Skip to main content
Erschienen in: Intelligent Service Robotics 2/2024

24.11.2023 | Original Research Paper

Improving reinforcement learning based moving object grasping with trajectory prediction

verfasst von: Binzhao Xu, Taimur Hassan, Irfan Hussain

Erschienen in: Intelligent Service Robotics | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Currently, most grasping systems are designed to grasp the static objects only, and grasping dynamic objects has received less attention in the literature. For the traditional manipulation scheme, achieving dynamic grasping requires either a highly precise dynamic model or sophisticated predefined grasping states and gestures, both of which are hard to obtain and tedious to design. In this paper, we develop a novel reinforcement learning (RL)-based dynamic grasping framework with a trajectory prediction module to address these issues. In particular, we divide dynamic grasping into two parts: RL-based grasping strategies learning and trajectory prediction. In the simulation setting, an RL agent is trained to grasp a static object. When this well-trained agent is transferred to the real world, the observation has been augmented with the predicted one from an LSTM-based trajectory prediction module. We validated the proposed method through an experimental setup involving a Baxter manipulator with two finger grippers and an object placed on a moving car. We also evaluated how well RL performs both with and without our intended trajectory prediction. Experiment results demonstrate that our method can grasp the object on different trajectories at various speeds.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kroemer O, Niekum S, Konidaris G (2021) A review of robot learning for manipulation: challenges, representations, and algorithms. J Mach Learn Res 22 Kroemer O, Niekum S, Konidaris G (2021) A review of robot learning for manipulation: challenges, representations, and algorithms. J Mach Learn Res 22
2.
Zurück zum Zitat Liu R, Nageotte F, Zanne P, de Mathelin M, Dresp-Langley B (2021) Deep reinforcement learning for the control of robotic manipulation: a focussed mini-review. Robotics 10:1–13CrossRef Liu R, Nageotte F, Zanne P, de Mathelin M, Dresp-Langley B (2021) Deep reinforcement learning for the control of robotic manipulation: a focussed mini-review. Robotics 10:1–13CrossRef
3.
Zurück zum Zitat Song S, Zeng A, Lee J, Funkhouser T (2020) Grasping in the wild: learning 6DoF closed-loop grasping from low-cost demonstrations. IEEE Robotics Autom Lett 5:4978–4985CrossRef Song S, Zeng A, Lee J, Funkhouser T (2020) Grasping in the wild: learning 6DoF closed-loop grasping from low-cost demonstrations. IEEE Robotics Autom Lett 5:4978–4985CrossRef
4.
Zurück zum Zitat Liang J, Wen B, Bekris K, Boularias A (2022) learning sensorimotor primitives of sequential manipulation tasks from visual demonstrations. In: Proceedings—IEEE international conference on robotics and automation pp 8591–8597 Liang J, Wen B, Bekris K, Boularias A (2022) learning sensorimotor primitives of sequential manipulation tasks from visual demonstrations. In: Proceedings—IEEE international conference on robotics and automation pp 8591–8597
5.
Zurück zum Zitat Larouche BP, Zhu ZH (2014) Autonomous robotic capture of non-cooperative target using visual servoing and motion predictive control. Auton Robot 37:157–167CrossRef Larouche BP, Zhu ZH (2014) Autonomous robotic capture of non-cooperative target using visual servoing and motion predictive control. Auton Robot 37:157–167CrossRef
7.
Zurück zum Zitat Oliva AA, Aertbeliën E, De Schutter J, Giordano PR, Chaumette F (2022) Towards dynamic visual servoing for interaction control and moving targets. In: 2022 IEEE International conference on robotics and automation (ICRA), pp 150–156 Oliva AA, Aertbeliën E, De Schutter J, Giordano PR, Chaumette F (2022) Towards dynamic visual servoing for interaction control and moving targets. In: 2022 IEEE International conference on robotics and automation (ICRA), pp 150–156
8.
Zurück zum Zitat Kim S, Shukla A, Billard A (2014) Catching objects in flight. IEEE Trans Robotics 30:1049–1065CrossRef Kim S, Shukla A, Billard A (2014) Catching objects in flight. IEEE Trans Robotics 30:1049–1065CrossRef
9.
