Skip to main content
Erschienen in: Polymer Bulletin 2/2020

08.04.2019 | Original Paper

Incorporating PCL nanofibers with oyster shell to improve osteogenic differentiation of mesenchymal stem cells

verfasst von: Roghaieh Didekhani, Mahmoud Reza Sohrabi, Masoud Soleimani, Ehsan Seyedjafari, Hana Hanaee-Ahvaz

Erschienen in: Polymer Bulletin | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electrospun poly (Ɛ-caprolactone) (PCL) has been widely utilized as a biomedical scaffold material to regenerate damaged tissues. However, an electrospun scaffold made from PCL can have some drawbacks such as lack of surface bioactivity, low cell adhesion, as well as osteoinduction, which often make it unsuitable as an implant. Moreover, such a scaffold can produce acidic degradations that cause an inflammatory response at the implantation site. To overcome these negative aspects, composite electrospun nanofiber scaffolds of PCL/oyster shell (OS) were developed in this study. Then, surface morphology and chemistry of the given scaffolds were characterized. As well, tensile strength and surface hydrophilicity were evaluated. The osteogenic proliferation and differentiation potentials of these scaffolds were further evaluated through determining basic osteogenic markers using human adipose tissue derived from mesenchymal stem cells. The results revealed that the scaffolds fabricated had a very good surface property and better tensile strength than pristine PCL ones. The osteogenic proliferation and differentiation potentials were also reported to be better than those in pristine PCL scaffolds. Hence, the presence of OS could enhance PCL surface properties and bioactivity. Therefore, PCL/OS composite scaffolds developed in this study were assumed cost-effective and ideal which would offer promising alternatives for bone tissue engineering applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Eshraghi S, Das S (2010) Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater 6:2467–2476PubMedPubMedCentralCrossRef Eshraghi S, Das S (2010) Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater 6:2467–2476PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Gomez-Lizarraga KK, Flores-Morales C, Del Prado-Audelo ML, Alvarez-Perez MA, Pina-Barba MC, Escobedo C (2017) Polycaprolactone-and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: a comparative study. Mater Sci Eng C 79:326–335CrossRef Gomez-Lizarraga KK, Flores-Morales C, Del Prado-Audelo ML, Alvarez-Perez MA, Pina-Barba MC, Escobedo C (2017) Polycaprolactone-and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: a comparative study. Mater Sci Eng C 79:326–335CrossRef
4.
Zurück zum Zitat Birhanu G, Akbari Javar H, Seyedjafari E, Zandi-Karimi A, Dusti Telgerd M (2017) An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold. Artif Cell Nanomed 46:1–8 Birhanu G, Akbari Javar H, Seyedjafari E, Zandi-Karimi A, Dusti Telgerd M (2017) An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold. Artif Cell Nanomed 46:1–8
5.
Zurück zum Zitat Elangomannan S, Louis K, Dharmaraj BM, Saravanan Kandasamy V, Soundarapandian K, Gopi D (2017) Carbon nanofiber/polycaprolactone/mineralized hydroxyapatite nanofibrous scaffolds for potential orthopedic applications. ACS Appl Mater Interfaces 9:6342–6355PubMedCrossRef Elangomannan S, Louis K, Dharmaraj BM, Saravanan Kandasamy V, Soundarapandian K, Gopi D (2017) Carbon nanofiber/polycaprolactone/mineralized hydroxyapatite nanofibrous scaffolds for potential orthopedic applications. ACS Appl Mater Interfaces 9:6342–6355PubMedCrossRef
6.
Zurück zum Zitat Langer R, Vacanti JP, Vacanti CA, Atala A, Freed LE, Vunjak-Novakovic G (1995) Tissue engineering: biomedical applications. Tissue Eng 1:151–161PubMedCrossRef Langer R, Vacanti JP, Vacanti CA, Atala A, Freed LE, Vunjak-Novakovic G (1995) Tissue engineering: biomedical applications. Tissue Eng 1:151–161PubMedCrossRef
7.
Zurück zum Zitat Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354:S32–S34CrossRef Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354:S32–S34CrossRef
8.
Zurück zum Zitat Shrivats AR, McDermott MC, Hollinger JO (2014) Bone tissue engineering: state of the union. Drug Discov Today 19:781–786PubMedCrossRef Shrivats AR, McDermott MC, Hollinger JO (2014) Bone tissue engineering: state of the union. Drug Discov Today 19:781–786PubMedCrossRef
9.
