Skip to main content

2018 | OriginalPaper | Buchkapitel

Impedance Control in the Rehabilitation Robotics

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Physical interactions between patients and therapists during rehabilitation have served as motivation for the design of rehabilitation robots, yet there is a lack in fundamental understanding of the principles governing such human-human interactions. Review of the literature posed important open questions regarding sensorimotor interaction during human-human interactions that could facilitate the design of human-robot interactions and haptic interfaces for rehabilitation. The goal is to use the leading principles of the human-human interaction in order to define a way in which people could be in contact with robots in a more intuitive and biologically inspired way. The proposed hybrid impedance control solves the robot–environment contact problem and offers a possible solution for the rehabilitation robot interaction problem.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jarrassé, N., Charalambous, T., Burdet, E.: A framework to describe, analyze and generate interactive motor behaviors. PLoS ONE 7, 1–13 (2012)CrossRef Jarrassé, N., Charalambous, T., Burdet, E.: A framework to describe, analyze and generate interactive motor behaviors. PLoS ONE 7, 1–13 (2012)CrossRef
2.
Zurück zum Zitat Galvez, J.A., Kerdanyan, G., Maneekobkunwong, S., Weber, R., Scott, M., Harkema, S.J., Reinkensmeyer, D.J.: “Measuring Human Trainers” skill for the design of better robot control algorithms for gait training after spinal cord injury. In: Proceedings of the IEEE Conference on Rehabilitation Robotics, pp. 231–234 (2005) Galvez, J.A., Kerdanyan, G., Maneekobkunwong, S., Weber, R., Scott, M., Harkema, S.J., Reinkensmeyer, D.J.: “Measuring Human Trainers” skill for the design of better robot control algorithms for gait training after spinal cord injury. In: Proceedings of the IEEE Conference on Rehabilitation Robotics, pp. 231–234 (2005)
3.
Zurück zum Zitat Ikeura, R., Morita, A., Mizutani, K.: Variable-damping characteristics in carrying an object by two humans. In: Proceedings of the IEEE International Workshop on Robot and Human Communication, pp. 130–134 (1997) Ikeura, R., Morita, A., Mizutani, K.: Variable-damping characteristics in carrying an object by two humans. In: Proceedings of the IEEE International Workshop on Robot and Human Communication, pp. 130–134 (1997)
6.
Zurück zum Zitat Lum, P.S., Burgar, C.G., Shor, P.C., Majmundar, M., Van der Loos, M.: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 83(7), 952–959 (2002)CrossRef Lum, P.S., Burgar, C.G., Shor, P.C., Majmundar, M., Van der Loos, M.: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 83(7), 952–959 (2002)CrossRef
7.
Zurück zum Zitat Basteris, A., Nijenhuis, S.M., Stienen, A.H., Buurke, J.H., Prange, G.B., Amirabdollahian, F.: Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J Neuroeng Rehabil. 11, 111 (2014)CrossRef Basteris, A., Nijenhuis, S.M., Stienen, A.H., Buurke, J.H., Prange, G.B., Amirabdollahian, F.: Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J Neuroeng Rehabil. 11, 111 (2014)CrossRef
8.
Zurück zum Zitat Romer, G.R.B.E., Stuyt, H.J.A., Peters, A.: Cost-savings and economic benefits due to the assistive robotic manipulator (ARM). Conf. Proc IEEE Rehabil Robot. 1, 201–204 (2005) Romer, G.R.B.E., Stuyt, H.J.A., Peters, A.: Cost-savings and economic benefits due to the assistive robotic manipulator (ARM). Conf. Proc IEEE Rehabil Robot. 1, 201–204 (2005)
9.
Zurück zum Zitat Bemelmans, R., Gelderblom, G.J., Jonker, P., de Witte, L.: Socially assistive robots in elderly care: a systematic review into effects and effectiveness. J. Am. Med. Dir. Assoc. 13(2), 114–120 (2012)CrossRef Bemelmans, R., Gelderblom, G.J., Jonker, P., de Witte, L.: Socially assistive robots in elderly care: a systematic review into effects and effectiveness. J. Am. Med. Dir. Assoc. 13(2), 114–120 (2012)CrossRef
15.
