Skip to main content
Erschienen in: Journal of Applied Mathematics and Computing 1-2/2017

11.07.2016 | Original Research

Impulsive fractional boundary value problem with p-Laplace operator

verfasst von: César E. Torres Ledesma, Nemat Nyamoradi

Erschienen in: Journal of Applied Mathematics and Computing | Ausgabe 1-2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present paper, we deal with the existence and multiplicity of solutions for the following impulsive fractional boundary value problem
$$\begin{aligned} {_{t}}D_{T}^{\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) + a(t)|u(t)|^{p-2}u(t)= & {} f(t,u(t)),\;\;t\ne t_j,\;\;\hbox {a.e.}\;\;t\in [0,T],\\ \Delta \left( {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j)\right) \right)= & {} I_j(u(t_j))\;\;j=1,2,\ldots ,n,\\ u(0)= & {} u(T) = 0. \end{aligned}$$
where \(\alpha \in (1/p, 1]\), \(1<p<\infty \), \(0 = t_0<t_1< t_2< \cdots< t_n < t_{n+1} = T\), \(f:[0,T]\times \mathbb {R} \rightarrow \mathbb {R}\) and \(I_j : \mathbb {R} \rightarrow \mathbb {R}\), \(j = 1, \ldots , n\), are continuous functions, \(a\in C[0,T]\) and
$$\begin{aligned} \Delta \left( {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j)\right) \right)= & {} {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right) \\&- {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j^-)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^-\right) \right) ,\\ {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right)= & {} \lim _{t \rightarrow t_j^+} {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) ,\\ {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j^-)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j^-)\right)= & {} \lim _{t\rightarrow t_j^-}{_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) . \end{aligned}$$
By using variational methods and critical point theory, we give some criteria to guarantee that the above-mentioned impulsive problems have at least one weak solution and a sequences of weak solutions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ahmad, B., Nieto, J.: Existence of solutions for impulsive anti-periodic boundary value problem of fractional order. Taiwan J. Math. 15(3), 981–993 (2011)MathSciNetCrossRefMATH Ahmad, B., Nieto, J.: Existence of solutions for impulsive anti-periodic boundary value problem of fractional order. Taiwan J. Math. 15(3), 981–993 (2011)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Anguraj, A., Karthikeyan, P.: Anti-periodic boundary value problem for impulsive fractional integro differential equations. Acta Math. Hung. 13(3), 281–293 (2010)MathSciNetMATH Anguraj, A., Karthikeyan, P.: Anti-periodic boundary value problem for impulsive fractional integro differential equations. Acta Math. Hung. 13(3), 281–293 (2010)MathSciNetMATH
3.
Zurück zum Zitat Belmekki, M., Nieto, J., Rodríguez-López, R.: Existence of periodic solution for a nonlinear fractional differential equation. Bound. Value Probl., Art. ID 324561 (2009) Belmekki, M., Nieto, J., Rodríguez-López, R.: Existence of periodic solution for a nonlinear fractional differential equation. Bound. Value Probl., Art. ID 324561 (2009)
4.
Zurück zum Zitat Benchohra, M., Cabada, A., Seba, D.: An existence result for nonlinear fractional differential equations on Banach spaces. Bound. Value Probl. Article ID 628916 (2009) Benchohra, M., Cabada, A., Seba, D.: An existence result for nonlinear fractional differential equations on Banach spaces. Bound. Value Probl. Article ID 628916 (2009)
5.