Zurück zum Zitat Ahmadi M, Seyedjafari E, Zargar SJ, Birhanu G, Zandi-Karimi A, Beiki B, Tuzlakoglu K (2017) Osteogenic differentiation of mesenchymal stem cells cultured on PLLA scaffold coated with Wharton’s Jelly. EXCLI J 16:785PubMedPubMedCentral Ahmadi M, Seyedjafari E, Zargar SJ, Birhanu G, Zandi-Karimi A, Beiki B, Tuzlakoglu K (2017) Osteogenic differentiation of mesenchymal stem cells cultured on PLLA scaffold coated with Wharton’s Jelly. EXCLI J 16:785PubMedPubMedCentral
10.
Zurück zum Zitat Motamedian SR, Hosseinpour S, Ahsaie MG, Khojasteh A (2015) Smart scaffolds in bone tissue engineering: a systematic review of literature. World J Stem Cells 7:657PubMedPubMedCentralCrossRef Motamedian SR, Hosseinpour S, Ahsaie MG, Khojasteh A (2015) Smart scaffolds in bone tissue engineering: a systematic review of literature. World J Stem Cells 7:657PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Kim Y, Kim G (2015) Highly roughened polycaprolactone surfaces using oxygen plasma-etching and in vitro mineralization for bone tissue regeneration: fabrication, characterization, and cellular activities. Colloids Surf B Biointerfaces 125:181–189PubMedCrossRef Kim Y, Kim G (2015) Highly roughened polycaprolactone surfaces using oxygen plasma-etching and in vitro mineralization for bone tissue regeneration: fabrication, characterization, and cellular activities. Colloids Surf B Biointerfaces 125:181–189PubMedCrossRef
12.
Zurück zum Zitat Rath SN, Pryymachuk G, Bleiziffer OA, Lam ChXF, Arkudas A, Ho STB, Beier JP, Horch RE, Hutmacher DW, Kneser U (2011) Hyaluronan-based heparin-incorporated hydrogels for generation of axially vascularized bioartificial bone tissues: in vitro and in vivo evaluation in a PLDLLA–TCP–PCL-composite system. J Mater Sci Mater Med 22:1279–1291PubMedCrossRef Rath SN, Pryymachuk G, Bleiziffer OA, Lam ChXF, Arkudas A, Ho STB, Beier JP, Horch RE, Hutmacher DW, Kneser U (2011) Hyaluronan-based heparin-incorporated hydrogels for generation of axially vascularized bioartificial bone tissues: in vitro and in vivo evaluation in a PLDLLA–TCP–PCL-composite system. J Mater Sci Mater Med 22:1279–1291PubMedCrossRef
13.
Zurück zum Zitat Temple JP, Hutton DL, Hung BP, Yilgor Huri P, Cook CA, Kondragunta R, Jia X, Grayson WL (2014) Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J Biomed Mater Res B 102:4317–4325 Temple JP, Hutton DL, Hung BP, Yilgor Huri P, Cook CA, Kondragunta R, Jia X, Grayson WL (2014) Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J Biomed Mater Res B 102:4317–4325
14.
Zurück zum Zitat Prabhakaran MP, Venugopal JR, Chyan TT, Beng Hai L, Chan CK, Yutang Lim A, Ramakrishna S (2008) Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng Part A 14:1787–1797PubMedCrossRef Prabhakaran MP, Venugopal JR, Chyan TT, Beng Hai L, Chan CK, Yutang Lim A, Ramakrishna S (2008) Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng Part A 14:1787–1797PubMedCrossRef
15.
Zurück zum Zitat Cipitria A, Skelton A, Dargaville TR, Dalton PD, Hutmacher DW (2011) Design, fabrication and characterization of PCL electrospun scaffolds—a review. J Mater Chem 21:9419–9453CrossRef Cipitria A, Skelton A, Dargaville TR, Dalton PD, Hutmacher DW (2011) Design, fabrication and characterization of PCL electrospun scaffolds—a review. J Mater Chem 21:9419–9453CrossRef
16.
Zurück zum Zitat Melchels FPW, Barradas AM, Van Blitterswijk CA, de Boer J, Feijen J, Grijpma DW (2010) Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomater 6:4208–4217PubMedCrossRef Melchels FPW, Barradas AM, Van Blitterswijk CA, de Boer J, Feijen J, Grijpma DW (2010) Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomater 6:4208–4217PubMedCrossRef
17.
Zurück zum Zitat Park JS, Lee SJ, Jo HH, Lee JH, Kim WD, Lee JY, Park SA (2017) Fabrication and characterization of 3D-printed bone-like β-tricalcium phosphate/polycaprolactone scaffolds for dental tissue engineering. Ind Eng Chem Res 46:175–181CrossRef Park JS, Lee SJ, Jo HH, Lee JH, Kim WD, Lee JY, Park SA (2017) Fabrication and characterization of 3D-printed bone-like β-tricalcium phosphate/polycaprolactone scaffolds for dental tissue engineering. Ind Eng Chem Res 46:175–181CrossRef
18.