Zurück zum Zitat Knaepen, K., Beyl, P., Duerinck, S., Hagman, F., Lefeber, D., Meeusen, R.: Human-robot interaction: kinematics and muscle activity inside a powered compliant knee exoskeleton. IEEE Trans. Neural Syst. Rehabil. Eng. 22(6), 1128–1137 (2014)CrossRef Knaepen, K., Beyl, P., Duerinck, S., Hagman, F., Lefeber, D., Meeusen, R.: Human-robot interaction: kinematics and muscle activity inside a powered compliant knee exoskeleton. IEEE Trans. Neural Syst. Rehabil. Eng. 22(6), 1128–1137 (2014)CrossRef
16.
Zurück zum Zitat Alamdari, A., Krovi, V.: Robotic physical exercise and system. Biomed. Eng. Lett. 6(1–9), 9 (2016) Alamdari, A., Krovi, V.: Robotic physical exercise and system. Biomed. Eng. Lett. 6(1–9), 9 (2016)
17.
Zurück zum Zitat (ROPES): A cable-driven robotic rehabilitation system for lower-extremity motor therapy. In: Conference Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 1, pp. 1–10 (2015) (ROPES): A cable-driven robotic rehabilitation system for lower-extremity motor therapy. In: Conference Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 1, pp. 1–10 (2015)
18.
Zurück zum Zitat Li, J., Zheng, R., Zhang, Y., Yao, J.: iHandRehab: an interactive hand exoskeleton for active and passive rehabilitation. Conf. Proc. IEEE Rehabil. Robot. 1, 1–6 (2011) Li, J., Zheng, R., Zhang, Y., Yao, J.: iHandRehab: an interactive hand exoskeleton for active and passive rehabilitation. Conf. Proc. IEEE Rehabil. Robot. 1, 1–6 (2011)
19.
Zurück zum Zitat Casadio, M., Sanguineti, V., Morasso, P.G., Arrichiello, V.: Braccio di Ferro: a new haptic workstation for neuromotor rehabilitation. Technol. Health Care 14(3), 123–142 (2006) Casadio, M., Sanguineti, V., Morasso, P.G., Arrichiello, V.: Braccio di Ferro: a new haptic workstation for neuromotor rehabilitation. Technol. Health Care 14(3), 123–142 (2006)
20.
Zurück zum Zitat Huang, F.C., Patton, J.L., Mussa-Ivaldi, F.A.: Negative viscosity can enhance learning of inertial dynamics. Conf. Proc. IEEE Rehabil. Robot. 1, 474–479 (2009) Huang, F.C., Patton, J.L., Mussa-Ivaldi, F.A.: Negative viscosity can enhance learning of inertial dynamics. Conf. Proc. IEEE Rehabil. Robot. 1, 474–479 (2009)
22.
Zurück zum Zitat Jung, H., Han, J., Kim, C.Y., Chun, K.J., Jung, D., Kim, J.S., Lim, D.: Characteristics of center of body mass trajectory and lower extremity joint motion responded by dynamic motions of balance training system. Biomed. Eng. Lett. 5(2), 92–97 (2015)CrossRef Jung, H., Han, J., Kim, C.Y., Chun, K.J., Jung, D., Kim, J.S., Lim, D.: Characteristics of center of body mass trajectory and lower extremity joint motion responded by dynamic motions of balance training system. Biomed. Eng. Lett. 5(2), 92–97 (2015)CrossRef
23.
Zurück zum Zitat Biswas, D., Cranny, A., Rahim, A.F., Gupta, N., Maharatna, K., Harris, N.R., Ortmann, S.: On the data analysis for classification of elementary upper limb movements. Biomed. Eng. Lett. 4(4), 403–413 (2014)CrossRef Biswas, D., Cranny, A., Rahim, A.F., Gupta, N., Maharatna, K., Harris, N.R., Ortmann, S.: On the data analysis for classification of elementary upper limb movements. Biomed. Eng. Lett. 4(4), 403–413 (2014)CrossRef
24.
