Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 1/2024

17.01.2022 | Original Article

Improved degradation of dye wastewater and enhanced power output in microbial fuel cells with chemically treated corncob anodes

verfasst von: Kumar Sonu, Monika Sogani, Zainab Syed, Jayana Rajvanshi

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microbial fuel cell (MFC) technology efficiently handles the two issues of pollution removal and energy generation at the same time; however, it is limited in its use due to a few fundamental constraints. The key operational constraints of the MFCs are the high cost of electrodes and membranes. To address these issues, carbonized corncob anodes were prepared, and the effect of chemical treatments such as 20% hydrogen peroxide (H2O2), 1 N NaOH, and 1 N FeCl3 on the performance of a single chamber MFC was examined. The comparison of single-chamber MFCs with the bare anode (without any chemical treatment) and the chemically treated carbonized corncob anode were performed. The comparison revealed the excellent electro-catalytic activity in MFC with 20% H2O2 treated anode, exhibiting 91% decrease in internal resistance along with 89% improvement in the maximum power density (89.7 mW/m2). The H2O2-treated anode demonstrated an increase in oxygen molecule containing functional groups which favored the electron transfer between the bacteria and electrodes. Furthermore, MFCs with 20% H2O2-treated anode resulted in 18% higher decolorization efficiency of dye wastewater than bare anode. The use of corncob as an anode material made the MFC device construction easier and economical and provided a way forward to study other cheap agro waste materials for use as anode and cathode materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sonu K, Das B. Comparison of the output voltage characteristics pattern for sewage sludge, kitchen waste and cow dung in single chamber single electrode microbial fuel cell. Indian J Sci Technol. 2016;9(30) Sonu K, Das B. Comparison of the output voltage characteristics pattern for sewage sludge, kitchen waste and cow dung in single chamber single electrode microbial fuel cell. Indian J Sci Technol. 2016;9(30)
2.
Zurück zum Zitat Bose D, Gopinath M, Vijay P (2018) Sustainable power generation from wastewater sources using microbial fuel cell. Biofuels Bioprod Bioref 12(4):559–576CrossRef Bose D, Gopinath M, Vijay P (2018) Sustainable power generation from wastewater sources using microbial fuel cell. Biofuels Bioprod Bioref 12(4):559–576CrossRef
3.
Zurück zum Zitat Bose D, Dhawan H, Kandpal V, Vijay P, Gopinath M (2018) Bioelectricity generation from sewage and wastewater treatment using two-chambered microbial fuel cell. Int J Energy Res 42(14):4335–4344CrossRef Bose D, Dhawan H, Kandpal V, Vijay P, Gopinath M (2018) Bioelectricity generation from sewage and wastewater treatment using two-chambered microbial fuel cell. Int J Energy Res 42(14):4335–4344CrossRef
4.
Zurück zum Zitat Syed Z, Sonu K, Dongre A, Sogani M (2019) Bioelectrical systems for removal of endocrine disrupting compounds from waste water: a review. Glob J Eng 6:46–51 Syed Z, Sonu K, Dongre A, Sogani M (2019) Bioelectrical systems for removal of endocrine disrupting compounds from waste water: a review. Glob J Eng 6:46–51
5.
Zurück zum Zitat Do M, Ngo H, Guo W, Liu Y, Chang S, Nguyen D, Nghiem LD, Ni B (2018) Challenges in the application of microbial fuel cells to wastewater treatment and energy production: a mini review. Sci Total Environ 639:910–920CrossRef Do M, Ngo H, Guo W, Liu Y, Chang S, Nguyen D, Nghiem LD, Ni B (2018) Challenges in the application of microbial fuel cells to wastewater treatment and energy production: a mini review. Sci Total Environ 639:910–920CrossRef
6.
Zurück zum Zitat Ayyappan CS, Bhalambaal VM, Kumar S (2017) Effect of biochar on bio-electrochemical. Dye degradation and energy production. Bioresour Technol 251:165–170CrossRef Ayyappan CS, Bhalambaal VM, Kumar S (2017) Effect of biochar on bio-electrochemical. Dye degradation and energy production. Bioresour Technol 251:165–170CrossRef
7.