Zurück zum Zitat Wu H, Wan Y, Dalai S, Zhang R (2010) Response of rat osteoblasts to polycaprolactone/chitosan blend porous scaffolds. J Biomed Mater Res B 92:238–245CrossRef Wu H, Wan Y, Dalai S, Zhang R (2010) Response of rat osteoblasts to polycaprolactone/chitosan blend porous scaffolds. J Biomed Mater Res B 92:238–245CrossRef
19.
Zurück zum Zitat Ho CC, Fang HY, Wang B, Huang TH, Shie MY (2018) The effects of Biodentine/polycaprolactone 3D-scaffold with odontogenesis properties on human dental pulp cells. Int Endod J 51:291–300CrossRef Ho CC, Fang HY, Wang B, Huang TH, Shie MY (2018) The effects of Biodentine/polycaprolactone 3D-scaffold with odontogenesis properties on human dental pulp cells. Int Endod J 51:291–300CrossRef
20.
Zurück zum Zitat Kim MS, Kim G (2014) Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds. Carbohydr Polym 114:213–221PubMedCrossRef Kim MS, Kim G (2014) Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds. Carbohydr Polym 114:213–221PubMedCrossRef
21.
Zurück zum Zitat Mirhosseini MM, Haddadi‐Asl V, Zargarian SS (2016) Fabrication and characterization of hydrophilic poly (ε‐caprolactone)/pluronic P123 electrospun fibers. J Appl Polym Sci 133:43345–43356CrossRef Mirhosseini MM, Haddadi‐Asl V, Zargarian SS (2016) Fabrication and characterization of hydrophilic poly (ε‐caprolactone)/pluronic P123 electrospun fibers. J Appl Polym Sci 133:43345–43356CrossRef
22.
Zurück zum Zitat Ghaee A, Nourmohammadi J, Danesh P (2017) Novel chitosan-sulfonated chitosan-polycaprolactone-calcium phosphate nanocomposite scaffold. Carbohydr Polym 157:695–703PubMedCrossRef Ghaee A, Nourmohammadi J, Danesh P (2017) Novel chitosan-sulfonated chitosan-polycaprolactone-calcium phosphate nanocomposite scaffold. Carbohydr Polym 157:695–703PubMedCrossRef
23.
Zurück zum Zitat Shin SH, Purevdorj O, Castano O, Planell JA, Kim H-W (2012) A short review: recent advances in electrospinning for bone tissue regeneration. Tissue Eng. 3:2041731412443530 Shin SH, Purevdorj O, Castano O, Planell JA, Kim H-W (2012) A short review: recent advances in electrospinning for bone tissue regeneration. Tissue Eng. 3:2041731412443530
24.
Zurück zum Zitat Díaz E, Sandonis I, Valle MB (2014) In vitro degradation of poly (caprolactone)/nHA composites. J Nanomater 185:1–8CrossRef Díaz E, Sandonis I, Valle MB (2014) In vitro degradation of poly (caprolactone)/nHA composites. J Nanomater 185:1–8CrossRef
25.
Zurück zum Zitat Chakrapani VY, Kumar TS, Raj DK, Kumary TV (2017) Electrospun 3D composite scaffolds for craniofacial critical size defects. J Mater Sci Mater Med 28:119PubMedCrossRef Chakrapani VY, Kumar TS, Raj DK, Kumary TV (2017) Electrospun 3D composite scaffolds for craniofacial critical size defects. J Mater Sci Mater Med 28:119PubMedCrossRef
26.
Zurück zum Zitat Liu Z, Ji J, Tang S, Qian J, Yan Y, Yu B, Su J, Wei J (2015) Biocompatibility, degradability, bioactivity and osteogenesis of mesoporous/macroporous scaffolds of mesoporous diopside/poly (L-lactide) composite. J R Soc Interface 12:1–11 Liu Z, Ji J, Tang S, Qian J, Yan Y, Yu B, Su J, Wei J (2015) Biocompatibility, degradability, bioactivity and osteogenesis of mesoporous/macroporous scaffolds of mesoporous diopside/poly (L-lactide) composite. J R Soc Interface 12:1–11
27.
