Skip to main content
Erschienen in: Journal of Intelligent Manufacturing 4/2020

01.08.2019

Image-based defect detection in lithium-ion battery electrode using convolutional neural networks

verfasst von: Olatomiwa Badmos, Andreas Kopp, Timo Bernthaler, Gerhard Schneider

Erschienen in: Journal of Intelligent Manufacturing | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

During the manufacturing of lithium-ion battery electrodes, it is difficult to prevent certain types of defects, which affect the overall battery performance and lifespan. Deep learning computer vision methods were used to evaluate the quality of lithium-ion battery electrode for automated detection of microstructural defects from light microscopy images of the sectioned cells. The results demonstrate that deep learning models are able to learn accurate representations of the microstructure images well enough to distinguish instances with defects from those without defect. Furthermore, the benefits of using pretrained networks for microstructure classification were also demonstrated, achieving the highest classification accuracies. This method provides an approach to analyse thousands of Li-ion battery micrographs for quality assessment in a very short time and it can also be combined with other common battery characterization methods for further technical analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., et al. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. https://www.tensorflow.org. Accessed 1 Feb 2019. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., et al. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. https://​www.​tensorflow.​org. Accessed 1 Feb 2019.
Zurück zum Zitat Bockholt, H., Haselrieder, W., & Kwade, A. (2013). Intensive dry and wet mixing influencing the structural and electrochemical properties of secondary lithium-ion battery cathodes. ECS Transactions,50(26), 25–35.CrossRef Bockholt, H., Haselrieder, W., & Kwade, A. (2013). Intensive dry and wet mixing influencing the structural and electrochemical properties of secondary lithium-ion battery cathodes. ECS Transactions,50(26), 25–35.CrossRef
Zurück zum Zitat Bockholt, H., Haselrieder, W., & Kwade, A. (2016a). Intensive powder mixing for dry dispersing of carbon black and its relevance for lithium-ion battery cathodes. Powder Technology,297, 266–274.CrossRef Bockholt, H., Haselrieder, W., & Kwade, A. (2016a). Intensive powder mixing for dry dispersing of carbon black and its relevance for lithium-ion battery cathodes. Powder Technology,297, 266–274.CrossRef
Zurück zum Zitat Bockholt, H., Indrikova, M., Netz, A., Golks, F., & Kwade, A. (2016b). The interaction of consecutive process steps in the manufacturing of lithium-ion battery electrodes with regard to structural and electrochemical properties. Journal of Power Sources,325, 140–151.CrossRef Bockholt, H., Indrikova, M., Netz, A., Golks, F., & Kwade, A. (2016b). The interaction of consecutive process steps in the manufacturing of lithium-ion battery electrodes with regard to structural and electrochemical properties. Journal of Power Sources,325, 140–151.CrossRef
Zurück zum Zitat Bodnarova, A., Bennamoun, M., & Latham, S. (2002). Optimal gabor filters for textile flaw detection. Pattern Recognition,35(35), 2973–2991.CrossRef Bodnarova, A., Bennamoun, M., & Latham, S. (2002). Optimal gabor filters for textile flaw detection. Pattern Recognition,35(35), 2973–2991.CrossRef
Zurück zum Zitat Cho, S., Chen, C.-F., & Mukherjee, P. P. (2015). Influence of microstructure on impedance response in intercalation electrodes. Journal of the Electrochemical Society,162(7), A1202–A1214.CrossRef Cho, S., Chen, C.-F., & Mukherjee, P. P. (2015). Influence of microstructure on impedance response in intercalation electrodes. Journal of the Electrochemical Society,162(7), A1202–A1214.CrossRef
Zurück zum Zitat Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In IEEE conference on computer vision and pattern recognition (CVPR). Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In IEEE conference on computer vision and pattern recognition (CVPR).