Zurück zum Zitat Hakimelahi M, Moghaddam M, Hashemi S (2012) Biological treatment of wastewater containing an azo dye using mixed culture in alternating anaerobic/aerobic sequencing batch reactors. Biotechnol Bioprocess Eng 17:875–880CrossRef Hakimelahi M, Moghaddam M, Hashemi S (2012) Biological treatment of wastewater containing an azo dye using mixed culture in alternating anaerobic/aerobic sequencing batch reactors. Biotechnol Bioprocess Eng 17:875–880CrossRef
8.
Zurück zum Zitat Popli S, Patel UD (2015) Destruction of azo dyes by anaerobic–aerobic sequential biological treatment: a review. Int J Environ Sci Te 12:405–420CrossRef Popli S, Patel UD (2015) Destruction of azo dyes by anaerobic–aerobic sequential biological treatment: a review. Int J Environ Sci Te 12:405–420CrossRef
9.
Zurück zum Zitat Kim J, Kim B, An J, Lee YS, Chang IS (2016) Development of anode zone using dual-anode system to reduce organic matter crossover in membraneless microbial fuel cells. Bioresour Technol 213:140–145CrossRef Kim J, Kim B, An J, Lee YS, Chang IS (2016) Development of anode zone using dual-anode system to reduce organic matter crossover in membraneless microbial fuel cells. Bioresour Technol 213:140–145CrossRef
10.
Zurück zum Zitat Sonu K, Syed Z, Sogani M (2019) Microbial fuel cell in domestic wastewater treatment plant–an innovative step towards energy generation and waste reduction. J Sci Ind Res 78:555–557 Sonu K, Syed Z, Sogani M (2019) Microbial fuel cell in domestic wastewater treatment plant–an innovative step towards energy generation and waste reduction. J Sci Ind Res 78:555–557
11.
Zurück zum Zitat Bajpai M, Katoch SS, Chaturvedi NK (2019) Comparative study on decentralized treatment technologies for sewage and graywater reuse–a review. Water Sci Technol 80:2091–2106CrossRef Bajpai M, Katoch SS, Chaturvedi NK (2019) Comparative study on decentralized treatment technologies for sewage and graywater reuse–a review. Water Sci Technol 80:2091–2106CrossRef
12.
Zurück zum Zitat Chakraborty I, Das S, Dubey BK, Ghangrekar MM (2020) Novel low cost proton exchange membrane made from sulphonated biochar for application in microbial fuel cells. Mater Chem Phys 2020(239):122025. Chakraborty I, Das S, Dubey BK, Ghangrekar MM (2020) Novel low cost proton exchange membrane made from sulphonated biochar for application in microbial fuel cells. Mater Chem Phys 2020(239):122025.
13.
Zurück zum Zitat Das I, Das S, Ghangrekar MM (2020) Application of bimetallic low-cost CuZn as oxygen reduction cathode catalyst in lab-scale and field-scale microbial fuel cell. Chem Phys Lett 751:137536. Das I, Das S, Ghangrekar MM (2020) Application of bimetallic low-cost CuZn as oxygen reduction cathode catalyst in lab-scale and field-scale microbial fuel cell. Chem Phys Lett 751:137536.
14.
Zurück zum Zitat Das S, Chakraborty I, Rajesh PP, Ghangrekar MM. Performance evaluation of microbial fuel cell operated with Pd or MnO2 as cathode catalyst and Chaetoceros pretreated anodic inoculum. J hazard toxic radioact waste 24(3):04020009. Das S, Chakraborty I, Rajesh PP, Ghangrekar MM. Performance evaluation of microbial fuel cell operated with Pd or MnO2 as cathode catalyst and Chaetoceros pretreated anodic inoculum. J hazard toxic radioact waste 24(3):04020009.
15.
Zurück zum Zitat Das S, Mishra A, Ghangrekar MM (2020) Production of hydrogen peroxide using various metal-based catalysts in electrochemical and bioelectrochemical systems: mini review. J hazard toxic radioact waste 24(3):06020001CrossRef Das S, Mishra A, Ghangrekar MM (2020) Production of hydrogen peroxide using various metal-based catalysts in electrochemical and bioelectrochemical systems: mini review. J hazard toxic radioact waste 24(3):06020001CrossRef
16.
Zurück zum Zitat Babu J, Murthy Z (2017) Treatment of textile dyes containing wastewaters with PES/PVA thin film composite nanofiltration membranes. Sep Purif Technol 183:66–72CrossRef Babu J, Murthy Z (2017) Treatment of textile dyes containing wastewaters with PES/PVA thin film composite nanofiltration membranes. Sep Purif Technol 183:66–72CrossRef
17.