Zurück zum Zitat Bogun, I.: Existence of weak solutions for impulsive \(p\)-Laplacian problem with superlinear impulses. Nonlinear Anal. RWA 13, 2701–2707 (2012)MathSciNetCrossRefMATH Bogun, I.: Existence of weak solutions for impulsive \(p\)-Laplacian problem with superlinear impulses. Nonlinear Anal. RWA 13, 2701–2707 (2012)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Bonanno, G., Rodríguez-López, R., Tersian, S.: Existence of solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 17(3), 717–744 (2014)MathSciNetCrossRefMATH Bonanno, G., Rodríguez-López, R., Tersian, S.: Existence of solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 17(3), 717–744 (2014)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Cao, J., Chen, H.: Impulsive fractional differential equations with nonlinear boundary conditions. Math. Comput. Model. 55, 303–311 (2012)MathSciNetCrossRefMATH Cao, J., Chen, H.: Impulsive fractional differential equations with nonlinear boundary conditions. Math. Comput. Model. 55, 303–311 (2012)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Dai, B., Su, H., Hu, D.: Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse. Nonlinear Anal. 70, 126–134 (2009)MathSciNetCrossRefMATH Dai, B., Su, H., Hu, D.: Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse. Nonlinear Anal. 70, 126–134 (2009)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Georescu, P., Morosanu, G.: Pest regulation by means of impulsive controls. Appl. Math. Comput. 190, 790–803 (2007)MathSciNetMATH Georescu, P., Morosanu, G.: Pest regulation by means of impulsive controls. Appl. Math. Comput. 190, 790–803 (2007)MathSciNetMATH
11.
Zurück zum Zitat George, P., Nandakumaran, A., Arapostathis, A.: A note on controllability of impulsive systems. J. Math. Anal. Appl. 241, 276–283 (2000)MathSciNetCrossRefMATH George, P., Nandakumaran, A., Arapostathis, A.: A note on controllability of impulsive systems. J. Math. Anal. Appl. 241, 276–283 (2000)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Jiao, F., Zhou, Y.: Existence of solution for a class of fractional boundary value problems via critical point theory. Comput. Math. Appl. 62, 1181–1199 (2011)MathSciNetCrossRefMATH Jiao, F., Zhou, Y.: Existence of solution for a class of fractional boundary value problems via critical point theory. Comput. Math. Appl. 62, 1181–1199 (2011)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Jiao, F., Zhou, Y.: Existence results for fractional boundary value problem via critical point theory. Int. J. Bifurc. Chaos 22(4), 1–17 (2012)MathSciNetCrossRefMATH Jiao, F., Zhou, Y.: Existence results for fractional boundary value problem via critical point theory. Int. J. Bifurc. Chaos 22(4), 1–17 (2012)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Kilbas, A., Trujillo, J.: Differential equations of fractional order: methods, results and problems I. Appl. Anal. 78, 153–192 (2001)MathSciNetCrossRefMATH Kilbas, A., Trujillo, J.: Differential equations of fractional order: methods, results and problems I. Appl. Anal. 78, 153–192 (2001)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Kilbas, A., Trujillo, J.: Differential equations of fractional order: methods, results and problems II. Appl. Anal. 81, 435–493 (2002)MathSciNetCrossRefMATH Kilbas, A., Trujillo, J.: Differential equations of fractional order: methods, results and problems II. Appl. Anal. 81, 435–493 (2002)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)CrossRefMATH Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)CrossRefMATH
17.
Zurück zum Zitat Klimek, M.: On solutions of linear fractional differential equations of a variational type. The Publishing Office of Czestochowa University of Technology, Czestochowa (2009) Klimek, M.: On solutions of linear fractional differential equations of a variational type. The Publishing Office of Czestochowa University of Technology, Czestochowa (2009)
18.
Zurück zum Zitat Lakshmikantham, V., Bainov, D., Simeonov, P.: Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics, 6. World Scientific, Teaneck (1989)CrossRef Lakshmikantham, V., Bainov, D., Simeonov, P.: Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics, 6. World Scientific, Teaneck (1989)CrossRef
19.
Zurück zum Zitat Liu, Z., Lu, L., Szántó, I.: Existence of solutions for fractional impulsive differential equations with \(p\)-Laplacian operator. Acta Math. Hung. 141(3), 203–219 (2013)MathSciNetCrossRefMATH Liu, Z., Lu, L., Szántó, I.: Existence of solutions for fractional impulsive differential equations with \(p\)-Laplacian operator. Acta Math. Hung. 141(3), 203–219 (2013)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Mawhin, J., Willen, M.: Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences 74. Springer, Berlin (1989)CrossRef Mawhin, J., Willen, M.: Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences 74. Springer, Berlin (1989)CrossRef
21.