Zurück zum Zitat Chowdhury, A., Kautz, E., Yener, B., & Lewis, D. (2016). Image driven machine learning methods for microstructure recognition. Computational Materials Science,123, 176–187.CrossRef Chowdhury, A., Kautz, E., Yener, B., & Lewis, D. (2016). Image driven machine learning methods for microstructure recognition. Computational Materials Science,123, 176–187.CrossRef
Zurück zum Zitat Davis, J., & Goadrich, M. (2006). The relationship between precision-recall and ROC curves. In International conference on machine learning (ICML). Davis, J., & Goadrich, M. (2006). The relationship between precision-recall and ROC curves. In International conference on machine learning (ICML).
Zurück zum Zitat DeCost, B. L., & Holm, E. A. (2015). A computer vision approach for automated analysis and classification of microstructure image data. Computational Materials Science,110, 126–133.CrossRef DeCost, B. L., & Holm, E. A. (2015). A computer vision approach for automated analysis and classification of microstructure image data. Computational Materials Science,110, 126–133.CrossRef
Zurück zum Zitat Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., & Darrell, T. (2014). DeCAF: A deep convolutional activation feature for generic visual recognition. In International conference on machine learning (ICML). Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., & Darrell, T. (2014). DeCAF: A deep convolutional activation feature for generic visual recognition. In International conference on machine learning (ICML).
Zurück zum Zitat Garche, J., Dyer, C. K., Moseley, P. T., Ogumi, Z., Rand, D. A. J., & Scrosati, B. (2009). Encyclopedia of electrochemical power sources (1st ed.). Amsterdam: Elsevier Science. ISBN 978-0-444-52745-5. Garche, J., Dyer, C. K., Moseley, P. T., Ogumi, Z., Rand, D. A. J., & Scrosati, B. (2009). Encyclopedia of electrochemical power sources (1st ed.). Amsterdam: Elsevier Science. ISBN 978-0-444-52745-5.
Zurück zum Zitat Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Texture features for image classification. IEEE Transactions on Systems, Man and Cybernetics SMC,3(6), 610–621.CrossRef Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Texture features for image classification. IEEE Transactions on Systems, Man and Cybernetics SMC,3(6), 610–621.CrossRef
Zurück zum Zitat He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE conference on computer vision and pattern recognition. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE conference on computer vision and pattern recognition.
Zurück zum Zitat Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research,15, 1929–1958. Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research,15, 1929–1958.
Zurück zum Zitat Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning (ICML). Vol. 37. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning (ICML). Vol. 37.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems (NIPS),27, 1106–1114. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems (NIPS),27, 1106–1114.
Zurück zum Zitat Kumar, A., & Pang, G. K. (2002). Defect detection in textured materials using gabor filters. IEEE Transcations on Industry Application,38(2), 425–440.CrossRef Kumar, A., & Pang, G. K. (2002). Defect detection in textured materials using gabor filters. IEEE Transcations on Industry Application,38(2), 425–440.CrossRef
Zurück zum Zitat LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature,521, 436–444.CrossRef LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature,521, 436–444.CrossRef
Zurück zum Zitat LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1990). Handwritten digit recognition with a back-propagation network. In Advances in neural information processing systems, pp. 396-404. LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1990). Handwritten digit recognition with a back-propagation network. In Advances in neural information processing systems, pp. 396-404.
Zurück zum Zitat LeCun, Y., Huang, F. J., Bottou, L. (2004). Learning methods for generic object recognition with invariance to pose and lighting. In Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition (CVPR’04). LeCun, Y., Huang, F. J., Bottou, L. (2004). Learning methods for generic object recognition with invariance to pose and lighting. In Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition (CVPR’04).
Zurück zum Zitat LeCun, Y., Kavukcuoglu, K., & Farabet, C. (2010). Convolutional networks and applications in vision. In Proceedings of 2010 IEEE international symposium on circuits and systems. LeCun, Y., Kavukcuoglu, K., & Farabet, C. (2010). Convolutional networks and applications in vision. In Proceedings of 2010 IEEE international symposium on circuits and systems.
