Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 6/2021

27.01.2020 | Original Article

Implementation of flexible models to bioethanol production from carob extract–based media in a biofilm reactor

verfasst von: Mustafa Germec, Mustafa Karhan, Ali Demirci, Irfan Turhan

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present study, eleven flexible models were employed to describe the effect of different medium compositions (DMC) on ethanol fermentation in repeated-batch biofilm reactors with carob extract. Residual-sum of square, root-mean-square-error, mean-absolute-error, determination coefficient, bias factor, accuracy factor, F test, and objective function were used to compare the models. Findings indicated that corresponding with the prediction of the experimental data of substrate concentration (S), the best-selected models were the Baranyi model (media A and C), Weibull model (medium B), and re-modified Gompertz model (R-MGM) (medium D). It was also found that in the estimation of the observed biomass concentration (X) data, Baranyi model (medium A), Weibull model (medium B), and Stannard model (media C and D) gave well-directed results according to the model comparison, validation, and fitting results. As related to ethanol concentration (P), the predicted data with the re-modified Richards model (R-MRM) (media A and B), re-modified logistic model (R-MLM) (medium C), and Baranyi model (medium D) were showed good agreement with the experimental p values. To validate the best-selected models, an independent set of the experimental data for each medium was used and it was found that the independent experimental values were highly compatible with the selected models. Consequently, the best-selected models can serve as universal equations to fit satisfactorily the experimental S, X, and P curves. These models can also be used for further improvement of the carob extract–based bioethanol production process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Germec M, Turhan I, Karhan M, Demirci A (2015) Ethanol production via repeated-batch fermentation from carob pod extract by using Saccharomyces cerevisiae in biofilm reactor. Fuel 161:304–311 Germec M, Turhan I, Karhan M, Demirci A (2015) Ethanol production via repeated-batch fermentation from carob pod extract by using Saccharomyces cerevisiae in biofilm reactor. Fuel 161:304–311
4.
Zurück zum Zitat Germec M, Kartal FK, Bilgic M, Ilgin M, Ilhan E, Güldali H, Isci A, Turhan I (2016) Ethanol production from rice hull using Pichia stipitis and optimization of acid pretreatment and detoxification processes. Biotechnol Prog 32(4):872–882 Germec M, Kartal FK, Bilgic M, Ilgin M, Ilhan E, Güldali H, Isci A, Turhan I (2016) Ethanol production from rice hull using Pichia stipitis and optimization of acid pretreatment and detoxification processes. Biotechnol Prog 32(4):872–882
5.
Zurück zum Zitat Germec M, Turhan I (2018) Ethanol production from acid-pretreated and detoxified tea processing waste and its modeling. Fuel 231:101–109 Germec M, Turhan I (2018) Ethanol production from acid-pretreated and detoxified tea processing waste and its modeling. Fuel 231:101–109
6.
Zurück zum Zitat Germec M, Turhan I, Yatmaz E, Tetik N, Karhan M (2016) Fermentation of acid-pretreated tea processing waste for ethanol production using Saccharomyces cerevisiae. Sci Bull Series F Biotechnol 20:269–274 Germec M, Turhan I, Yatmaz E, Tetik N, Karhan M (2016) Fermentation of acid-pretreated tea processing waste for ethanol production using Saccharomyces cerevisiae. Sci Bull Series F Biotechnol 20:269–274
7.
Zurück zum Zitat Germec M, Ozcan A, Yilmazer C, Tas N, Onuk Z, Demirel F, Turhan I (2017) Ethanol fermentation from microwave-assisted acid pretreated raw materials by Scheffersomyces stipitis. AgroLife Sci J 6(1):112–118 Germec M, Ozcan A, Yilmazer C, Tas N, Onuk Z, Demirel F, Turhan I (2017) Ethanol fermentation from microwave-assisted acid pretreated raw materials by Scheffersomyces stipitis. AgroLife Sci J 6(1):112–118
8.
