Skip to main content
Erschienen in: Journal of Science Education and Technology 3/2018

15.11.2017

Implementation of a Curriculum-Integrated Computer Game for Introducing Scientific Argumentation

verfasst von: Robert C. Wallon, Chandana Jasti, Logan Hillary Lauren, Barbara Hug

Erschienen in: Journal of Science Education and Technology | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Argumentation has been emphasized in recent US science education reform efforts (NGSS Lead States 2013; NRC 2012), and while existing studies have investigated approaches to introducing and supporting argumentation (e.g., McNeill and Krajcik in Journal of Research in Science Teaching, 45(1), 53–78, 2008; Kang et al. in Science Education, 98(4), 674–704, 2014), few studies have investigated how game-based approaches may be used to introduce argumentation to students. In this paper, we report findings from a design-based study of a teacher’s use of a computer game intended to introduce the claim, evidence, reasoning (CER) framework (McNeill and Krajcik 2012) for scientific argumentation. We studied the implementation of the game over two iterations of development in a high school biology teacher’s classes. The results of this study include aspects of enactment of the activities and student argument scores. We found the teacher used the game in aspects of explicit instruction of argumentation during both iterations, although the ways in which the game was used differed. Also, students’ scores in the second iteration were significantly higher than the first iteration. These findings support the notion that students can learn argumentation through a game, especially when used in conjunction with explicit instruction and support in student materials. These findings also highlight the importance of analyzing classroom implementation in studies of game-based learning.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Barab, S. A., Sadler, T. D., Heiselt, C., Hickey, D., & Zuiker, S. (2007). Relating narrative, inquiry, and inscriptions: supporting consequential play. Journal of Science Education and Technology, 16(1), 59–82.CrossRef Barab, S. A., Sadler, T. D., Heiselt, C., Hickey, D., & Zuiker, S. (2007). Relating narrative, inquiry, and inscriptions: supporting consequential play. Journal of Science Education and Technology, 16(1), 59–82.CrossRef
Zurück zum Zitat Bell, P., & Linn, M. C. (2000). Scientific arguments as learning artifacts: designing for learning from the web with KIE. International Journal of Science Education, 22(8), 797–817.CrossRef Bell, P., & Linn, M. C. (2000). Scientific arguments as learning artifacts: designing for learning from the web with KIE. International Journal of Science Education, 22(8), 797–817.CrossRef
Zurück zum Zitat Berland, L. K., & McNeill, K. L. (2010). A learning progression for scientific argumentation: understanding student work and designing supportive instructional contexts. Science Education, 94(5), 765–793.CrossRef Berland, L. K., & McNeill, K. L. (2010). A learning progression for scientific argumentation: understanding student work and designing supportive instructional contexts. Science Education, 94(5), 765–793.CrossRef
Zurück zum Zitat Berland, L. K., & McNeill, K. L. (2012). For whom is argument and explanation a necessary distinction? A response to Osborne and Patterson. Science Education, 96(5), 808–813.CrossRef Berland, L. K., & McNeill, K. L. (2012). For whom is argument and explanation a necessary distinction? A response to Osborne and Patterson. Science Education, 96(5), 808–813.CrossRef
Zurück zum Zitat Berland, L. K., & Reiser, B. J. (2009). Making sense of argumentation and explanation. Science Education, 93(1), 26–55.CrossRef Berland, L. K., & Reiser, B. J. (2009). Making sense of argumentation and explanation. Science Education, 93(1), 26–55.CrossRef
Zurück zum Zitat Cetin, P. S. (2014). Explicit argumentation instruction to facilitate conceptual understanding and argumentation skills. Research in Science & Technological Education, 32(1), 1–20.CrossRef Cetin, P. S. (2014). Explicit argumentation instruction to facilitate conceptual understanding and argumentation skills. Research in Science & Technological Education, 32(1), 1–20.CrossRef
Zurück zum Zitat Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46.CrossRef Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46.CrossRef
Zurück zum Zitat Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Lawrence Erlbaum Associates. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Lawrence Erlbaum Associates.