Zurück zum Zitat Akinola I, Xu J, Song S, Allen PK (2021) Dynamic grasping with reachability and motion awareness. In: International conference on intelligent robots and systems, pp 9422–9429 Akinola I, Xu J, Song S, Allen PK (2021) Dynamic grasping with reachability and motion awareness. In: International conference on intelligent robots and systems, pp 9422–9429
10.
Zurück zum Zitat Chen Z, Lin M, Jia Z, Jian S (2020) Towards generalization and data efficient learning of deep robotic grasping. arXiv:2007.00982 Chen Z, Lin M, Jia Z, Jian S (2020) Towards generalization and data efficient learning of deep robotic grasping. arXiv:​2007.​00982
11.
Zurück zum Zitat Kalashnikov D et al (2018) QT-Opt: scalable deep reinforcement learning for vision-based robotic manipulation, pp 1–23. arXiv:1806.10293 Kalashnikov D et al (2018) QT-Opt: scalable deep reinforcement learning for vision-based robotic manipulation, pp 1–23. arXiv:​1806.​10293
12.
Zurück zum Zitat Lobbezoo A, Qian Y, Kwon HJ (2021) Reinforcement learning for pick and place operations in robotics: a survey. Robotics 10 Lobbezoo A, Qian Y, Kwon HJ (2021) Reinforcement learning for pick and place operations in robotics: a survey. Robotics 10
13.
Zurück zum Zitat Zhang T, Mo H (2021) Reinforcement learning for robot research: a comprehensive review and open issues. Int J Adv Robotic Syst 18:1–22 Zhang T, Mo H (2021) Reinforcement learning for robot research: a comprehensive review and open issues. Int J Adv Robotic Syst 18:1–22
14.
Zurück zum Zitat Jangir R, Alenya G, Torras C (2020) Dynamic cloth manipulation with deep reinforcement learning. In: Proceedings—IEEE international conference on robotics and automation, pp 4630–4636 Jangir R, Alenya G, Torras C (2020) Dynamic cloth manipulation with deep reinforcement learning. In: Proceedings—IEEE international conference on robotics and automation, pp 4630–4636
15.
Zurück zum Zitat Buchler D et al (2022) Learning to play table tennis from scratch using muscular robots. IEEE Trans Robotics 1–11 Buchler D et al (2022) Learning to play table tennis from scratch using muscular robots. IEEE Trans Robotics 1–11
16.
17.
Zurück zum Zitat Fang M et al (2019) Dher: Hindsight experience replay for dynamic goals. In: 7th International conference on learning representations, ICLR 2019, pp 1–12 Fang M et al (2019) Dher: Hindsight experience replay for dynamic goals. In: 7th International conference on learning representations, ICLR 2019, pp 1–12
22.
Zurück zum Zitat Haarnoja T et al (2018) Soft actor-critic algorithms and applications. arXiv Haarnoja T et al (2018) Soft actor-critic algorithms and applications. arXiv
23.
Zurück zum Zitat Fujimoto S, Van Hoof H, Meger D (2018) (2018) Addressing function approximation error in actor-critic methods. In: 35th International conference on machine learning, ICML 2018, vol 4, pp 2587–2601 Fujimoto S, Van Hoof H, Meger D (2018) (2018) Addressing function approximation error in actor-critic methods. In: 35th International conference on machine learning, ICML 2018, vol 4, pp 2587–2601
24.
Zurück zum Zitat Zhu Y, Wong J, Mandlekar A, Martín-Martín R (2020) robosuite: A modular simulation framework and benchmark for robot learning Zhu Y, Wong J, Mandlekar A, Martín-Martín R (2020) robosuite: A modular simulation framework and benchmark for robot learning
25.
28.
29.
Zurück zum Zitat Akiba T, Sano S, Yanase T, Ohta T, Koyama M (2019) Optuna: a next-generation hyperparameter optimization framework Akiba T, Sano S, Yanase T, Ohta T, Koyama M (2019) Optuna: a next-generation hyperparameter optimization framework
30.
Zurück zum Zitat Marzari L et al (2021) Towards hierarchical task decomposition using deep reinforcement learning for pick and place subtasks. In: 2021 20th International conference on advanced robotics, ICAR 2021, pp 640–645 Marzari L et al (2021) Towards hierarchical task decomposition using deep reinforcement learning for pick and place subtasks. In: 2021 20th International conference on advanced robotics, ICAR 2021, pp 640–645
Metadaten
Titel
Improving reinforcement learning based moving object grasping with trajectory prediction
verfasst von
Binzhao Xu
Taimur Hassan
Irfan Hussain
Publikationsdatum
24.11.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Intelligent Service Robotics / Ausgabe 2/2024
Print ISSN: 1861-2776
Elektronische ISSN: 1861-2784
DOI
https://doi.org/10.1007/s11370-023-00491-5

Weitere Artikel der Ausgabe 2/2024

Intelligent Service Robotics 2/2024 Zur Ausgabe

Neuer Inhalt