Skip to main content
Erschienen in: Computational Mechanics 4/2019

02.08.2018 | Original Paper

Implementation and application of the multiresolution continuum theory

verfasst von: Guohe Li, Jiaying Gao, Orion L. Kafka, Jacob Smith, Wing Kam Liu

Erschienen in: Computational Mechanics | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The multiresolution continuum theory (MCT) is implemented in FEA with a bespoke user defined element and materials. A simple dog-bone model is used to validate the code and study the effect of microscale parameters. The ability of the method to simulate the propagation of a shear band in simple shear without mesh dependence is shown. The length scale parameter is demonstrated to influence shear band width. Finally, we present a simulation of serrated chip formation in metal cutting, a case where accurate prediction of shear band formation is critical. The advantages of MCT over conventional methods are discussed. This work helps elucidate the role of the length scale and microscale parameters in MCT, and is a demonstration of a practical engineering application of the method: the simulation of high speed cutting.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Guo YB, Yen DW (2004) A FEM study on mechanisms of discontinuous chip formation in hard machining. J Mater Process Technol 155–156(6):1350–1356CrossRef Guo YB, Yen DW (2004) A FEM study on mechanisms of discontinuous chip formation in hard machining. J Mater Process Technol 155–156(6):1350–1356CrossRef
2.
Zurück zum Zitat Belhadi S, Mabrouki T, Rigal JF, Boulanouar L (2005) Experimental and numerical study of chip formation during straight turning of hardened AISI 4340 steel. Proc Inst Mech Eng B J Eng Manuf 219(JEM297):515–524CrossRef Belhadi S, Mabrouki T, Rigal JF, Boulanouar L (2005) Experimental and numerical study of chip formation during straight turning of hardened AISI 4340 steel. Proc Inst Mech Eng B J Eng Manuf 219(JEM297):515–524CrossRef
3.
Zurück zum Zitat Wen Q, Guo YB, Todd BA (2006) An adaptive FEA method to predict surface quality in hard machining. J Mater Process Technol 173(1):21–28CrossRef Wen Q, Guo YB, Todd BA (2006) An adaptive FEA method to predict surface quality in hard machining. J Mater Process Technol 173(1):21–28CrossRef
4.
Zurück zum Zitat Hortig C, Svendsen B (2007) Simulation of chip formation during high-speed cutting. J Mater Process Technol 186(1):66–76CrossRefMATH Hortig C, Svendsen B (2007) Simulation of chip formation during high-speed cutting. J Mater Process Technol 186(1):66–76CrossRefMATH
5.
Zurück zum Zitat Bäker M, Rösler J, Siemers C (2002) A finite element model of high speed metal cutting with adiabatic shearing. Comput Struct 80(5–6):495–513CrossRef Bäker M, Rösler J, Siemers C (2002) A finite element model of high speed metal cutting with adiabatic shearing. Comput Struct 80(5–6):495–513CrossRef
6.
Zurück zum Zitat Calamaz M, Coupard D, Girot F (2008) A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4V. Int J Mach Tools Manuf 48(3):275–288CrossRef Calamaz M, Coupard D, Girot F (2008) A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4V. Int J Mach Tools Manuf 48(3):275–288CrossRef
7.
Zurück zum Zitat Karpat Y (2011) Temperature dependent flow softening of titanium alloy Ti-6Al-4V: an investigation using finite element simulation of machining. J Mater Process Technol 211(4):737–749CrossRef Karpat Y (2011) Temperature dependent flow softening of titanium alloy Ti-6Al-4V: an investigation using finite element simulation of machining. J Mater Process Technol 211(4):737–749CrossRef
8.
Zurück zum Zitat Sima M, Özel T (2010) Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti-6Al-4V. Int J Mach Tools Manuf 50(11):943–960CrossRef Sima M, Özel T (2010) Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti-6Al-4V. Int J Mach Tools Manuf 50(11):943–960CrossRef
9.
Zurück zum Zitat Issa M, Labergère C, Saanouni K, Rassineux A (2012) Numerical prediction of thermomechanical field localization in orthogonal cutting. CIRP J Manuf Sci Technol 5(3):175–195CrossRef Issa M, Labergère C, Saanouni K, Rassineux A (2012) Numerical prediction of thermomechanical field localization in orthogonal cutting. CIRP J Manuf Sci Technol 5(3):175–195CrossRef
11.
Zurück zum Zitat McVeigh C, Vernerey FJ, Liu WK, Brinson Cate L (2006) Multiresolution analysis for material design. Comput Methods Appl Mech Eng 195(37–40):5053–5076MathSciNetCrossRefMATH McVeigh C, Vernerey FJ, Liu WK, Brinson Cate L (2006) Multiresolution analysis for material design. Comput Methods Appl Mech Eng 195(37–40):5053–5076MathSciNetCrossRefMATH
12.
Zurück zum Zitat Vernerey FJ, Liu WK, Moran B (2007) Multi-scale micromorphic theory for hierarchical materials. J Mech Phys Solids 55(12):2603–2651MathSciNetCrossRefMATH Vernerey FJ, Liu WK, Moran B (2007) Multi-scale micromorphic theory for hierarchical materials. J Mech Phys Solids 55(12):2603–2651MathSciNetCrossRefMATH
13.
Zurück zum Zitat Vernerey FJ, Liu WK, Moran B, Olson GB (2008) A micromorphic model for the multiple scale failure of heterogeneous materials. J Mech Phys Solids 56(4):1320–1347MathSciNetCrossRefMATH Vernerey FJ, Liu WK, Moran B, Olson GB (2008) A micromorphic model for the multiple scale failure of heterogeneous materials. J Mech Phys Solids 56(4):1320–1347MathSciNetCrossRefMATH
