140 s. Furthermore, the direction of rotation and nonuniform rotation affects the cooling rate of the nanofluid. WHP efficiency for accelerating WHP and stir bar, if their rotation directions are opposite, has a 16.2% higher value after 100 s from the start of nanofluid cooling.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang, X.Q.; Mujumdar, A.S.: A review on nanofluids-part I: theoretical and numerical investigations. Braz. J. Chem. Eng. 25, 613–630 (2008)CrossRef Wang, X.Q.; Mujumdar, A.S.: A review on nanofluids-part I: theoretical and numerical investigations. Braz. J. Chem. Eng. 25, 613–630 (2008)CrossRef
2.
Zurück zum Zitat Abu-Nada, E.: Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step. Int. J. Heat Fluid Flow 29, 242–249 (2008)CrossRef Abu-Nada, E.: Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step. Int. J. Heat Fluid Flow 29, 242–249 (2008)CrossRef
3.
Zurück zum Zitat Khanafer, K.; Vafai, K.: A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat Mass Transf. 54, 4410–4428 (2011)CrossRefMATH Khanafer, K.; Vafai, K.: A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat Mass Transf. 54, 4410–4428 (2011)CrossRefMATH
4.
Zurück zum Zitat Cajas, J.C.; Trevino, C.: Transient heating and entropy generation of a fluid inside a large aspect ratio cavity. Int. J. Therm. Sci. 64, 220–223 (2013)CrossRef Cajas, J.C.; Trevino, C.: Transient heating and entropy generation of a fluid inside a large aspect ratio cavity. Int. J. Therm. Sci. 64, 220–223 (2013)CrossRef
5.
Zurück zum Zitat Alic, F.: Transient entropy generation analysis of liquid vortex isolated by hollow heated cylinder. Appl. Math. Model. 44, 321–335 (2017)CrossRefMATH Alic, F.: Transient entropy generation analysis of liquid vortex isolated by hollow heated cylinder. Appl. Math. Model. 44, 321–335 (2017)CrossRefMATH
6.
Zurück zum Zitat Alic, F.: Entransy dissipation analysis of liquid vortex isolated by hollow cylinder. Heat Transf. Res. 49, 1689–1704 (2018)CrossRef Alic, F.: Entransy dissipation analysis of liquid vortex isolated by hollow cylinder. Heat Transf. Res. 49, 1689–1704 (2018)CrossRef
7.
Zurück zum Zitat Kang, S.W.; Wei, W.C.; Tsai, S.H.; Yang, S.Y.: Experimental investigation of silver nano-fluid on heat pipe thermal performance. Appl. Therm. Eng. 26, 2377–2382 (2006)CrossRef Kang, S.W.; Wei, W.C.; Tsai, S.H.; Yang, S.Y.: Experimental investigation of silver nano-fluid on heat pipe thermal performance. Appl. Therm. Eng. 26, 2377–2382 (2006)CrossRef
8.
Zurück zum Zitat Shafahi, M.; Bianco, V.; Vafai, K.; Manca, O.: An investigation of the thermal performance of cylindrical heat pipes using nanofluids. Int. J. Heat Mass Transf. 53, 376–383 (2010)CrossRefMATH Shafahi, M.; Bianco, V.; Vafai, K.; Manca, O.: An investigation of the thermal performance of cylindrical heat pipes using nanofluids. Int. J. Heat Mass Transf. 53, 376–383 (2010)CrossRefMATH
9.
Zurück zum Zitat Naphon, P.; Thongkum, D.; Assadamongkol, P.: Heat pipe efficiency enhancement with refrigerant-nanoparticles mixtures. Energy Convers. Manag. 50, 772–776 (2009)CrossRef Naphon, P.; Thongkum, D.; Assadamongkol, P.: Heat pipe efficiency enhancement with refrigerant-nanoparticles mixtures. Energy Convers. Manag. 50, 772–776 (2009)CrossRef
10.
Zurück zum Zitat Sarafraz, M.M.; Pourmehran, O.; Yang, B.; Arjomandi, M.: Assessment of the thermal performance of a thermosyphon heat pipe using zirconia-acetone nanofluids. Renew. Energy 136, 884–895 (2019)CrossRef Sarafraz, M.M.; Pourmehran, O.; Yang, B.; Arjomandi, M.: Assessment of the thermal performance of a thermosyphon heat pipe using zirconia-acetone nanofluids. Renew. Energy 136, 884–895 (2019)CrossRef
11.