Zurück zum Zitat Kumar MD, Gunasekaran M, Banu JR (2018) Generation of electricity from dye industry wastewater in dual chamber fed batch operating microbial fuel cell. Int J Adv Res Ideas Innov Technol 4:902–907 Kumar MD, Gunasekaran M, Banu JR (2018) Generation of electricity from dye industry wastewater in dual chamber fed batch operating microbial fuel cell. Int J Adv Res Ideas Innov Technol 4:902–907
18.
Zurück zum Zitat Yusuf H, Annuar MSM, Subramaniam R, Gumel AM (2019) Amphiphilic biopolyester-carbon nanotube anode enhances electrochemical activities of microbial fuel cell. Chem Eng Technol 42:566–574CrossRef Yusuf H, Annuar MSM, Subramaniam R, Gumel AM (2019) Amphiphilic biopolyester-carbon nanotube anode enhances electrochemical activities of microbial fuel cell. Chem Eng Technol 42:566–574CrossRef
19.
Zurück zum Zitat Wu S, He W, Yang W, Ye Y, Huang X, Logan BE (2017) Combined carbon mesh and small graphite fiber brush anodes to enhance and stabilize power generation in microbial fuel cells treating domestic wastewater. J Power Sources 356:348–355CrossRef Wu S, He W, Yang W, Ye Y, Huang X, Logan BE (2017) Combined carbon mesh and small graphite fiber brush anodes to enhance and stabilize power generation in microbial fuel cells treating domestic wastewater. J Power Sources 356:348–355CrossRef
20.
Zurück zum Zitat Kang YL, Pichiah S, Ibrahim S (2017) Facile reconstruction of microbial fuel cell (MFC) anode with enhanced exoelectrogens selection for intensifed electricity generation. Int J Hydrog Energy 42:1661–1671CrossRef Kang YL, Pichiah S, Ibrahim S (2017) Facile reconstruction of microbial fuel cell (MFC) anode with enhanced exoelectrogens selection for intensifed electricity generation. Int J Hydrog Energy 42:1661–1671CrossRef
21.
Zurück zum Zitat Bansod B, Kumar T, Thakur R, Rana S, Singh I (2017) A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens Bioelectron 94:443–455CrossRef Bansod B, Kumar T, Thakur R, Rana S, Singh I (2017) A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens Bioelectron 94:443–455CrossRef
22.
Zurück zum Zitat Zheng S, Yang F, Chen S, Liu L, Xiong Q, Yu T et al (2015) Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells. J Power Sources 284:252–257CrossRef Zheng S, Yang F, Chen S, Liu L, Xiong Q, Yu T et al (2015) Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells. J Power Sources 284:252–257CrossRef
23.
Zurück zum Zitat Jayapriya J, Ramamurthy V (2013) The role of electrode material in capturing power generated in Pseudomonas catalysed fuel cells. Can J Chem Eng 92:610–614CrossRef Jayapriya J, Ramamurthy V (2013) The role of electrode material in capturing power generated in Pseudomonas catalysed fuel cells. Can J Chem Eng 92:610–614CrossRef
24.
Zurück zum Zitat Peng X, Chen S, Liu L, Zheng S, Li M (2016) Treated stainless steel for high performance and stable anode in microbial fuel cells. Electrochim Acta 194:246–252CrossRef Peng X, Chen S, Liu L, Zheng S, Li M (2016) Treated stainless steel for high performance and stable anode in microbial fuel cells. Electrochim Acta 194:246–252CrossRef
25.
Zurück zum Zitat Chen W, Feng H, Shen D, Jia Y, Li N, Ying X, Chen T, Zhou Y, Guo J, Zhou M (2018) Carbon materials derived from waste tires as high-performance anodes in microbial fuel cells. Sci Total Environ 618:804–809CrossRef Chen W, Feng H, Shen D, Jia Y, Li N, Ying X, Chen T, Zhou Y, Guo J, Zhou M (2018) Carbon materials derived from waste tires as high-performance anodes in microbial fuel cells. Sci Total Environ 618:804–809CrossRef
26.
Zurück zum Zitat Sciarria TP, de Oliveira MAC, Mecheri B, D'Epifanio A, Goldfarb JL, & Adani F (2020) Metal-free activated biochar as an oxygen reduction reaction catalyst in single chamber microbial fuel cells. J Power Sources 462:228183 Sciarria TP, de Oliveira MAC, Mecheri B, D'Epifanio A, Goldfarb JL, & Adani F (2020) Metal-free activated biochar as an oxygen reduction reaction catalyst in single chamber microbial fuel cells. J Power Sources 462:228183
27.