Zurück zum Zitat Vecchio KS, Zhang X, Massie JB, Wang M, Kim ChW (2007) Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants. Acta Biomater 3:910–918PubMedCrossRef Vecchio KS, Zhang X, Massie JB, Wang M, Kim ChW (2007) Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants. Acta Biomater 3:910–918PubMedCrossRef
28.
Zurück zum Zitat Lee YK, Jung SK, Chang YH, Wang M, Kim CW (2017) Highly bioavailable nanocalcium from oyster shell for preventing osteoporosis in rats. Int J Food Sci Nutr 68:1–10CrossRef Lee YK, Jung SK, Chang YH, Wang M, Kim CW (2017) Highly bioavailable nanocalcium from oyster shell for preventing osteoporosis in rats. Int J Food Sci Nutr 68:1–10CrossRef
29.
Zurück zum Zitat Yoon GL, Kim BT, Kim BO, Han S-H (2003) Chemical–mechanical characteristics of crushed oyster-shell. Waste Manag 23:825–834PubMedCrossRef Yoon GL, Kim BT, Kim BO, Han S-H (2003) Chemical–mechanical characteristics of crushed oyster-shell. Waste Manag 23:825–834PubMedCrossRef
30.
Zurück zum Zitat Wu SC, Hsu HC, Wu YN, Ho W-F (2011) Hydroxyapatite synthesized from oyster shell powders by ball milling and heat treatment. Mater Charact 62:1180–1187CrossRef Wu SC, Hsu HC, Wu YN, Ho W-F (2011) Hydroxyapatite synthesized from oyster shell powders by ball milling and heat treatment. Mater Charact 62:1180–1187CrossRef
31.
Zurück zum Zitat Fan L, Zhang S, Zhang X, Zhou H, Lu Z, Wang S (2015) Removal of arsenic from simulation wastewater using nano-iron/oyster shell composites. J Environ Manag 156:109–114CrossRef Fan L, Zhang S, Zhang X, Zhou H, Lu Z, Wang S (2015) Removal of arsenic from simulation wastewater using nano-iron/oyster shell composites. J Environ Manag 156:109–114CrossRef
32.
Zurück zum Zitat Shen Y, Yang S, Liu J, Xu H, Shi Zh, Lin Zh, Ying X, Guo P, Lin T, Yan Sh, Huang Q, Peng L (2014) Engineering scaffolds integrated with calcium sulfate and oyster shell for enhanced bone tissue regeneration. ACS Appl Mater Interfaces 6:12177–12188PubMedCrossRef Shen Y, Yang S, Liu J, Xu H, Shi Zh, Lin Zh, Ying X, Guo P, Lin T, Yan Sh, Huang Q, Peng L (2014) Engineering scaffolds integrated with calcium sulfate and oyster shell for enhanced bone tissue regeneration. ACS Appl Mater Interfaces 6:12177–12188PubMedCrossRef
33.
Zurück zum Zitat Yang Y, Yao Q, Pu X, Hou Zh, Zhang Q (2011) Biphasic calcium phosphate macroporous scaffolds derived from oyster shells for bone tissue engineering. Chem Eng 173:837–845CrossRef Yang Y, Yao Q, Pu X, Hou Zh, Zhang Q (2011) Biphasic calcium phosphate macroporous scaffolds derived from oyster shells for bone tissue engineering. Chem Eng 173:837–845CrossRef
34.
Zurück zum Zitat Kazemi SY, Biparva P, Ashtiani E (2016) Cerastoderma lamarcki shell as a natural, low cost and new adsorbent to removal of dye pollutant from aqueous solutions: equilibrium and kinetic studies. Ecol Eng 88:82–89CrossRef Kazemi SY, Biparva P, Ashtiani E (2016) Cerastoderma lamarcki shell as a natural, low cost and new adsorbent to removal of dye pollutant from aqueous solutions: equilibrium and kinetic studies. Ecol Eng 88:82–89CrossRef
35.
Zurück zum Zitat Xue R, Qian Y, Li L, Yao G, Yang L, Sun Y (2017) Polycaprolactone nanofiber scaffold enhances the osteogenic differentiation potency of various human tissue-derived mesenchymal stem cells. Stem Cell Res Ther 8:148PubMedPubMedCentralCrossRef Xue R, Qian Y, Li L, Yao G, Yang L, Sun Y (2017) Polycaprolactone nanofiber scaffold enhances the osteogenic differentiation potency of various human tissue-derived mesenchymal stem cells. Stem Cell Res Ther 8:148PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Yu Y, Hua S, Yang M, Fu Z, Teng S, Niu K, Zhao Q, Yi Ch (2016) Fabrication and characterization of electrospinning/3D printing bone tissue engineering scaffold. RSC Adv. 6:110557–110565CrossRef Yu Y, Hua S, Yang M, Fu Z, Teng S, Niu K, Zhao Q, Yi Ch (2016) Fabrication and characterization of electrospinning/3D printing bone tissue engineering scaffold. RSC Adv. 6:110557–110565CrossRef
37.