Zurück zum Zitat Mendez, A., Torres, C.: Multiplicity of solutions for fractional Hamiltonian systems with Liouville-Weyl fractional derivarives. Fract. Calc. Appl. Anal. 18(4), 875–890 (2015)MathSciNetMATH Mendez, A., Torres, C.: Multiplicity of solutions for fractional Hamiltonian systems with Liouville-Weyl fractional derivarives. Fract. Calc. Appl. Anal. 18(4), 875–890 (2015)MathSciNetMATH
22.
Zurück zum Zitat Nyamoradi, N.: Infinitely many solutions for a class of fractional boundary value problems with Dirichlet boundary conditions. Mediterr. J. Math. 11(1), 75–87 (2014)MathSciNetCrossRefMATH Nyamoradi, N.: Infinitely many solutions for a class of fractional boundary value problems with Dirichlet boundary conditions. Mediterr. J. Math. 11(1), 75–87 (2014)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Nyamoradi, N., Rodrígues-López, R.: On boundary value problems for impulsive fractional differential equations. Appl. Math. Comput. 271, 874–892 (2015)MathSciNet Nyamoradi, N., Rodrígues-López, R.: On boundary value problems for impulsive fractional differential equations. Appl. Math. Comput. 271, 874–892 (2015)MathSciNet
24.
Zurück zum Zitat Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)MATH
25.
Zurück zum Zitat Rabinowitz, P.: Minimax method in critical point theory with applications to differential equations, CBMS American Mathematical Society, vol. 65 (1986) Rabinowitz, P.: Minimax method in critical point theory with applications to differential equations, CBMS American Mathematical Society, vol. 65 (1986)
26.
Zurück zum Zitat Rivero, M., Trujillo, J., Vázquez, L., Velasco, M.: Fractional dynamics of populations. Appl. Math. Comput. 218, 1089–1095 (2011)MathSciNetMATH Rivero, M., Trujillo, J., Vázquez, L., Velasco, M.: Fractional dynamics of populations. Appl. Math. Comput. 218, 1089–1095 (2011)MathSciNetMATH
27.
Zurück zum Zitat Rodríguez-López, R., Tersian, S.: Multiple solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 17(4), 1016–1038 (2014)MathSciNetCrossRefMATH Rodríguez-López, R., Tersian, S.: Multiple solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 17(4), 1016–1038 (2014)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Samoilenko, A., Perestyuk, N.: Impulsive Differential Equations. World Scientific, Singapore (1995)CrossRefMATH Samoilenko, A., Perestyuk, N.: Impulsive Differential Equations. World Scientific, Singapore (1995)CrossRefMATH
29.
Zurück zum Zitat Samko, S., Kilbas, A., Marichev, O.: Fractional integrals and derivatives: Theory and applications. Gordon and Breach, New York (1993)MATH Samko, S., Kilbas, A., Marichev, O.: Fractional integrals and derivatives: Theory and applications. Gordon and Breach, New York (1993)MATH
30.
31.
Zurück zum Zitat Shen, J., Li, J.: Existence and global attractivity of positive periodic solutions for impulsive predator-prey model with dispersion and time delays. Nonlinear Anal. 10, 227–243 (2009)MathSciNetCrossRefMATH Shen, J., Li, J.: Existence and global attractivity of positive periodic solutions for impulsive predator-prey model with dispersion and time delays. Nonlinear Anal. 10, 227–243 (2009)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Szulkin, A.: Ljusternik–Schnirelmann theory on \(C^1\)-manifolds. Ann. Inst. H. Poincaré Anal. Non Linéaire 5, 119–139 (1988)MathSciNetCrossRefMATH Szulkin, A.: Ljusternik–Schnirelmann theory on \(C^1\)-manifolds. Ann. Inst. H. Poincaré Anal. Non Linéaire 5, 119–139 (1988)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Torres, C., Nyamoradi, N.: Existence and multiplicity result for a fractional p-Laplacian equation with combined fractional derivatives (preprint) Torres, C., Nyamoradi, N.: Existence and multiplicity result for a fractional p-Laplacian equation with combined fractional derivatives (preprint)
34.