Zurück zum Zitat Budai A, Wang L, Gronli M, Strand LT, Antal Jr MJ, Abiven S, Dieguez-Alonso A, Anca-Couce A, Rasse DP. Surface properties and chemical composition of corncob and miscanthus biochars: effects of production temperature and method. J Agric Food Chem 62:3791–3799 Budai A, Wang L, Gronli M, Strand LT, Antal Jr MJ, Abiven S, Dieguez-Alonso A, Anca-Couce A, Rasse DP. Surface properties and chemical composition of corncob and miscanthus biochars: effects of production temperature and method. J Agric Food Chem 62:3791–3799
28.
Zurück zum Zitat Das I, Das S, Das S, Ghangrekar MM (2021) Proficient sanitary wastewater treatment in laboratory and field-scale microbial fuel cell with anti-biofouling Cu0. 5Mn0. 5Fe2O4 as cathode catalyst. J Electrochem Soc 168(5):054519. Das I, Das S, Das S, Ghangrekar MM (2021) Proficient sanitary wastewater treatment in laboratory and field-scale microbial fuel cell with anti-biofouling Cu0. 5Mn0. 5Fe2O4 as cathode catalyst. J Electrochem Soc 168(5):054519.
29.
Zurück zum Zitat Syed Z, Sonu K, & Sogani M (2021) Cattle manure management using microbial fuel cells for green energy generation. Biofuels Bioprod Bioref Syed Z, Sonu K, & Sogani M (2021) Cattle manure management using microbial fuel cells for green energy generation. Biofuels Bioprod Bioref
30.
Zurück zum Zitat Jessica K, Souren S, Sky M, Jocelyn HG (2012) Microbial fuel cell biofilm characterization with thermogravimetric analysis on bare and polyethyleneimine surface treated carbon foam anodes. J Power Sources 210:122–128CrossRef Jessica K, Souren S, Sky M, Jocelyn HG (2012) Microbial fuel cell biofilm characterization with thermogravimetric analysis on bare and polyethyleneimine surface treated carbon foam anodes. J Power Sources 210:122–128CrossRef
31.
Zurück zum Zitat Yu Z, Yan M, Ting L, Zhishuai D, Yuxue W (2018) Modification of carbon felt anodes using doubleoxidant HNO3/H2O2 for application in microbial fuel cells. RSC Adv 8:2059–2064CrossRef Yu Z, Yan M, Ting L, Zhishuai D, Yuxue W (2018) Modification of carbon felt anodes using doubleoxidant HNO3/H2O2 for application in microbial fuel cells. RSC Adv 8:2059–2064CrossRef
32.
Zurück zum Zitat Das S, Das S, Ghangrekar MM (2021) Application of TiO2 and Rh as cathode catalyst to boost the microbial electrosynthesis of organic compounds through CO2 sequestration. Process Biochem 101:237–246CrossRef Das S, Das S, Ghangrekar MM (2021) Application of TiO2 and Rh as cathode catalyst to boost the microbial electrosynthesis of organic compounds through CO2 sequestration. Process Biochem 101:237–246CrossRef
33.
Zurück zum Zitat Li J, Zhang J, Ye D, Zhu X, Liao Q, Zheng J (2014) Optimization of inner diameter of tubular bamboo charcoal anode for a microbial fuel cell. Int J Hydrog Energy 39:19242–19248CrossRef Li J, Zhang J, Ye D, Zhu X, Liao Q, Zheng J (2014) Optimization of inner diameter of tubular bamboo charcoal anode for a microbial fuel cell. Int J Hydrog Energy 39:19242–19248CrossRef
34.
Zurück zum Zitat Saini S, Arora S, Singh BP, Katnoria JK, Kaur I (2018) Nitrilotriacetic acid modified bamboo charcoal (NTA-MBC): an effective adsorbent for the removal of Cr (III) and Cr (VI) from aqueous solution. J Environ Chem Eng 6:2965–2974CrossRef Saini S, Arora S, Singh BP, Katnoria JK, Kaur I (2018) Nitrilotriacetic acid modified bamboo charcoal (NTA-MBC): an effective adsorbent for the removal of Cr (III) and Cr (VI) from aqueous solution. J Environ Chem Eng 6:2965–2974CrossRef
35.