Zurück zum Zitat Engin, G.: Experimental investigation of the thermal performance of a two-phase closed thermosyphon at different operating conditions. Energy Build. 127, 1096–1107 (2016)CrossRef Engin, G.: Experimental investigation of the thermal performance of a two-phase closed thermosyphon at different operating conditions. Energy Build. 127, 1096–1107 (2016)CrossRef
12.
Zurück zum Zitat Lin, Y.; Kang, S.; Chen, H.: Effect of silver nano-fluid on pulsating heat pipe thermal performance. Appl. Therm. Eng. 28, 1312–1317 (2008)CrossRef Lin, Y.; Kang, S.; Chen, H.: Effect of silver nano-fluid on pulsating heat pipe thermal performance. Appl. Therm. Eng. 28, 1312–1317 (2008)CrossRef
13.
Zurück zum Zitat Lim, C.; Choi, J.; Kim, H.: Experimental investigation of the heat transfer characteristics and operation limits of a fork-type heat pipe for passive cooling of a spent fuel pool. Energies 14, 7862 (2021)CrossRef Lim, C.; Choi, J.; Kim, H.: Experimental investigation of the heat transfer characteristics and operation limits of a fork-type heat pipe for passive cooling of a spent fuel pool. Energies 14, 7862 (2021)CrossRef
14.
Zurück zum Zitat Gupta, N.K.; Sharma, A.; Rathore, P.K.S., et al.: Thermal performance optimization of heat pipe using nanofluid: response surface methodology. J. Braz. Soc. Mech. Sci. Eng. 42, 590 (2020)CrossRef Gupta, N.K.; Sharma, A.; Rathore, P.K.S., et al.: Thermal performance optimization of heat pipe using nanofluid: response surface methodology. J. Braz. Soc. Mech. Sci. Eng. 42, 590 (2020)CrossRef
15.
Zurück zum Zitat Taoufik, B.; Abdelmajid, J.: Numerical case study of packed sphere wicked heat pipe using Al2O3 and CuO based water nanofluid. Case Stud. Therm. Eng. 8, 311–321 (2016)CrossRef Taoufik, B.; Abdelmajid, J.: Numerical case study of packed sphere wicked heat pipe using Al2O3 and CuO based water nanofluid. Case Stud. Therm. Eng. 8, 311–321 (2016)CrossRef
16.
Zurück zum Zitat Ahmed, A.A.; Pengtao, W.; Guanghan, H.; Chen, L.: High performance copper-water heat pipes with nanoengineered evaporator sections. Int. J. Heat Mass Transf. 133, 474–486 (2019)CrossRef Ahmed, A.A.; Pengtao, W.; Guanghan, H.; Chen, L.: High performance copper-water heat pipes with nanoengineered evaporator sections. Int. J. Heat Mass Transf. 133, 474–486 (2019)CrossRef
17.
Zurück zum Zitat Naveen, K.G., et al.: A comparative study of thermal performance of a heat pipe using water and nanofluid, and a nanoparticle-coated wick heat pipe using water. Heat Tranf. 50(18), 1767–1779 (2019) Naveen, K.G., et al.: A comparative study of thermal performance of a heat pipe using water and nanofluid, and a nanoparticle-coated wick heat pipe using water. Heat Tranf. 50(18), 1767–1779 (2019)
18.
Zurück zum Zitat Yu, J.; Nguyen, T.T.T.; Pawar, A.; Wayner, P.C.; Plawsky, J.L.; Chao, D.F.; Sicker, R.J.: The effect of condenser temperature on the performance of the evaporator in a wickless heat pipe performance. Int. J. Heat Mass Transf. 176, 121484 (2021)CrossRef Yu, J.; Nguyen, T.T.T.; Pawar, A.; Wayner, P.C.; Plawsky, J.L.; Chao, D.F.; Sicker, R.J.: The effect of condenser temperature on the performance of the evaporator in a wickless heat pipe performance. Int. J. Heat Mass Transf. 176, 121484 (2021)CrossRef
19.
Zurück zum Zitat Al Jubori, A.M.; Jawad, Q.A.: Computational evaluation of thermal behavior of a wickless heat pipe under various conditions. Case Stud. Therm. Eng. 22, 100767 (2020)CrossRef Al Jubori, A.M.; Jawad, Q.A.: Computational evaluation of thermal behavior of a wickless heat pipe under various conditions. Case Stud. Therm. Eng. 22, 100767 (2020)CrossRef
20.
