Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 1/2024

02.07.2022 | Original Article

Fungal-integrated second-generation lignocellulosic biorefinery: utilization of agricultural biomass for co-production of lignocellulolytic enzymes, mushroom, fungal polysaccharides, and bioethanol

verfasst von: Akshay Shankar, Sonu Saini, Krishna Kant Sharma

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ganoderma lucidum is a basidiomycetous fungus with enormous potential for the co-production of diverse extracellular ligninases, pharmaceutically important polysaccharides, and medicinal mushrooms. In the present study, G. lucidum MDU-7 was grown in laboratory-designed boxes, bucket, wood logs, and iron mesh–like structure for basidiocarp formation and laccase isozyme secretion. The maximum laccase production (5087.48 U/g ± 81.44 U/g) was observed after the 9th day of incubation at pH 6.5 from mixed agricultural biomass. The nutritional analysis of G. lucidum MDU-7 basidiocarp indicated pharmaceutical and therapeutical importance of the fungal culture. Compositional analysis of the residual biomass after mushroom cultivation revealed the degradation of lignin and phenols, i.e., 49.16 ± 2.79% and 58.66 ± 5.26%, respectively. Morphological and anatomical studies (SEM, FTIR, and XRD) of pretreated fungal biomass indicated significant structural changes in the biomass structure compared to untreated materials. Further, when saccharified with a customized cellulase consortium of Aspergillus flavus MDU-5 and Trichoderma citrinoviride MDU-1, the fungal pretreated biomass released 367.12 ± 4.12 mg/g sugars after 40 h of incubation, with notable hydrolysis yield (70.60 ± 4.68%). The enzymatic hydrolysates containing 10.34 ± 0.22 g/L sugars were fermented in a bench-top bioreactor using Saccharomyces cerevisiae NCIM-3640, and produced 6.24 ± 0.14 g/L ethanol with a high yield (89.11 ± 1.35% of the theoretical value). Our findings in the current report advocate that fungal-integrated biorefinery process is an environmentally suitable technology, which provides a promising strategy in the field of lignocellulose biotechnology.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
5.
11.
Zurück zum Zitat Saini S, Sharma KK (2021) Ligninolytic fungi from the Indian subcontinent and their contribution to enzyme biotechnology. In: Satyanarayana T, Deshmukh SK, Deshpande MV (eds) Progress in Mycology: Biology and Biotechnological Applications. Springer, Singapore, pp 139–184CrossRef Saini S, Sharma KK (2021) Ligninolytic fungi from the Indian subcontinent and their contribution to enzyme biotechnology. In: Satyanarayana T, Deshmukh SK, Deshpande MV (eds) Progress in Mycology: Biology and Biotechnological Applications. Springer, Singapore, pp 139–184CrossRef
14.
Zurück zum Zitat Shankar A, Ahlawat S, Sharma KK (2019) Exploring fungi-associated lignocellulose degradation: secretomic and proteomic approaches. In: Satyanarayana T, Deshmukh SK, Deshpande MV (eds) Advancing Frontiers in Mycology & Mycotechnology: Basic and Applied Aspects of Fungi. Springer Singapore, Singapore, pp 251–277CrossRef Shankar A, Ahlawat S, Sharma KK (2019) Exploring fungi-associated lignocellulose degradation: secretomic and proteomic approaches. In: Satyanarayana T, Deshmukh SK, Deshpande MV (eds) Advancing Frontiers in Mycology & Mycotechnology: Basic and Applied Aspects of Fungi. Springer Singapore, Singapore, pp 251–277CrossRef
16.
Zurück zum Zitat Gupta R, Sharma KK, Kuhad RC (2009) Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresour Technol 100:1214–1220CrossRef Gupta R, Sharma KK, Kuhad RC (2009) Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresour Technol 100:1214–1220CrossRef
26.
Zurück zum Zitat Chutani P, Sharma KK (2015) Biochemical evaluation of xylanases from various filamentous fungi and their application for the deinking of ozone treated newspaper pulp. Carbohydr Polym 127:54–63CrossRef Chutani P, Sharma KK (2015) Biochemical evaluation of xylanases from various filamentous fungi and their application for the deinking of ozone treated newspaper pulp. Carbohydr Polym 127:54–63CrossRef
28.
Zurück zum Zitat Wise LE, Murphy M, d’Addieco AA (1946) Chlorite holocellulose, its fractionnation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap Tr J 122:35 Wise LE, Murphy M, d’Addieco AA (1946) Chlorite holocellulose, its fractionnation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap Tr J 122:35
29.