Zurück zum Zitat Cheng S, Liu H, Logan BE (2006) Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 40:2426–2432CrossRef Cheng S, Liu H, Logan BE (2006) Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 40:2426–2432CrossRef
36.
Zurück zum Zitat Kondaveeti S, Moon JM, Min B (2017) Optimum spacing between electrodes in an air-cathode single chamber microbial fuel cell with a low-cost polypropylene separator. Bioprocess Biosyst Eng 40:1851–1858CrossRef Kondaveeti S, Moon JM, Min B (2017) Optimum spacing between electrodes in an air-cathode single chamber microbial fuel cell with a low-cost polypropylene separator. Bioprocess Biosyst Eng 40:1851–1858CrossRef
37.
Zurück zum Zitat Hindatua Y, Annuara M, Gumelc A (2017) Mini-review: anode modification for improved performance of microbial fuel cell. Renew and Sustain Energy Reviews 73:236–248CrossRef Hindatua Y, Annuara M, Gumelc A (2017) Mini-review: anode modification for improved performance of microbial fuel cell. Renew and Sustain Energy Reviews 73:236–248CrossRef
38.
Zurück zum Zitat Pandit S, Ghosh S, Ghangrekar MM, Das D (2012) Performance of an anion exchange membrane in association with cathodic parameters in a dual chamber microbial fuel cell. Int J Hydrogen Energ 37:9383–9392CrossRef Pandit S, Ghosh S, Ghangrekar MM, Das D (2012) Performance of an anion exchange membrane in association with cathodic parameters in a dual chamber microbial fuel cell. Int J Hydrogen Energ 37:9383–9392CrossRef
39.
Zurück zum Zitat Park Y, Nguyen VK, Park S, Yu J, Lee T (2018) Effects of anode spacing and flow rate on energy recovery of flat-panel air-cathode microbial fuel cells using domestic wastewater. Bioresour Technol 258:57–63CrossRef Park Y, Nguyen VK, Park S, Yu J, Lee T (2018) Effects of anode spacing and flow rate on energy recovery of flat-panel air-cathode microbial fuel cells using domestic wastewater. Bioresour Technol 258:57–63CrossRef
40.
Zurück zum Zitat Lee CY, Huang Y (2013) The effects of electrode spacing on the performance of microbial fuel cells under different substrate concentrations. Water Sci Technol 68:2028–2034CrossRef Lee CY, Huang Y (2013) The effects of electrode spacing on the performance of microbial fuel cells under different substrate concentrations. Water Sci Technol 68:2028–2034CrossRef
41.
Zurück zum Zitat Das B, Thakur S, Chaithanya MS, Biswas P (2019) Batch investigation of constructed wetland microbial fuel cell with reverse osmosis (RO) concentrate and wastewater mix as substrate. Biomass Bioenergy 122:231–237CrossRef Das B, Thakur S, Chaithanya MS, Biswas P (2019) Batch investigation of constructed wetland microbial fuel cell with reverse osmosis (RO) concentrate and wastewater mix as substrate. Biomass Bioenergy 122:231–237CrossRef
42.
Zurück zum Zitat Pan Y, Zhu T, He Z (2018) Enhanced removal of azo dye by a bioelectrochemical system integrated with a membrane biofilm reactor. Ind Eng Chem Res 13:31–49 Pan Y, Zhu T, He Z (2018) Enhanced removal of azo dye by a bioelectrochemical system integrated with a membrane biofilm reactor. Ind Eng Chem Res 13:31–49
43.
Zurück zum Zitat Mu Y, Rabaey K, Rozendal R, Yuan Z, Keller J (2009) Decolorization of azo dyes in bioelectrochemical systems. Environ Sci Technol 43:5137–5143CrossRef Mu Y, Rabaey K, Rozendal R, Yuan Z, Keller J (2009) Decolorization of azo dyes in bioelectrochemical systems. Environ Sci Technol 43:5137–5143CrossRef
44.
Zurück zum Zitat Sun J, Hu Y, Bi Z, Cao Y (2009) Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Bioresour Technol 100:3185–3192CrossRef Sun J, Hu Y, Bi Z, Cao Y (2009) Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Bioresour Technol 100:3185–3192CrossRef
45.
Zurück zum Zitat Solanki K, Subramanian S, Basu S (2013) Microbial fuel cells for azo dye treatment with electricity generation: a review. Bio Tech 131:564–571CrossRef Solanki K, Subramanian S, Basu S (2013) Microbial fuel cells for azo dye treatment with electricity generation: a review. Bio Tech 131:564–571CrossRef
46.