Zurück zum Zitat Kusuma, M.H.; Putra, N.; Antariksawan, A.R.; Koestoer, R.A.; Widodo, S.; Ismarwanti, S.; Verlambang, B.T.: Passive cooling system in a nuclear spent fuel pool using a vertical straight wickless-heat pipe. Int. J. Therm. Sci. 126, 162–171 (2018)CrossRef Kusuma, M.H.; Putra, N.; Antariksawan, A.R.; Koestoer, R.A.; Widodo, S.; Ismarwanti, S.; Verlambang, B.T.: Passive cooling system in a nuclear spent fuel pool using a vertical straight wickless-heat pipe. Int. J. Therm. Sci. 126, 162–171 (2018)CrossRef
21.
Zurück zum Zitat Jouhara, H.; Ajji, Z.; Koudsi, Y.; Ezzuddin, H.; Mousa, N.: Experimental investigation of an inclined-condenser wickless heat pipe charged with water and an ethanol–water azeotropic mixture. Energy 61, 139–147 (2013)CrossRef Jouhara, H.; Ajji, Z.; Koudsi, Y.; Ezzuddin, H.; Mousa, N.: Experimental investigation of an inclined-condenser wickless heat pipe charged with water and an ethanol–water azeotropic mixture. Energy 61, 139–147 (2013)CrossRef
22.
Zurück zum Zitat Stark, J.R.; Nourouddin, S.; Theodore, L.B.; Amir, F.: An experimentally verified numerical model of finned heat pipes in crossflow. Int. J. Heat Mass Transf. 97, 45–55 (2016)CrossRef Stark, J.R.; Nourouddin, S.; Theodore, L.B.; Amir, F.: An experimentally verified numerical model of finned heat pipes in crossflow. Int. J. Heat Mass Transf. 97, 45–55 (2016)CrossRef
23.
Zurück zum Zitat Azad, E.; Mohammadieh, F.; Moztarzadeh, F.: Thermal performance of heat pipe heat recovery system. J. Heat Recover. Syst. 5, 561–570 (1985)CrossRef Azad, E.; Mohammadieh, F.; Moztarzadeh, F.: Thermal performance of heat pipe heat recovery system. J. Heat Recover. Syst. 5, 561–570 (1985)CrossRef
24.
Zurück zum Zitat Poplaski, L.M.; Faghri, A.; Bergman, T.L.: Analysis of internal and external thermal resistances of heat pipes including fins using a three-dimensional numerical simulation. Int. J. Heat Mass Transf. 102, 455–469 (2016)CrossRef Poplaski, L.M.; Faghri, A.; Bergman, T.L.: Analysis of internal and external thermal resistances of heat pipes including fins using a three-dimensional numerical simulation. Int. J. Heat Mass Transf. 102, 455–469 (2016)CrossRef
25.
Zurück zum Zitat Alic, F.: Analytical model of fluid saturation in the nanofluid vortex field. Arch. Appl. Mech. 92, 3563–3574 (2022)CrossRef Alic, F.: Analytical model of fluid saturation in the nanofluid vortex field. Arch. Appl. Mech. 92, 3563–3574 (2022)CrossRef
26.
Zurück zum Zitat Shah, R.K.; Sekulic, D.P.: Fundamentals of Heat Exchanger Design; Wiley: Hoboken. NJ, USA (2003)CrossRef Shah, R.K.; Sekulic, D.P.: Fundamentals of Heat Exchanger Design; Wiley: Hoboken. NJ, USA (2003)CrossRef
27.
Zurück zum Zitat Pak, B.C.; Cho, Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transfer. 11, 151–170 (1998)CrossRef Pak, B.C.; Cho, Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transfer. 11, 151–170 (1998)CrossRef
28.
Zurück zum Zitat Brinkman, H.C.: The viscosity of concentrated suspensions and solution. J. Chem. Phys. 20, 571–581 (1952)CrossRef Brinkman, H.C.: The viscosity of concentrated suspensions and solution. J. Chem. Phys. 20, 571–581 (1952)CrossRef
30.
Zurück zum Zitat Zhu, B.J.; Zhao, W.L.; Li, J.K.; Guan, Y.X.; Li, D.D.: Thermophysical properties of Al2O3-water nanofluids. Mater. Sci. Forum. 688, 266–271 (2011)CrossRef Zhu, B.J.; Zhao, W.L.; Li, J.K.; Guan, Y.X.; Li, D.D.: Thermophysical properties of Al2O3-water nanofluids. Mater. Sci. Forum. 688, 266–271 (2011)CrossRef
Metadaten
Titel
The Nonuniform Rotation Non-evacuated Wickless Heat Pipe Within Nanofluid Vortex Field
verfasst von
Fikret Alic
Publikationsdatum
01.02.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 9/2023
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-023-07638-7

Weitere Artikel der Ausgabe 9/2023

Arabian Journal for Science and Engineering 9/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.