Zurück zum Zitat Parra-Dominguez, G.S., Snoek, J., Taati, B., Mihailidis, A.: Lower body motion analysis to detect falls and near falls on stairs. Biomed Eng Lett. 5(2), 98–108 (2015)CrossRef Parra-Dominguez, G.S., Snoek, J., Taati, B., Mihailidis, A.: Lower body motion analysis to detect falls and near falls on stairs. Biomed Eng Lett. 5(2), 98–108 (2015)CrossRef
25.
Zurück zum Zitat Jensen, U., Leutheuser, H., Hofmann, S., Schuepferling, B., Suttner, G., Seiler, K., Kornhuber, J., Eskofier, B.M.: A wearable real-time activity tracker. Biomed. Eng. Lett. 5(2), 147–157 (2015)CrossRef Jensen, U., Leutheuser, H., Hofmann, S., Schuepferling, B., Suttner, G., Seiler, K., Kornhuber, J., Eskofier, B.M.: A wearable real-time activity tracker. Biomed. Eng. Lett. 5(2), 147–157 (2015)CrossRef
26.
Zurück zum Zitat Lajeunesse, V., Vincent, C., Routhier, F., Careau, E., Michaud, F.: Exoskeletons’ design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disabil. Rehabil. Assist. Technol. 4, 1–13 (2015) Lajeunesse, V., Vincent, C., Routhier, F., Careau, E., Michaud, F.: Exoskeletons’ design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disabil. Rehabil. Assist. Technol. 4, 1–13 (2015)
27.
Zurück zum Zitat Benson, I., Hart, K., Tussler, D., van Middendorp, J.J.: Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study. Clin. Rehabil. 30(1), 73–84 (2016)CrossRef Benson, I., Hart, K., Tussler, D., van Middendorp, J.J.: Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study. Clin. Rehabil. 30(1), 73–84 (2016)CrossRef
28.
Zurück zum Zitat Asselin, P., Knezevic, S., Kornfeld, S., Cirnigliaro, C., Agranova-Breyter, I., Bauman, W.A., Spungen, A.M.: Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia. J. Rehabil. Res. Dev. 52(2), 147–158 (2015)CrossRef Asselin, P., Knezevic, S., Kornfeld, S., Cirnigliaro, C., Agranova-Breyter, I., Bauman, W.A., Spungen, A.M.: Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia. J. Rehabil. Res. Dev. 52(2), 147–158 (2015)CrossRef
29.
Zurück zum Zitat Kozlowski, A.J., Bryce, T.N., Dijkers, M.P.: Time and effort required by persons with spinal cord injury to learn to use a powered exoskeleton for assisted walking. Top. Spinal Cord Inj. Rehabil. 21(2), 110–121 (2015)CrossRef Kozlowski, A.J., Bryce, T.N., Dijkers, M.P.: Time and effort required by persons with spinal cord injury to learn to use a powered exoskeleton for assisted walking. Top. Spinal Cord Inj. Rehabil. 21(2), 110–121 (2015)CrossRef
30.
Zurück zum Zitat Hartigan, C., Kandilakis, C., Dalley, S., Clausen, M., Wilson, E., Morrison, S., Etheridge, S., Farris, R.: Mobility outcomes following five training sessions with a powered exoskeleton. Top. Spinal Cord Inj. Rehabil. 21(2), 93–99 (2015)CrossRef Hartigan, C., Kandilakis, C., Dalley, S., Clausen, M., Wilson, E., Morrison, S., Etheridge, S., Farris, R.: Mobility outcomes following five training sessions with a powered exoskeleton. Top. Spinal Cord Inj. Rehabil. 21(2), 93–99 (2015)CrossRef
31.
Zurück zum Zitat Waldron, K., Schmiedeler, J.: Kinematics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 9–33. Springer, Berlin, Heidelberg (2008)CrossRef Waldron, K., Schmiedeler, J.: Kinematics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 9–33. Springer, Berlin, Heidelberg (2008)CrossRef
32.
Zurück zum Zitat Siciliano, B., Villani, L.: Robot Force Control, volume 540 of The Springer International Series in Engineering and Computer Science. Springer US (1999) Siciliano, B., Villani, L.: Robot Force Control, volume 540 of The Springer International Series in Engineering and Computer Science. Springer US (1999)
33.