Zurück zum Zitat Fernando E, Keshavarz K, Kyazze G (2014) Complete degradation of the azo dye acid orange-7 and bioelectricity generation in an integrated microbial fuel cell, aerobic two-stage bioreactor system in continuous flow mode at ambient temperature. Bioresour Technol 156:155–162CrossRef Fernando E, Keshavarz K, Kyazze G (2014) Complete degradation of the azo dye acid orange-7 and bioelectricity generation in an integrated microbial fuel cell, aerobic two-stage bioreactor system in continuous flow mode at ambient temperature. Bioresour Technol 156:155–162CrossRef
47.
Zurück zum Zitat Koupaie, E. H., Moghaddam, M. A., & Hashemi, S. H. (2012). Investigation of decolorization kinetics and biodegradation of azo dye Acid Red 18 using sequential process of anaerobic sequencing batch reactor/moving bed sequencing batch biofilm reactor. Int Biodeterior Biodegrad 71:43–49 Koupaie, E. H., Moghaddam, M. A., & Hashemi, S. H. (2012). Investigation of decolorization kinetics and biodegradation of azo dye Acid Red 18 using sequential process of anaerobic sequencing batch reactor/moving bed sequencing batch biofilm reactor. Int Biodeterior Biodegrad 71:43–49
48.
Zurück zum Zitat Fernando E, Keshavarz T, Kyazze G (2014) External resistance as a potential tool for influencing azo dye reductive decolourisation kinetics in microbial fuel cells. Internat Biodeter & Biodegrad 89:7–14CrossRef Fernando E, Keshavarz T, Kyazze G (2014) External resistance as a potential tool for influencing azo dye reductive decolourisation kinetics in microbial fuel cells. Internat Biodeter & Biodegrad 89:7–14CrossRef
49.
Zurück zum Zitat Huang W, Chen J, Hu Y, Chen J, Sun J, Zhang L (2017) Enhanced simultaneous decolorization of azo dye and electricity generation in microbial fuel cell (MFC) with redox mediator modified anode. Int J of Hydrogen Energy 42(4):2349–2359CrossRef Huang W, Chen J, Hu Y, Chen J, Sun J, Zhang L (2017) Enhanced simultaneous decolorization of azo dye and electricity generation in microbial fuel cell (MFC) with redox mediator modified anode. Int J of Hydrogen Energy 42(4):2349–2359CrossRef
50.
Zurück zum Zitat Oon YS, Ong SA, Ho LN, Wong YS, Oon YL, Lehl HK, Thung WE, Nordin N. Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation. J Hazard Mater 325:170–177 Oon YS, Ong SA, Ho LN, Wong YS, Oon YL, Lehl HK, Thung WE, Nordin N. Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation. J Hazard Mater 325:170–177
51.
Zurück zum Zitat Bakhshian S, Kariminia HR, Roshandel R (2011) Bioelectricity generation enhancement in a dual chamber microbial fuel cell under cathodic enzyme catalyzed dye decolorization. Bio Tech 102(12):6761–6765CrossRef Bakhshian S, Kariminia HR, Roshandel R (2011) Bioelectricity generation enhancement in a dual chamber microbial fuel cell under cathodic enzyme catalyzed dye decolorization. Bio Tech 102(12):6761–6765CrossRef
52.
Zurück zum Zitat Savizi ISP, Kariminia HR, Bakhshian S (2012) Simultaneous decolorization and bioelectricity generation in a dual chamber microbial fuel cell using electropolymerized-enzymatic cathode. Environ Sci Technol 46:6584–6593CrossRef Savizi ISP, Kariminia HR, Bakhshian S (2012) Simultaneous decolorization and bioelectricity generation in a dual chamber microbial fuel cell using electropolymerized-enzymatic cathode. Environ Sci Technol 46:6584–6593CrossRef
Metadaten
Titel
Improved degradation of dye wastewater and enhanced power output in microbial fuel cells with chemically treated corncob anodes
verfasst von
Kumar Sonu
Monika Sogani
Zainab Syed
Jayana Rajvanshi
Publikationsdatum
17.01.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 1/2024
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-021-02254-7

Weitere Artikel der Ausgabe 1/2024

Biomass Conversion and Biorefinery 1/2024 Zur Ausgabe