Zurück zum Zitat Leung, T. K., & Malik, J. (2001). Representing and recognizing the visual appearance of materials using three-dimensional textons. International Journal of Computer Vision,43(1), 29–44.CrossRef Leung, T. K., & Malik, J. (2001). Representing and recognizing the visual appearance of materials using three-dimensional textons. International Journal of Computer Vision,43(1), 29–44.CrossRef
Zurück zum Zitat Liu, R., Choudhary, A., Chen, W., & Xu, H. (2015). A machine learning-based design representation for designing heterogeneous microstructure. Journal of Mechanical Design,137(5), 051403.CrossRef Liu, R., Choudhary, A., Chen, W., & Xu, H. (2015). A machine learning-based design representation for designing heterogeneous microstructure. Journal of Mechanical Design,137(5), 051403.CrossRef
Zurück zum Zitat Martins, L., Panddua, A., & Almeida, P. (2010). Automatic detection of surface defects on rolled steel using computer vision and artificial neural networks. In IECON 2010—36th annual conference on IEEE industrial electronics society, pp. 1081–1086. Martins, L., Panddua, A., & Almeida, P. (2010). Automatic detection of surface defects on rolled steel using computer vision and artificial neural networks. In IECON 201036th annual conference on IEEE industrial electronics society, pp. 1081–1086.
Zurück zum Zitat Masci, J., Meier, U., Ciresan, D., Schmidhuber, J., & Fricout, G. (2012). Steel defect classification with max-pooling convolutional neural networks. In International joint conference on neural networks (IJCNN), pp. 1–6. Masci, J., Meier, U., Ciresan, D., Schmidhuber, J., & Fricout, G. (2012). Steel defect classification with max-pooling convolutional neural networks. In International joint conference on neural networks (IJCNN), pp. 1–6.
Zurück zum Zitat Masci, J., Meier, U., Fricout, G., & Schmidhuber, J. (2013). Multi-scale pyramidal pooling network for generic steel defect classification. In Proceedings of the international joint conference on neural networks, Dallas, TX, USA. Masci, J., Meier, U., Fricout, G., & Schmidhuber, J. (2013). Multi-scale pyramidal pooling network for generic steel defect classification. In Proceedings of the international joint conference on neural networks, Dallas, TX, USA.
Zurück zum Zitat Mohanty, D., Hockaday, E., Li, J., Hensley, D. K., Daniel, C., & Wood, D. L., III. (2016). Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries: Cognizance of the battery failure sources. Journal of Power Sources,312, 70–79.CrossRef Mohanty, D., Hockaday, E., Li, J., Hensley, D. K., Daniel, C., & Wood, D. L., III. (2016). Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries: Cognizance of the battery failure sources. Journal of Power Sources,312, 70–79.CrossRef
Zurück zum Zitat Natarajan, V., Hung, T. Y., Vaikundam, S., Chia, L. T. (2017). Convolutional networks for voting-based anomaly classification in metal surface inspection. In Proceedings of the IEEE international conference on industrial technology, Toronto, ON, Canada. Natarajan, V., Hung, T. Y., Vaikundam, S., Chia, L. T. (2017). Convolutional networks for voting-based anomaly classification in metal surface inspection. In Proceedings of the IEEE international conference on industrial technology, Toronto, ON, Canada.
Zurück zum Zitat Nitta, N., Wu, F., Lee, J. T., & Yushin, G. (2015). Li-ion battery materials: Present and future. Materials Today,18(5), 252–264.CrossRef Nitta, N., Wu, F., Lee, J. T., & Yushin, G. (2015). Li-ion battery materials: Present and future. Materials Today,18(5), 252–264.CrossRef
Zurück zum Zitat Ojala, T., Pietikäinen, M., & Mäenpää, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence,24(7), 971–987.CrossRef Ojala, T., Pietikäinen, M., & Mäenpää, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence,24(7), 971–987.CrossRef
Zurück zum Zitat Pattan, P. C., Mytri, V. D., & Hiremath, P. S. (2010). Classification of cast iron based on graphite grain morphology using neural network approach. In Proceedings of SPIE—The international society for optical engineering, Vol. 7546. Pattan, P. C., Mytri, V. D., & Hiremath, P. S. (2010). Classification of cast iron based on graphite grain morphology using neural network approach. In Proceedings of SPIEThe international society for optical engineering, Vol. 7546.