Zurück zum Zitat Torres, C.: Boundary value problem with fractional \(p\)-Laplacian operator. Adv. Nonlinear Anal. 5(2), 133–146 (2016)MathSciNetMATH Torres, C.: Boundary value problem with fractional \(p\)-Laplacian operator. Adv. Nonlinear Anal. 5(2), 133–146 (2016)MathSciNetMATH
35.
Zurück zum Zitat Torres, C.: Existence of solution for fractional Hamiltonian systems. Electron. J. Differ. Equ. 2013(259), 1–12 (2013)MathSciNet Torres, C.: Existence of solution for fractional Hamiltonian systems. Electron. J. Differ. Equ. 2013(259), 1–12 (2013)MathSciNet
36.
Zurück zum Zitat Torres, C.: Mountain pass solution for a fractional boundary value problem. J. Fract. Calc. Appl. 5(1), 1–10 (2014)MathSciNet Torres, C.: Mountain pass solution for a fractional boundary value problem. J. Fract. Calc. Appl. 5(1), 1–10 (2014)MathSciNet
37.
Zurück zum Zitat Torres, C.: Existence of a solution for fractional forced pendulum. J. Appl. Math. Comput. Mech. 13(1), 125–142 (2014)CrossRef Torres, C.: Existence of a solution for fractional forced pendulum. J. Appl. Math. Comput. Mech. 13(1), 125–142 (2014)CrossRef
38.
Zurück zum Zitat Torres, C.: Ground state solution for a class of differential equations with left and right fractional derivatives. Math. Methods Appl. Sci. 38, 5063–5073 (2015)MathSciNetCrossRefMATH Torres, C.: Ground state solution for a class of differential equations with left and right fractional derivatives. Math. Methods Appl. Sci. 38, 5063–5073 (2015)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Torres, C.: Existence and symmetric result for Liouville-Weyl fractional nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simulat. 27, 314–327 (2015)CrossRef Torres, C.: Existence and symmetric result for Liouville-Weyl fractional nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simulat. 27, 314–327 (2015)CrossRef
40.
Zurück zum Zitat Xu, J., Wei, Z., Ding, Y.: Existence of weak solutions for \(p\)-Laplacian problem with impulsive effects. Taiwan J. Math. 17(2), 501–515 (2013)MathSciNetCrossRefMATH Xu, J., Wei, Z., Ding, Y.: Existence of weak solutions for \(p\)-Laplacian problem with impulsive effects. Taiwan J. Math. 17(2), 501–515 (2013)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Zeidler, E.: Nonlinear Functional Analysis and It’s Applications III Variational Methods and Optimization. Springer, New York (1985)CrossRefMATH Zeidler, E.: Nonlinear Functional Analysis and It’s Applications III Variational Methods and Optimization. Springer, New York (1985)CrossRefMATH
43.
Zurück zum Zitat Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Hackensack (2014)CrossRefMATH Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Hackensack (2014)CrossRefMATH
Metadaten
Titel
Impulsive fractional boundary value problem with p-Laplace operator
verfasst von
César E. Torres Ledesma
Nemat Nyamoradi
Publikationsdatum
11.07.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Applied Mathematics and Computing / Ausgabe 1-2/2017
Print ISSN: 1598-5865
Elektronische ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-016-1035-6

Weitere Artikel der Ausgabe 1-2/2017

Journal of Applied Mathematics and Computing 1-2/2017 Zur Ausgabe