Zurück zum Zitat Germec M, Turhan I (2018) Ethanol production from acid-pretreated and detoxified rice straw as sole renewable resource. Biomass Convers Biorefinery 8(3):607–619 Germec M, Turhan I (2018) Ethanol production from acid-pretreated and detoxified rice straw as sole renewable resource. Biomass Convers Biorefinery 8(3):607–619
9.
Zurück zum Zitat Medouze D, Pan CL, Cheng KC (2018) Evaluation of ethanol production from Ulva lactuca hydrolysate. Taiwan J Agr Chem Food Sci 56(3/4):69–76 Medouze D, Pan CL, Cheng KC (2018) Evaluation of ethanol production from Ulva lactuca hydrolysate. Taiwan J Agr Chem Food Sci 56(3/4):69–76
10.
Zurück zum Zitat Wu WH, Hung WC, Lo KY, Chen YH, Wan HP, Cheng KC (2016) Bioethanol production from taro waste using thermo-tolerant yeast Kluyveromyces marxianus K21. Bioresour Technol 201:27–32 Wu WH, Hung WC, Lo KY, Chen YH, Wan HP, Cheng KC (2016) Bioethanol production from taro waste using thermo-tolerant yeast Kluyveromyces marxianus K21. Bioresour Technol 201:27–32
11.
Zurück zum Zitat Cardona CA, Sánchez ÓJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98(12):2415–2457 Cardona CA, Sánchez ÓJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98(12):2415–2457
12.
Zurück zum Zitat Sarris D, Papanikolaou S (2016) Biotechnological production of ethanol: biochemistry, processes and technologies. Eng Life Sci 16(4):307–329 Sarris D, Papanikolaou S (2016) Biotechnological production of ethanol: biochemistry, processes and technologies. Eng Life Sci 16(4):307–329
13.
Zurück zum Zitat Ercan Y, Irfan T, Mustafa K (2013) Optimization of ethanol production from carob pod extract using immobilized Saccharomyces cerevisiae cells in a stirred tank bioreactor. Bioresour Technol 135:365–371 Ercan Y, Irfan T, Mustafa K (2013) Optimization of ethanol production from carob pod extract using immobilized Saccharomyces cerevisiae cells in a stirred tank bioreactor. Bioresour Technol 135:365–371
14.
Zurück zum Zitat Germec M, Karhan M, Demirci A, Turhan I (2018) Ethanol production in a biofilm reactor with non-sterile carob extract media and its modeling. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40(22):2726–2734 Germec M, Karhan M, Demirci A, Turhan I (2018) Ethanol production in a biofilm reactor with non-sterile carob extract media and its modeling. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40(22):2726–2734
15.
Zurück zum Zitat Germec M, Turhan I, Demirci A, Karhan M (2016) Effect of media sterilization and enrichment on ethanol production from carob extract in a biofilm reactor. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38(21):3268–3272 Germec M, Turhan I, Demirci A, Karhan M (2016) Effect of media sterilization and enrichment on ethanol production from carob extract in a biofilm reactor. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38(21):3268–3272
16.
Zurück zum Zitat Oziyci HR, Tetik N, Turhan I, Yatmaz E, Ucgun K, Akgul H, Gubbuk H, Karhan M (2014) Mineral composition of pods and seeds of wild and grafted carob (Ceratonia siliqua L.) fruits. Sci Hortic 167:149–152 Oziyci HR, Tetik N, Turhan I, Yatmaz E, Ucgun K, Akgul H, Gubbuk H, Karhan M (2014) Mineral composition of pods and seeds of wild and grafted carob (Ceratonia siliqua L.) fruits. Sci Hortic 167:149–152
17.
Zurück zum Zitat Turhan I, Bialka KL, Demirci A, Karhan M (2010) Ethanol production from carob extract by using Saccharomyces cerevisiae. Bioresour Technol 101(14):5290–5296 Turhan I, Bialka KL, Demirci A, Karhan M (2010) Ethanol production from carob extract by using Saccharomyces cerevisiae. Bioresour Technol 101(14):5290–5296
18.