Zurück zum Zitat Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of ash in biomass. National Renewable Energy Laboratory, Golden, pp 1–6 Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of ash in biomass. National Renewable Energy Laboratory, Golden, pp 1–6
32.
Zurück zum Zitat Pal J, Sharma R, Lal M, Suman BC (2017) Effect of different spawn rates and substrate supplementation on yield of Indian Oyster mushroom, Pleurotus pulmonarius (Fr.) Quel. J Appl Nat Sci 9:1406–1410 Pal J, Sharma R, Lal M, Suman BC (2017) Effect of different spawn rates and substrate supplementation on yield of Indian Oyster mushroom, Pleurotus pulmonarius (Fr.) Quel. J Appl Nat Sci 9:1406–1410
33.
Zurück zum Zitat Sharma KK, Kapoor M, Kuhad RC (2005) In vivo enzymatic digestion, in vitro xylanase digestion, metabolic analogues, surfactants and polyethylene glycol ameliorate laccase production from Ganoderma sp. kk-02. Lett Appl Microbiol 41:24–31CrossRef Sharma KK, Kapoor M, Kuhad RC (2005) In vivo enzymatic digestion, in vitro xylanase digestion, metabolic analogues, surfactants and polyethylene glycol ameliorate laccase production from Ganoderma sp. kk-02. Lett Appl Microbiol 41:24–31CrossRef
36.
Zurück zum Zitat Caputi A, Ueda M, Brown T (1968) Spectrophotometric determination of ethanol in wine. Am J Enol Vitic 19:160–165CrossRef Caputi A, Ueda M, Brown T (1968) Spectrophotometric determination of ethanol in wine. Am J Enol Vitic 19:160–165CrossRef
43.
Zurück zum Zitat Bijalwan A, Bahuguna K, Vasishth A et al (2020) Insights of medicinal mushroom (Ganoderma lucidum): prospects and potential in India. Biodivers Int J 4:202–209 Bijalwan A, Bahuguna K, Vasishth A et al (2020) Insights of medicinal mushroom (Ganoderma lucidum): prospects and potential in India. Biodivers Int J 4:202–209
51.
52.
Zurück zum Zitat Roy S, Jahan MAA, Das KK et al (2015) Artificial cultivation of Ganoderma lucidum (Reishi medicinal mushroom) using different sawdusts as substrates. Am J Biosci 3:178–182CrossRef Roy S, Jahan MAA, Das KK et al (2015) Artificial cultivation of Ganoderma lucidum (Reishi medicinal mushroom) using different sawdusts as substrates. Am J Biosci 3:178–182CrossRef
54.
Zurück zum Zitat Sethy NK, Bhardwaj A, Singh VK, Sharma RK, Deswal R, Bhargava K, Mishra K (2017) Characterization of Ganoderma lucidum: phytochemical and proteomic approach. J Proteins Proteomics 8(1):25–33 Sethy NK, Bhardwaj A, Singh VK, Sharma RK, Deswal R, Bhargava K, Mishra K (2017) Characterization of Ganoderma lucidum: phytochemical and proteomic approach. J Proteins Proteomics 8(1):25–33
70.
Zurück zum Zitat Alharbi MAH, Hirai S, Tuan HA et al (2020) Effects of chemical composition, mild alkaline pretreatment and particle size on mechanical, thermal, and structural properties of binderless lignocellulosic biopolymers prepared by hot-pressing raw microfibrillated Phoenix dactylifera and Cocos nucifera fibers and leaves. Polym Test 84:106384. https://doi.org/10.1016/j.polymertesting.2020.106384CrossRef Alharbi MAH, Hirai S, Tuan HA et al (2020) Effects of chemical composition, mild alkaline pretreatment and particle size on mechanical, thermal, and structural properties of binderless lignocellulosic biopolymers prepared by hot-pressing raw microfibrillated Phoenix dactylifera and Cocos nucifera fibers and leaves. Polym Test 84:106384. https://​doi.​org/​10.​1016/​j.​polymertesting.​2020.​106384CrossRef
75.
Zurück zum Zitat Flórez Pardo LM, Salcedo Mendoza JG, López Galán JE (2019) Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues. Braz J Chem Eng 36:131–141CrossRef Flórez Pardo LM, Salcedo Mendoza JG, López Galán JE (2019) Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues. Braz J Chem Eng 36:131–141CrossRef
76.
Zurück zum Zitat Xu H, Che X, Ding Y et al (2019) Effect of crystallinity on pretreatment and enzymatic hydrolysis of lignocellulosic biomass based on multivariate analysis. Bioresour Technol 279:271–280CrossRef Xu H, Che X, Ding Y et al (2019) Effect of crystallinity on pretreatment and enzymatic hydrolysis of lignocellulosic biomass based on multivariate analysis. Bioresour Technol 279:271–280CrossRef
Metadaten
Titel
Fungal-integrated second-generation lignocellulosic biorefinery: utilization of agricultural biomass for co-production of lignocellulolytic enzymes, mushroom, fungal polysaccharides, and bioethanol
verfasst von
Akshay Shankar
Sonu Saini
Krishna Kant Sharma
Publikationsdatum
02.07.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 1/2024
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-022-02969-1

Weitere Artikel der Ausgabe 1/2024

Biomass Conversion and Biorefinery 1/2024 Zur Ausgabe