Zurück zum Zitat Villani, L., de Schutter, J.: Force control. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 161–187. Springer (2008) Villani, L., de Schutter, J.: Force control. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 161–187. Springer (2008)
34.
Zurück zum Zitat Hogan, N.: Impedance control: an approach to manipulation: Part I—Theory. J. Dyn. Syst. Meas. Contr. 107(1), 1–7 (1985)CrossRefMATH Hogan, N.: Impedance control: an approach to manipulation: Part I—Theory. J. Dyn. Syst. Meas. Contr. 107(1), 1–7 (1985)CrossRefMATH
35.
Zurück zum Zitat Salisbury, J.K.: Active stiffness control of a manipulator in Cartesian coordinates. In: 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, vol. 19, pp. 95–100 (1980) Salisbury, J.K.: Active stiffness control of a manipulator in Cartesian coordinates. In: 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, vol. 19, pp. 95–100 (1980)
36.
Zurück zum Zitat Raibert, M.H., Craig, J.J.: Hybrid position/force control of manipulators. J. Dyn. Syst. Meas. Control 103(2), 126–133 (1981)CrossRef Raibert, M.H., Craig, J.J.: Hybrid position/force control of manipulators. J. Dyn. Syst. Meas. Control 103(2), 126–133 (1981)CrossRef
37.
Zurück zum Zitat de Schutter, J., Van Brussel, H.: Compliant robot motion II. A control approach based on external control loops. Int. J. Robot. Res. 7(4), 18–33 (1988)CrossRef de Schutter, J., Van Brussel, H.: Compliant robot motion II. A control approach based on external control loops. Int. J. Robot. Res. 7(4), 18–33 (1988)CrossRef
38.
Zurück zum Zitat Chiaverini, S., Sciavicco, L.: The parallel approach to force/position control of robotic manipulators. IEEE Trans. Robot. Autom. 9(4), 361–373 (1993)CrossRef Chiaverini, S., Sciavicco, L.: The parallel approach to force/position control of robotic manipulators. IEEE Trans. Robot. Autom. 9(4), 361–373 (1993)CrossRef
39.
Zurück zum Zitat Yoshikawa, T.: Force control of robot manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), vol. 1, pp. 220–226 (2000) Yoshikawa, T.: Force control of robot manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), vol. 1, pp. 220–226 (2000)
40.
Zurück zum Zitat Brogliato, B.: Feedback control. In: Nonsmooth Mechanics, Communications and Control Engineering, pp. 397–461. Springer, London (1999) Brogliato, B.: Feedback control. In: Nonsmooth Mechanics, Communications and Control Engineering, pp. 397–461. Springer, London (1999)
43.
Zurück zum Zitat Urbanek, H., Albu-Schaffer, A., Van Der Smagt, P.: Learning from demonstration: repetitive movements for autonomous service robotics. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 4, pp. 3495–3500 (2004) Urbanek, H., Albu-Schaffer, A., Van Der Smagt, P.: Learning from demonstration: repetitive movements for autonomous service robotics. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 4, pp. 3495–3500 (2004)
45.
Zurück zum Zitat Karayiannidis, Y., Doulgeri, Z.: Robot contact tasks in the presence of control target distortions. Robot. Auton. Syst. 58(5), 596–606 (2010)CrossRef Karayiannidis, Y., Doulgeri, Z.: Robot contact tasks in the presence of control target distortions. Robot. Auton. Syst. 58(5), 596–606 (2010)CrossRef
46.
Zurück zum Zitat Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., Burdet, E., Caldwell, D.G., Carloni, R., Catalano, M., Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein, M., Grioli, G., Haddadin, S., Hoppner, H., Jafari, A., Laffranchi, M., Lefeber, D., Petit, F., Stramigioli, S., Tsagarakis, N., Van Damme, M., Van Ham, R., Visser, L.C., Wolf, S.: Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013)CrossRef Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., Burdet, E., Caldwell, D.G., Carloni, R., Catalano, M., Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein, M., Grioli, G., Haddadin, S., Hoppner, H., Jafari, A., Laffranchi, M., Lefeber, D., Petit, F., Stramigioli, S., Tsagarakis, N., Van Damme, M., Van Ham, R., Visser, L.C., Wolf, S.: Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013)CrossRef
47.