Zurück zum Zitat Yatmaz E, Turhan I (2018) Carob as a carbon source for fermentation technology. Biocatalysis Agr Biotechnol 16:200–208 Yatmaz E, Turhan I (2018) Carob as a carbon source for fermentation technology. Biocatalysis Agr Biotechnol 16:200–208
19.
Zurück zum Zitat Ho K, Pometto A, Hinz PN, Demirci A (1997) Nutrient leaching and end product accumulation in plastic composite supports for L-(+)-lactic acid biofilm fermentation. Appl Environ Microbiol 63(7):2524–2532 Ho K, Pometto A, Hinz PN, Demirci A (1997) Nutrient leaching and end product accumulation in plastic composite supports for L-(+)-lactic acid biofilm fermentation. Appl Environ Microbiol 63(7):2524–2532
20.
Zurück zum Zitat Demirci A, Pometto A III, Ho KG (1997) Ethanol production by Saccharomyces cerevisiae in biofilm reactors. J Ind Microbiol Biotechnol 19(4):299–304 Demirci A, Pometto A III, Ho KG (1997) Ethanol production by Saccharomyces cerevisiae in biofilm reactors. J Ind Microbiol Biotechnol 19(4):299–304
21.
Zurück zum Zitat Izmirlioglu G, Demirci A (2016) Ethanol production in biofilm reactors from potato waste hydrolysate and optimization of growth parameters for Saccharomyces cerevisiae. Fuel 181:643–651 Izmirlioglu G, Demirci A (2016) Ethanol production in biofilm reactors from potato waste hydrolysate and optimization of growth parameters for Saccharomyces cerevisiae. Fuel 181:643–651
22.
Zurück zum Zitat Izmirlioglu G, Demirci A (2017) Simultaneous saccharification and fermentation of ethanol from potato waste by co-cultures of Aspergillus niger and Saccharomyces cerevisiae in biofilm reactors. Fuel 202:260–270 Izmirlioglu G, Demirci A (2017) Simultaneous saccharification and fermentation of ethanol from potato waste by co-cultures of Aspergillus niger and Saccharomyces cerevisiae in biofilm reactors. Fuel 202:260–270
23.
Zurück zum Zitat Bhowmick AR, Bhattacharya S (2014) A new growth curve model for biological growth: some inferential studies on the growth of Cirrhinus mrigala. Math Biosci 254:28–41MathSciNetMATH Bhowmick AR, Bhattacharya S (2014) A new growth curve model for biological growth: some inferential studies on the growth of Cirrhinus mrigala. Math Biosci 254:28–41MathSciNetMATH
24.
Zurück zum Zitat Chou IC, Voit EO (2009) Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math Biosci 219(2):57–83205MathSciNetMATH Chou IC, Voit EO (2009) Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math Biosci 219(2):57–83205MathSciNetMATH
25.
Zurück zum Zitat de Jesus S, Maciel Filho R (2010) Modeling growth of microalgae Dunaliella salina under different nutritional conditions. Am J Biochem Biotechnol 6(4):279–283 de Jesus S, Maciel Filho R (2010) Modeling growth of microalgae Dunaliella salina under different nutritional conditions. Am J Biochem Biotechnol 6(4):279–283
26.
Zurück zum Zitat Farliahati M, Mohamed M, Rosfarizan M, Tri Puspaningsih N, Ariff A (2009) Kinetics of xylanase fermentation by recombinant Escherichia coli DH5α in shake flask culture. Am J Biochem Biotechnol 5(3):110–118 Farliahati M, Mohamed M, Rosfarizan M, Tri Puspaningsih N, Ariff A (2009) Kinetics of xylanase fermentation by recombinant Escherichia coli DH5α in shake flask culture. Am J Biochem Biotechnol 5(3):110–118
28.
Zurück zum Zitat Germec M, Karhan M, Bialka KL, Demirci A, Turhan I (2018) Mathematical modeling of lactic acid fermentation in bioreactor with carob extract. Biocatalysis Agr Biotechnol 14:254–263 Germec M, Karhan M, Bialka KL, Demirci A, Turhan I (2018) Mathematical modeling of lactic acid fermentation in bioreactor with carob extract. Biocatalysis Agr Biotechnol 14:254–263
29.