Zurück zum Zitat Petrich, L., Westhoff, D., Feinauer, J., Finegan, D. P., Daemi, S. R., Shearing, P. R., et al. (2017). Crack detection in lithium-ion cells using machine learning. Computational Materials Science,136, 297–305.CrossRef Petrich, L., Westhoff, D., Feinauer, J., Finegan, D. P., Daemi, S. R., Shearing, P. R., et al. (2017). Crack detection in lithium-ion cells using machine learning. Computational Materials Science,136, 297–305.CrossRef
Zurück zum Zitat Peurrung, L. M., Ferris, K. F., & Marder, J. (2007). Materials informatics: Fast track to new materials. Advanced Materials and Processes,165(1), 50–51. Peurrung, L. M., Ferris, K. F., & Marder, J. (2007). Materials informatics: Fast track to new materials. Advanced Materials and Processes,165(1), 50–51.
Zurück zum Zitat Ren, R., Hung, T., & Tan, K. C. (2018). A generic deep learning based approach for automated surface inspection. IEEE Transactions on Cybernetics,48(3), 929–940.CrossRef Ren, R., Hung, T., & Tan, K. C. (2018). A generic deep learning based approach for automated surface inspection. IEEE Transactions on Cybernetics,48(3), 929–940.CrossRef
Zurück zum Zitat Rodgers, J. R., & Cebon, D. (2006). Materials informatics. MRS Bulletin,31(12), 975–980.CrossRef Rodgers, J. R., & Cebon, D. (2006). Materials informatics. MRS Bulletin,31(12), 975–980.CrossRef
Zurück zum Zitat Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D., (2017). Grad-CAM: Visual explanations from deep networks via gradient-based localization. In IEEE international conference on computer vision (ICCV). Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D., (2017). Grad-CAM: Visual explanations from deep networks via gradient-based localization. In IEEE international conference on computer vision (ICCV).
Zurück zum Zitat Sharp, N., O’Regan, P., Adams, D., Caruthers, J., David, A., & Suchomel, M. (2014). Lithium-ion battery electrode inspection using pulse thermography. NDT&E International,64, 41–51.CrossRef Sharp, N., O’Regan, P., Adams, D., Caruthers, J., David, A., & Suchomel, M. (2014). Lithium-ion battery electrode inspection using pulse thermography. NDT&E International,64, 41–51.CrossRef
Zurück zum Zitat Simard, P. Y., Steinkraus, D., & Platt, J. C. (2003). Best practices for convolutional neural networks applied to visual document analysis. In Proceedings of the seventh international conference on document analysis and recognition, Vol. 2, pp. 958–962. Simard, P. Y., Steinkraus, D., & Platt, J. C. (2003). Best practices for convolutional neural networks applied to visual document analysis. In Proceedings of the seventh international conference on document analysis and recognition, Vol. 2, pp. 958–962.
Zurück zum Zitat Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In International conference for learning representations (ICLR). Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In International conference for learning representations (ICLR).
Zurück zum Zitat Su, F.-Y., Dai, L.-Q., Guo, X.-Q., Xie, L.-J., Sun, G.-H., & Chen, C.-M. (2017). Micro-structure evolution and control of lithium-ion battery electrode laminate. Journal of Energy Storage,14, 82–93.CrossRef Su, F.-Y., Dai, L.-Q., Guo, X.-Q., Xie, L.-J., Sun, G.-H., & Chen, C.-M. (2017). Micro-structure evolution and control of lithium-ion battery electrode laminate. Journal of Energy Storage,14, 82–93.CrossRef
Zurück zum Zitat Szegedy, C., Liu, W., Jia, Y. et al. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, Boston, MA, USA. Szegedy, C., Liu, W., Jia, Y. et al. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, Boston, MA, USA.