Zurück zum Zitat Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: theoretical and methodological issues. The Journal of the Learning Sciences, 13(1), 15–42.CrossRef Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: theoretical and methodological issues. The Journal of the Learning Sciences, 13(1), 15–42.CrossRef
Zurück zum Zitat Design-Based Research Collective. (2003). Design-based research: an emerging paradigm for educational inquiry. Educational Research, 32(1), 5–8.CrossRef Design-Based Research Collective. (2003). Design-based research: an emerging paradigm for educational inquiry. Educational Research, 32(1), 5–8.CrossRef
Zurück zum Zitat Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287–312.CrossRef Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287–312.CrossRef
Zurück zum Zitat Eastwood, J. L., & Sadler, T. D. (2013). Teachers’ implementation of a game-based biotechnology curriculum. Computers in Education, 66, 11–24.CrossRef Eastwood, J. L., & Sadler, T. D. (2013). Teachers’ implementation of a game-based biotechnology curriculum. Computers in Education, 66, 11–24.CrossRef
Zurück zum Zitat Edelson, D. C. (2002). Design research: what we learn when we engage in design. The Journal of the Learning Sciences, 11(1), 105–121.CrossRef Edelson, D. C. (2002). Design research: what we learn when we engage in design. The Journal of the Learning Sciences, 11(1), 105–121.CrossRef
Zurück zum Zitat Fleiss, J. L., Levin, B., & Paik, M. C. (2003). Statistical methods for rates and proportions (3rd ed.). New York: John Wiley.CrossRef Fleiss, J. L., Levin, B., & Paik, M. C. (2003). Statistical methods for rates and proportions (3rd ed.). New York: John Wiley.CrossRef
Zurück zum Zitat Gaydos, M. J., & Squire, K. D. (2012). Role playing games for scientific citizenship. Cultural Studies of Science Education, 7(4), 821–844.CrossRef Gaydos, M. J., & Squire, K. D. (2012). Role playing games for scientific citizenship. Cultural Studies of Science Education, 7(4), 821–844.CrossRef
Zurück zum Zitat Kang, H., Thompson, J., & Windschitl, M. (2014). Creating opportunities for students to show what they know: the role of scaffolding in assessment tasks. Science Education, 98(4), 674–704.CrossRef Kang, H., Thompson, J., & Windschitl, M. (2014). Creating opportunities for students to show what they know: the role of scaffolding in assessment tasks. Science Education, 98(4), 674–704.CrossRef
Zurück zum Zitat Ketelhut, D. J., & Nelson, B. C. (2010). Designing for real-world scientific inquiry in virtual environments. Educational Research, 52(2), 151–167.CrossRef Ketelhut, D. J., & Nelson, B. C. (2010). Designing for real-world scientific inquiry in virtual environments. Educational Research, 52(2), 151–167.CrossRef
Zurück zum Zitat Khishfe, R. (2014). Explicit nature of science and argumentation instruction in the context of socioscientific issues: an effect on student learning and transfer. International Journal of Science Education, 36(6), 974–1016.CrossRef Khishfe, R. (2014). Explicit nature of science and argumentation instruction in the context of socioscientific issues: an effect on student learning and transfer. International Journal of Science Education, 36(6), 974–1016.CrossRef
Zurück zum Zitat Krajcik, J., McNeill, K. L., & Reiser, B. J. (2008). Learning-goals-driven design model: developing curriculum materials that align with national standards and incorporate project-based pedagogy. Science Education, 92(1), 1–32.CrossRef Krajcik, J., McNeill, K. L., & Reiser, B. J. (2008). Learning-goals-driven design model: developing curriculum materials that align with national standards and incorporate project-based pedagogy. Science Education, 92(1), 1–32.CrossRef
Zurück zum Zitat Kuhn, D. (1993). Science as argument: implications for teaching and learning scientific thinking. Science Education, 77(3), 319–337.CrossRef Kuhn, D. (1993). Science as argument: implications for teaching and learning scientific thinking. Science Education, 77(3), 319–337.CrossRef