Zurück zum Zitat Germec M, Kartal FK, Guldali H, Bilgic M, Isci A, Turhan I (2016) Obtaining growth curves for Scheffersomyces stipitis strains and their modeling. Sci Bull Series F Biotechnol 20:263–268 Germec M, Kartal FK, Guldali H, Bilgic M, Isci A, Turhan I (2016) Obtaining growth curves for Scheffersomyces stipitis strains and their modeling. Sci Bull Series F Biotechnol 20:263–268
30.
Zurück zum Zitat Sasikumar E, Viruthagiri T (2008) Optimization of process conditions using response surface methodology (RSM) for ethanol production from pretreated sugarcane bagasse: kinetics and modeling. BioEnergy Res 1:239–247 Sasikumar E, Viruthagiri T (2008) Optimization of process conditions using response surface methodology (RSM) for ethanol production from pretreated sugarcane bagasse: kinetics and modeling. BioEnergy Res 1:239–247
31.
Zurück zum Zitat Sriyudthsak K, Shiraishi F (2010) Investigation of the performance of fermentation processes using a mathematical model including effects of metabolic bottleneck and toxic product on cells. Math Biosci 228(1):1–9MathSciNetMATH Sriyudthsak K, Shiraishi F (2010) Investigation of the performance of fermentation processes using a mathematical model including effects of metabolic bottleneck and toxic product on cells. Math Biosci 228(1):1–9MathSciNetMATH
32.
Zurück zum Zitat Sablani SS, Datta AK, Rahman MS, Mujumdar AS (2006) Handbook of food and bioprocess modeling techniques. CRC Press Sablani SS, Datta AK, Rahman MS, Mujumdar AS (2006) Handbook of food and bioprocess modeling techniques. CRC Press
33.
Zurück zum Zitat Srivastava N, Rawat R, Singh Oberoi H, Ramteke PW (2015) A review on fuel ethanol production from lignocellulosic biomass. Int J Green Energy 12(9):949–960 Srivastava N, Rawat R, Singh Oberoi H, Ramteke PW (2015) A review on fuel ethanol production from lignocellulosic biomass. Int J Green Energy 12(9):949–960
34.
Zurück zum Zitat Dodić JM, Vučurović DG, Dodić SN, Grahovac JA, Popov SD, Nedeljković NM (2012) Kinetic modelling of batch ethanol production from sugar beet raw juice. Appl Energy 99:192–197 Dodić JM, Vučurović DG, Dodić SN, Grahovac JA, Popov SD, Nedeljković NM (2012) Kinetic modelling of batch ethanol production from sugar beet raw juice. Appl Energy 99:192–197
35.
Zurück zum Zitat Gabardo S, Pereira GF, Rech R, Ayub MAZ (2015) The modeling of ethanol production by Kluyveromyces marxianus using whey as substrate in continuous A-Stat bioreactors. J Ind Microbiol Biotechnol 42(9):1243–1253 Gabardo S, Pereira GF, Rech R, Ayub MAZ (2015) The modeling of ethanol production by Kluyveromyces marxianus using whey as substrate in continuous A-Stat bioreactors. J Ind Microbiol Biotechnol 42(9):1243–1253
36.
Zurück zum Zitat Putra MD, Abasaeed AE, Atiyeh HK, Al-Zahrani SM, Gaily MH, Sulieman AK, Zeinelabdeen MA (2015) Kinetic modeling and enhanced production of fructose and ethanol from date fruit extract. Chem Eng Commun 202(12):1618–1627 Putra MD, Abasaeed AE, Atiyeh HK, Al-Zahrani SM, Gaily MH, Sulieman AK, Zeinelabdeen MA (2015) Kinetic modeling and enhanced production of fructose and ethanol from date fruit extract. Chem Eng Commun 202(12):1618–1627
37.
Zurück zum Zitat Zwietering M, Jongenburger I, Rombouts F, Van't Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56(6):1875–1881 Zwietering M, Jongenburger I, Rombouts F, Van't Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56(6):1875–1881
38.