Zurück zum Zitat Mohammad Ghorbani F, Kaffashi B, Shokrollahi P, Seyedjafari E, Ardeshirylajimi A (2015) PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation. Carbohydr Polym. 118:133–142CrossRef Mohammad Ghorbani F, Kaffashi B, Shokrollahi P, Seyedjafari E, Ardeshirylajimi A (2015) PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation. Carbohydr Polym. 118:133–142CrossRef
38.
Zurück zum Zitat Amjadian S, Seyedjafari E, Zeynali B, Shabani I (2016) The synergistic effect of nano-hydroxyapatite and dexamethasone in the fibrous delivery system of gelatin and poly (l-lactide) on the osteogenesis of mesenchymal stem cells. Int J Pharm 507:1–11PubMedCrossRef Amjadian S, Seyedjafari E, Zeynali B, Shabani I (2016) The synergistic effect of nano-hydroxyapatite and dexamethasone in the fibrous delivery system of gelatin and poly (l-lactide) on the osteogenesis of mesenchymal stem cells. Int J Pharm 507:1–11PubMedCrossRef
39.
Zurück zum Zitat Miller ND, Williams DF (1987) On the biodegradation of poly-β-hydroxybutyrate (PHB) homopolymer and poly-β-hydroxybutyrate-hydroxyvalerate copolymers. Biomaterials 8:129–137PubMedCrossRef Miller ND, Williams DF (1987) On the biodegradation of poly-β-hydroxybutyrate (PHB) homopolymer and poly-β-hydroxybutyrate-hydroxyvalerate copolymers. Biomaterials 8:129–137PubMedCrossRef
40.
Zurück zum Zitat Mouriès LP, Almeida MJ, Milet Ch, Berland S, Lopez E (2002) Bioactivity of nacre water-soluble organic matrix from the bivalve mollusk Pinctada maxima in three mammalian cell types: fibroblasts, bone marrow stromal cells and osteoblasts. Comp Biochem Physiol B Biochem Mol Biol 132:217–229PubMedCrossRef Mouriès LP, Almeida MJ, Milet Ch, Berland S, Lopez E (2002) Bioactivity of nacre water-soluble organic matrix from the bivalve mollusk Pinctada maxima in three mammalian cell types: fibroblasts, bone marrow stromal cells and osteoblasts. Comp Biochem Physiol B Biochem Mol Biol 132:217–229PubMedCrossRef
41.
Zurück zum Zitat Combes C, Miao B, Bareille R, Rey Ch (2006) Preparation, physical–chemical characterisation and cytocompatibility of calcium carbonate cements. Biomaterials 27:1945–1954PubMedCrossRef Combes C, Miao B, Bareille R, Rey Ch (2006) Preparation, physical–chemical characterisation and cytocompatibility of calcium carbonate cements. Biomaterials 27:1945–1954PubMedCrossRef
42.
Zurück zum Zitat Lamghari M, Almeid MJ, Berland S, Huet H, Laurent A, Milet C, Lopez E (1999) Stimulation of bone marrow cells and bone formation by nacre: in vivo and in vitro studies. Bone 25:91S–94SPubMedCrossRef Lamghari M, Almeid MJ, Berland S, Huet H, Laurent A, Milet C, Lopez E (1999) Stimulation of bone marrow cells and bone formation by nacre: in vivo and in vitro studies. Bone 25:91S–94SPubMedCrossRef
43.
Zurück zum Zitat Lamghari M, Berland S, Laurent A, Huet H, Lopez E (2001) Bone reactions to nacre injected percutaneously into the vertebrae of sheep. Biomaterials 22:555–562PubMedCrossRef Lamghari M, Berland S, Laurent A, Huet H, Lopez E (2001) Bone reactions to nacre injected percutaneously into the vertebrae of sheep. Biomaterials 22:555–562PubMedCrossRef
Metadaten
Titel
Incorporating PCL nanofibers with oyster shell to improve osteogenic differentiation of mesenchymal stem cells
verfasst von
Roghaieh Didekhani
Mahmoud Reza Sohrabi
Masoud Soleimani
Ehsan Seyedjafari
Hana Hanaee-Ahvaz
Publikationsdatum
08.04.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 2/2020
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-019-02750-x

Weitere Artikel der Ausgabe 2/2020

Polymer Bulletin 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.