Zurück zum Zitat Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94(5), 810–824.CrossRef Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94(5), 810–824.CrossRef
Zurück zum Zitat Li, M. C., & Tsai, C. C. (2013). Game-based learning in science education: a review of relevant research. Journal of Science Education and Technology, 22(6), 877–898.CrossRef Li, M. C., & Tsai, C. C. (2013). Game-based learning in science education: a review of relevant research. Journal of Science Education and Technology, 22(6), 877–898.CrossRef
Zurück zum Zitat Lizotte, D. J., McNeill, K. L., & Krajcik, J. (2004). Teacher practices that support students’ construction of scientific explanations in middle school classrooms. In Y. Kafai, W. Sandoval, N. Enyedy, A. Nixon, & F. Herrera (Eds.), Proceedings of the sixth International Conference of the Learning Sciences (pp. 310–317). Mahwah: Lawrence Erlbaum. Lizotte, D. J., McNeill, K. L., & Krajcik, J. (2004). Teacher practices that support students’ construction of scientific explanations in middle school classrooms. In Y. Kafai, W. Sandoval, N. Enyedy, A. Nixon, & F. Herrera (Eds.), Proceedings of the sixth International Conference of the Learning Sciences (pp. 310–317). Mahwah: Lawrence Erlbaum.
Zurück zum Zitat McNeill, K. L., & Krajcik, J. (2008). Scientific explanations: characterizing and evaluating the effects of teachers’ instructional practices on student learning. Journal of Research in Science Teaching, 45(1), 53–78.CrossRef McNeill, K. L., & Krajcik, J. (2008). Scientific explanations: characterizing and evaluating the effects of teachers’ instructional practices on student learning. Journal of Research in Science Teaching, 45(1), 53–78.CrossRef
Zurück zum Zitat McNeill, K. L., & Krajcik, J. (2012). Supporting grade 5–8 students in constructing explanations in science. New York: Pearson Allyn & Bacon. McNeill, K. L., & Krajcik, J. (2012). Supporting grade 5–8 students in constructing explanations in science. New York: Pearson Allyn & Bacon.
Zurück zum Zitat National Research Council. (1996). National Science Education Standards. National Committee on Science Education Standards and Assessment. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press. National Research Council. (1996). National Science Education Standards. National Committee on Science Education Standards and Assessment. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.
Zurück zum Zitat National Research Council. (2011). Learning science through computer games and simulations. Committee on science learning: computer games, simulations, and education. In M. A. Honey & M. L. Hilton (Eds.), Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press. National Research Council. (2011). Learning science through computer games and simulations. Committee on science learning: computer games, simulations, and education. In M. A. Honey & M. L. Hilton (Eds.), Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.
Zurück zum Zitat National Research Council. (2012). A framework for K–12 science education: practices, crosscutting concepts, and core ideas, Committee on a Conceptual Framework for New K–12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press. National Research Council. (2012). A framework for K–12 science education: practices, crosscutting concepts, and core ideas, Committee on a Conceptual Framework for New K–12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.
Zurück zum Zitat Newton, P., Driver, R., & Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553–576.CrossRef Newton, P., Driver, R., & Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553–576.CrossRef
Zurück zum Zitat NGSS Lead States. (2013). Next generation science standards: for states, by states. Washington, DC: The National Academies Press. NGSS Lead States. (2013). Next generation science standards: for states, by states. Washington, DC: The National Academies Press.