Zurück zum Zitat Stannard C, Williams A, Gibbs P (1985) Temperature/growth relationships for psychrotrophic food-spoilage bacteria. Food Microbiol 2(2):115–122 Stannard C, Williams A, Gibbs P (1985) Temperature/growth relationships for psychrotrophic food-spoilage bacteria. Food Microbiol 2(2):115–122
39.
Zurück zum Zitat Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 9:293–297MATH Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 9:293–297MATH
40.
Zurück zum Zitat Morgan PH, Mercer LP, Flodin NW (1975) General model for nutritional responses of higher organisms. Proc Natl Acad Sci 72(11):4327–4331 Morgan PH, Mercer LP, Flodin NW (1975) General model for nutritional responses of higher organisms. Proc Natl Acad Sci 72(11):4327–4331
41.
Zurück zum Zitat Dantigny P, Nanguy SP-M, Judet-Correia D, Bensoussan M (2011) A new model for germination of fungi. Int J Food Microbiol 146(2):176–181 Dantigny P, Nanguy SP-M, Judet-Correia D, Bensoussan M (2011) A new model for germination of fungi. Int J Food Microbiol 146(2):176–181
42.
Zurück zum Zitat Baranyi J, Roberts TA (1994) A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol 23(3–4):277–294 Baranyi J, Roberts TA (1994) A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol 23(3–4):277–294
43.
Zurück zum Zitat Huang L (2013) Optimization of a new mathematical model for bacterial growth. Food Control 32(1):283–288 Huang L (2013) Optimization of a new mathematical model for bacterial growth. Food Control 32(1):283–288
44.
Zurück zum Zitat Fitzhugh H (1976) Analysis of growth curves and strategies for altering their shape. J Anim Sci 42(4):1036–1051 Fitzhugh H (1976) Analysis of growth curves and strategies for altering their shape. J Anim Sci 42(4):1036–1051
45.
Zurück zum Zitat Cone JW, van Gelder AH, Visscher GJ, Oudshoorn L (1996) Influence of rumen fluid and substrate concentration on fermentation kinetics measured with a fully automated time related gas production apparatus. Anim Feed Sci Technol 61(1):113–128 Cone JW, van Gelder AH, Visscher GJ, Oudshoorn L (1996) Influence of rumen fluid and substrate concentration on fermentation kinetics measured with a fully automated time related gas production apparatus. Anim Feed Sci Technol 61(1):113–128
46.
Zurück zum Zitat Mahdinia E, Mamouri SJ, Puri VM, Demirci A, Berenjian A (2019) Modeling of vitamin K (Menaquinoe-7) fermentation by Bacillus subtilis natto in biofilm reactors. Biocatalysis Agr Biotechnol 17:196–202 Mahdinia E, Mamouri SJ, Puri VM, Demirci A, Berenjian A (2019) Modeling of vitamin K (Menaquinoe-7) fermentation by Bacillus subtilis natto in biofilm reactors. Biocatalysis Agr Biotechnol 17:196–202
47.
Zurück zum Zitat Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428 Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428
48.
Zurück zum Zitat Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)?–arguments against avoiding RMSE in the literature. Geosci Model Dev 7(3):1247–1250 Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)?–arguments against avoiding RMSE in the literature. Geosci Model Dev 7(3):1247–1250
49.
Zurück zum Zitat Germec M, Bader NB, Turhan I (2018) Dilute acid and alkaline pretreatment of spent tea leaves to determine the potential of carbon sources. Biomass Convers Biorefinery 8(3):529–544 Germec M, Bader NB, Turhan I (2018) Dilute acid and alkaline pretreatment of spent tea leaves to determine the potential of carbon sources. Biomass Convers Biorefinery 8(3):529–544
50.
Zurück zum Zitat Ross T (1996) Indices for performance evaluation of predictive models in food microbiology. J Appl Microbiol 81(5):501–508 Ross T (1996) Indices for performance evaluation of predictive models in food microbiology. J Appl Microbiol 81(5):501–508
51.