14.
Zurück zum Zitat McVeigh C, Liu WK (2008) Linking microstructure and properties through a predictive multiresolution continuum. Comput Methods Appl Mech Eng 197(41):3268–3290CrossRefMATH McVeigh C, Liu WK (2008) Linking microstructure and properties through a predictive multiresolution continuum. Comput Methods Appl Mech Eng 197(41):3268–3290CrossRefMATH
15.
Zurück zum Zitat McVeigh C, Liu WK (2010) Multiresolution continuum modeling of micro-void assisted dynamic adiabatic shear band propagation. J Mech Phys Solids 58(2):187–205MathSciNetCrossRefMATH McVeigh C, Liu WK (2010) Multiresolution continuum modeling of micro-void assisted dynamic adiabatic shear band propagation. J Mech Phys Solids 58(2):187–205MathSciNetCrossRefMATH
16.
Zurück zum Zitat Tian R, Chan S, Tang S, Kopacz AM, Wang J-S, Jou H-J, Siad L, Lindgren L-E, Olson GB, Liu WK (2010) A multiresolution continuum simulation of the ductile fracture process. J Mech Phys Solids 58(10):1681–1700CrossRefMATH Tian R, Chan S, Tang S, Kopacz AM, Wang J-S, Jou H-J, Siad L, Lindgren L-E, Olson GB, Liu WK (2010) A multiresolution continuum simulation of the ductile fracture process. J Mech Phys Solids 58(10):1681–1700CrossRefMATH
17.
Zurück zum Zitat Tang S, Kopacz AM, O’Keeffe SC, Olson GB, Liu WK (2013) Concurrent multiresolution finite element: formulation and algorithmic aspects. Comput Mech 52(6):1265–1279MathSciNetCrossRefMATH Tang S, Kopacz AM, O’Keeffe SC, Olson GB, Liu WK (2013) Concurrent multiresolution finite element: formulation and algorithmic aspects. Comput Mech 52(6):1265–1279MathSciNetCrossRefMATH
18.
Zurück zum Zitat Cowie JG, Azrin M, Olson GB (1989) Microvoid formation during shear deformation of ultrahigh strength steels. Metall Trans A 20(1):143–153CrossRef Cowie JG, Azrin M, Olson GB (1989) Microvoid formation during shear deformation of ultrahigh strength steels. Metall Trans A 20(1):143–153CrossRef
19.
Zurück zum Zitat Wright TW (2002) The physics and mathematics of adiabatic shear bands. Cambridge University Press, CambridgeMATH Wright TW (2002) The physics and mathematics of adiabatic shear bands. Cambridge University Press, CambridgeMATH
20.
Zurück zum Zitat Li GH, Wang MJ (2010) Dynamic mechanical properties and constitutive relationship of hardened 45 steel (45HRC) under high temperature and high strain rate. Explos Shock Waves 30(4):433–438 Li GH, Wang MJ (2010) Dynamic mechanical properties and constitutive relationship of hardened 45 steel (45HRC) under high temperature and high strain rate. Explos Shock Waves 30(4):433–438
21.
Zurück zum Zitat Umbrello D, M’Saoubi R, Outeiro JC (2007) The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel. Int J Mach Tools Manuf 47(3–4):462–470CrossRef Umbrello D, M’Saoubi R, Outeiro JC (2007) The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel. Int J Mach Tools Manuf 47(3–4):462–470CrossRef
22.
Zurück zum Zitat Bonnet C, Valiorgue F, Rech J, Claudin C, Hamdi H, Bergheau JM, Gilles P (2008) Identification of a friction model—application to the context of dry cutting of an AISI 316L austenitic stainless steel with a TiN coated carbide tool. Int J Mach Tools Manuf 48(11):1211–1223CrossRef Bonnet C, Valiorgue F, Rech J, Claudin C, Hamdi H, Bergheau JM, Gilles P (2008) Identification of a friction model—application to the context of dry cutting of an AISI 316L austenitic stainless steel with a TiN coated carbide tool. Int J Mach Tools Manuf 48(11):1211–1223CrossRef
23.
Zurück zum Zitat Maruda RW, Krolczyk GM, Niesłony P, Krolczyk JB, Legutko S (2016) Chip formation zone analysis during the turning of austenitic stainless steel 316L under MQCL cooling condition. Procedia Eng 149:297–304CrossRef Maruda RW, Krolczyk GM, Niesłony P, Krolczyk JB, Legutko S (2016) Chip formation zone analysis during the turning of austenitic stainless steel 316L under MQCL cooling condition. Procedia Eng 149:297–304CrossRef
24.
Zurück zum Zitat Shi J, Liu CR (2004) The influence of material models on finite element simulation of machining. J Manuf Sci Eng 126(4):849–857CrossRef Shi J, Liu CR (2004) The influence of material models on finite element simulation of machining. J Manuf Sci Eng 126(4):849–857CrossRef
25.
Zurück zum Zitat Duan C, Zhang L (2013) A reliable method for predicting serrated chip formation in high-speed cutting: analysis and experimental verification. Int J Adv Manuf Technol 64(9–12):1587–1597CrossRef Duan C, Zhang L (2013) A reliable method for predicting serrated chip formation in high-speed cutting: analysis and experimental verification. Int J Adv Manuf Technol 64(9–12):1587–1597CrossRef
Metadaten
Titel
Implementation and application of the multiresolution continuum theory
verfasst von
Guohe Li
Jiaying Gao
Orion L. Kafka
Jacob Smith
Wing Kam Liu
Publikationsdatum
02.08.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 4/2019
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-018-1613-6

Weitere Artikel der Ausgabe 4/2019

Computational Mechanics 4/2019 Zur Ausgabe

Neuer Inhalt