Zurück zum Zitat Nussbaum, E. M., Sinatra, G. M., & Poliquin, A. (2008). Role of epistemic beliefs and scientific argumentation in science learning. International Journal of Science Education, 30(15), 1977–1999.CrossRef Nussbaum, E. M., Sinatra, G. M., & Poliquin, A. (2008). Role of epistemic beliefs and scientific argumentation in science learning. International Journal of Science Education, 30(15), 1977–1999.CrossRef
Zurück zum Zitat Osborne, J. F., & Patterson, A. (2011). Scientific argument and explanation: a necessary distinction? Science Education, 95(4), 627–638.CrossRef Osborne, J. F., & Patterson, A. (2011). Scientific argument and explanation: a necessary distinction? Science Education, 95(4), 627–638.CrossRef
Zurück zum Zitat Osborne, J. F., & Patterson, A. (2012). Authors’ response to “For whom is argument and explanation a necessary distinction? A response to Osborne and Patterson” by Berland and McNeill. Science Education, 96(5), 814–817.CrossRef Osborne, J. F., & Patterson, A. (2012). Authors’ response to “For whom is argument and explanation a necessary distinction? A response to Osborne and Patterson” by Berland and McNeill. Science Education, 96(5), 814–817.CrossRef
Zurück zum Zitat Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020.CrossRef Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020.CrossRef
Zurück zum Zitat Penuel, W. R., Fishman, B. J., Cheng, B., & Sabelli, N. (2011). Organizing research and development at the intersection of learning, implementation, and design. Educational Research, 40(7), 331–337.CrossRef Penuel, W. R., Fishman, B. J., Cheng, B., & Sabelli, N. (2011). Organizing research and development at the intersection of learning, implementation, and design. Educational Research, 40(7), 331–337.CrossRef
Zurück zum Zitat Rivet, A., & Krajcik, J. (2008). Contextualizing instruction: leveraging students’ prior knowledge and experiences to foster understanding of middle school science. Journal of Research in Science Teaching, 45(1), 79–100.CrossRef Rivet, A., & Krajcik, J. (2008). Contextualizing instruction: leveraging students’ prior knowledge and experiences to foster understanding of middle school science. Journal of Research in Science Teaching, 45(1), 79–100.CrossRef
Zurück zum Zitat Sadler, T. D., Romine, W. L., Menon, D., Ferdig, R. E., & Annetta, L. (2015). Learning biology through innovative curricula: a comparison of game- and nongame-based approaches. Science Education, 99(4), 696–720.CrossRef Sadler, T. D., Romine, W. L., Menon, D., Ferdig, R. E., & Annetta, L. (2015). Learning biology through innovative curricula: a comparison of game- and nongame-based approaches. Science Education, 99(4), 696–720.CrossRef
Zurück zum Zitat Sandoval, W. A., & Reiser, B. J. (2004). Explanation-driven inquiry: integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88(3), 345–372.CrossRef Sandoval, W. A., & Reiser, B. J. (2004). Explanation-driven inquiry: integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88(3), 345–372.CrossRef
Zurück zum Zitat Squire, K. D., & Jan, M. (2007). Mad City Mystery: developing scientific argumentation skills with a place-based augmented reality game on handheld computers. Journal of Science Education and Technology, 16(1), 5–29.CrossRef Squire, K. D., & Jan, M. (2007). Mad City Mystery: developing scientific argumentation skills with a place-based augmented reality game on handheld computers. Journal of Science Education and Technology, 16(1), 5–29.CrossRef
Zurück zum Zitat Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press. Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.
Zurück zum Zitat Watson, W. R., Mong, C. J., & Harris, C. A. (2011). A case study of the in-class use of a video game for teaching high school history. Computers in Education, 56(2), 466–474.CrossRef Watson, W. R., Mong, C. J., & Harris, C. A. (2011). A case study of the in-class use of a video game for teaching high school history. Computers in Education, 56(2), 466–474.CrossRef
Zurück zum Zitat Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35–62.CrossRef Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35–62.CrossRef
Metadaten
Titel
Implementation of a Curriculum-Integrated Computer Game for Introducing Scientific Argumentation
verfasst von
Robert C. Wallon
Chandana Jasti
Logan Hillary Lauren
Barbara Hug
Publikationsdatum
15.11.2017
Verlag
Springer Netherlands
Erschienen in
Journal of Science Education and Technology / Ausgabe 3/2018
Print ISSN: 1059-0145
Elektronische ISSN: 1573-1839
DOI
https://doi.org/10.1007/s10956-017-9720-2

Weitere Artikel der Ausgabe 3/2018

Journal of Science Education and Technology 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.