Zurück zum Zitat Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Computer vision and pattern recognition. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Computer vision and pattern recognition.
Zurück zum Zitat Tao, X., Zhang, D., Ma, W., Liu, X., & Xu, D. (2018). Automatic metallic surface defect detection and recognition with convolutional neural networks. Applied Sciences,8(9), 1575.CrossRef Tao, X., Zhang, D., Ma, W., Liu, X., & Xu, D. (2018). Automatic metallic surface defect detection and recognition with convolutional neural networks. Applied Sciences,8(9), 1575.CrossRef
Zurück zum Zitat Varma, M., & Zisserman, A. (2009). A statistical approach to material classification using image patch exemplars. In IEEE transactions on pattern analysis and machine intelligence, Vol. 31, No. 11. Varma, M., & Zisserman, A. (2009). A statistical approach to material classification using image patch exemplars. In IEEE transactions on pattern analysis and machine intelligence, Vol. 31, No. 11.
Zurück zum Zitat Wang, Y. C. M. Q. H. S. T. (2018). A fast and robust convolutional neural network-based defect detection model in product quality control. The International Journal of Advanced Manufacturing Technology,94(9–12), 3465–3471.CrossRef Wang, Y. C. M. Q. H. S. T. (2018). A fast and robust convolutional neural network-based defect detection model in product quality control. The International Journal of Advanced Manufacturing Technology,94(9–12), 3465–3471.CrossRef
Zurück zum Zitat Weisenberger, C., Guth, G., Bernthaler, T., & Knoblauch, V. (2014). New quality evaluation approaches for lithium ion batteries using the interference layer metallography in combination with quantitative structural analysis. Practical Metallography,51(1), 5–31.CrossRef Weisenberger, C., Guth, G., Bernthaler, T., & Knoblauch, V. (2014). New quality evaluation approaches for lithium ion batteries using the interference layer metallography in combination with quantitative structural analysis. Practical Metallography,51(1), 5–31.CrossRef
Zurück zum Zitat Westphal, B. G., Mainusch, N., Meyer, C., Haselrieder, W., Indrikova, M., & Titscher, P. (2017). Influence of high intensive dry mixing and calendering on relative electrode resistivity determined via an advanced two point approach. Journal of Energy Storage,11, 76–85.CrossRef Westphal, B. G., Mainusch, N., Meyer, C., Haselrieder, W., Indrikova, M., & Titscher, P. (2017). Influence of high intensive dry mixing and calendering on relative electrode resistivity determined via an advanced two point approach. Journal of Energy Storage,11, 76–85.CrossRef
Zurück zum Zitat Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks? Advances in Neural Information Processing Systems,27, 3320–3328. Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks? Advances in Neural Information Processing Systems,27, 3320–3328.
Zurück zum Zitat Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In European conference on computer vision (ECCV). Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In European conference on computer vision (ECCV).
Zurück zum Zitat Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2014). OverFeat: Integrated recognition, localization and detection using convolutional networks. In International conference for learning representations (ICLR). Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2014). OverFeat: Integrated recognition, localization and detection using convolutional networks. In International conference for learning representations (ICLR).
Metadaten
Titel
Image-based defect detection in lithium-ion battery electrode using convolutional neural networks
verfasst von
Olatomiwa Badmos
Andreas Kopp
Timo Bernthaler
Gerhard Schneider
Publikationsdatum
01.08.2019
Verlag
Springer US
Erschienen in
Journal of Intelligent Manufacturing / Ausgabe 4/2020
Print ISSN: 0956-5515
Elektronische ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-019-01484-x

Weitere Artikel der Ausgabe 4/2020

Journal of Intelligent Manufacturing 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.