Zurück zum Zitat Skandamis PN, Nychas G-JE (2000) Development and evaluation of a model predicting the survival of Escherichia coli O157: H7 NCTC 12900 in homemade eggplant salad at various temperatures, pHs, and oregano essential oil concentrations. Appl Environ Microbiol 66(4):1646–1653 Skandamis PN, Nychas G-JE (2000) Development and evaluation of a model predicting the survival of Escherichia coli O157: H7 NCTC 12900 in homemade eggplant salad at various temperatures, pHs, and oregano essential oil concentrations. Appl Environ Microbiol 66(4):1646–1653
52.
Zurück zum Zitat Ross T (1999) Predictive food microbiology models in the meat industry. Meat and Livestock Australia Ross T (1999) Predictive food microbiology models in the meat industry. Meat and Livestock Australia
53.
Zurück zum Zitat Ross T, Dalgaard P, Tienungoon S (2000) Predictive modelling of the growth and survival of Listeria in fishery products. Int J Food Microbiol 62(3):231–245 Ross T, Dalgaard P, Tienungoon S (2000) Predictive modelling of the growth and survival of Listeria in fishery products. Int J Food Microbiol 62(3):231–245
54.
Zurück zum Zitat Feng J, Zhang J-S, Jia W, Yang Y, Liu F, Lin C-C (2014) An unstructured kinetic model for the improvement of triterpenes production by Ganoderma lucidum G0119 based on nitrogen source effect. Biotechnol Bioprocess Eng 19(4):727–732 Feng J, Zhang J-S, Jia W, Yang Y, Liu F, Lin C-C (2014) An unstructured kinetic model for the improvement of triterpenes production by Ganoderma lucidum G0119 based on nitrogen source effect. Biotechnol Bioprocess Eng 19(4):727–732
55.
Zurück zum Zitat Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441MathSciNetMATH Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441MathSciNetMATH
56.
Zurück zum Zitat Çelekli A, Yavuzatmaca M (2009) Predictive modeling of biomass production by Spirulina platensis as function of nitrate and NaCl concentrations. Bioresour Technol 100(5):1847–1851 Çelekli A, Yavuzatmaca M (2009) Predictive modeling of biomass production by Spirulina platensis as function of nitrate and NaCl concentrations. Bioresour Technol 100(5):1847–1851
57.
Zurück zum Zitat Wasungu K, Simard R (1982) Growth characteristics of bakers’ yeast in ethanol. Biotechnol Bioeng 24(5):1125–1134 Wasungu K, Simard R (1982) Growth characteristics of bakers’ yeast in ethanol. Biotechnol Bioeng 24(5):1125–1134
58.
Zurück zum Zitat Suresh S, Srivastava V, Sakthivel S, Arisutha S (2018) Kinetic modeling of ethanol production for substrate–microbe system. In: Biorefining of Biomass to Biofuels. Springer, pp 361–372 Suresh S, Srivastava V, Sakthivel S, Arisutha S (2018) Kinetic modeling of ethanol production for substrate–microbe system. In: Biorefining of Biomass to Biofuels. Springer, pp 361–372
59.
Zurück zum Zitat Shuler ML, Kargi F (2017) Major metabolic pathways. In: ShuRiver ML, Kargi F (eds) Bioprocess engineering: basic concepts, 2nd edn. Prentice Hall, Upper Saddle River Shuler ML, Kargi F (2017) Major metabolic pathways. In: ShuRiver ML, Kargi F (eds) Bioprocess engineering: basic concepts, 2nd edn. Prentice Hall, Upper Saddle River
Metadaten
Titel
Implementation of flexible models to bioethanol production from carob extract–based media in a biofilm reactor
verfasst von
Mustafa Germec
Mustafa Karhan
Ali Demirci
Irfan Turhan
Publikationsdatum
27.01.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 6/2021
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-020-00612-5

Weitere Artikel der Ausgabe 6/2021

Biomass Conversion and Biorefinery 6/2021 Zur Ausgabe