Zurück zum Zitat Caccavale, F., Uchiyama, M.: Cooperative manipulators. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 701–718. Springer, Berlin, Heidelberg (2008)CrossRef Caccavale, F., Uchiyama, M.: Cooperative manipulators. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 701–718. Springer, Berlin, Heidelberg (2008)CrossRef
48.
Zurück zum Zitat Uchiyama, M.: Chapter 1 Multi-arm robot systems: A survey. In: Chiacchio, Pasquale, Chiaverini, Stefano (eds.) Complex Robotic Systems. Lecture Notes in Control and Information Sciences, vol. 233, pp. 1–31. Springer, Berlin Heidelberg (1998)CrossRef Uchiyama, M.: Chapter 1 Multi-arm robot systems: A survey. In: Chiacchio, Pasquale, Chiaverini, Stefano (eds.) Complex Robotic Systems. Lecture Notes in Control and Information Sciences, vol. 233, pp. 1–31. Springer, Berlin Heidelberg (1998)CrossRef
49.
Zurück zum Zitat Smith, C., Karayiannidis, Y., Nalpantidis, L., Gratal, X., Qi, P., Dimarogonas, D.V., Kragic, D.: Dual arm manipulation—a survey. Robot. Auton. Syst. 60(10), 1340–1353 (2012)CrossRef Smith, C., Karayiannidis, Y., Nalpantidis, L., Gratal, X., Qi, P., Dimarogonas, D.V., Kragic, D.: Dual arm manipulation—a survey. Robot. Auton. Syst. 60(10), 1340–1353 (2012)CrossRef
50.
Zurück zum Zitat Maitin-Shepard, J., Cusumano-Towner, M., Lei, J., Abbeel, P.: Cloth grasp point detection based on multiple-view geometric cues with application to robotic towel folding. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2308–2315 (2010) Maitin-Shepard, J., Cusumano-Towner, M., Lei, J., Abbeel, P.: Cloth grasp point detection based on multiple-view geometric cues with application to robotic towel folding. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2308–2315 (2010)
52.
Zurück zum Zitat Uchiyama, M., Dauchez, P.: Symmetric kinematic formulation and nonmaster/slave coordinated control of two-arm robots. Adv. Robot. 7(4), 361–383 (1992)CrossRef Uchiyama, M., Dauchez, P.: Symmetric kinematic formulation and nonmaster/slave coordinated control of two-arm robots. Adv. Robot. 7(4), 361–383 (1992)CrossRef
53.
Zurück zum Zitat Koivo, A.J., Unseren, M.A.: Reduced order model and decoupled control architecture for two manipulators holding a rigid object. J. Dyn. Syst. Meas. Control 113(4), 646–654 (1991)CrossRefMATH Koivo, A.J., Unseren, M.A.: Reduced order model and decoupled control architecture for two manipulators holding a rigid object. J. Dyn. Syst. Meas. Control 113(4), 646–654 (1991)CrossRefMATH
54.
Zurück zum Zitat Caccavale, F., Chiacchio, P., Marino, A., Villani, L.: Six-dof impedance control of dual-arm cooperative manipulators. IEEE/ASME Trans. Mechatron. 13(5), 576–586 (2008)CrossRef Caccavale, F., Chiacchio, P., Marino, A., Villani, L.: Six-dof impedance control of dual-arm cooperative manipulators. IEEE/ASME Trans. Mechatron. 13(5), 576–586 (2008)CrossRef
55.
Zurück zum Zitat Caccavale, F., Villani, L.: Impedance control of cooperative manipulators. Mach. Intell. Robot. Control 2, 51–57 (2000) Caccavale, F., Villani, L.: Impedance control of cooperative manipulators. Mach. Intell. Robot. Control 2, 51–57 (2000)
Metadaten
Titel
Impedance Control in the Rehabilitation Robotics
verfasst von
Zlata Jelačić
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-71321-2_85

Premium Partner