Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2015

01.07.2015

Influence of Aging Treatments on Alterations of Microstructural Features and Stress Corrosion Cracking Behavior of an Al-Zn-Mg Alloy

verfasst von: Prasanta Kumar Rout, M. M. Ghosh, K. S. Ghosh

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

7xxx series Al-Zn-Mg-(Cu) alloys have higher strength in their peak-aged (T6) states compared with other age-hardenable aluminum alloys; however, the maximum strength peak-aged state is more susceptible to stress corrosion cracking (SCC) which leads to catastrophic failure. The over-aged (T7) temper with 10-15% lower strength has higher resistance to SCC requiring oversized structural aerospace component applications. The medium-strength AA7017 Al-Zn-Mg weldable alloy without Cu is also prone to SCC under certain environmental conditions. In the present investigation, the SCC behaviors of an AA7017 Al-Zn-Mg alloys of different tempers have been assessed. Specific aging schedules have been adapted to an AA7017 alloy to produce various tempers, e.g., under-, peak-(T6), over-(T7), and highly over-aged tempers. Artificial aging behavior of the AA7017 alloy has been characterized by hardness, electrical conductivity measurements, x-ray diffraction, differential scanning calorimetry, and electrochemical studies. Slow strain rate test technique was used to assess the SCC behaviors of the AA7017 alloys of under-, T6, T7, and highly over-aged tempers in 3.5 wt.% NaCl solution at free corrosion potential (FCP) and at applied anodic potential, as well. Results revealed that the AA7017 alloy tempers are not susceptible to SCC in 3.5 wt.% NaCl solution at FCP, but severely damaging to SCC at applied anodic potentials. Microstructural features, showing a non-recrystallized grain structure and the presence of discrete, widely spaced, not-interconnected η precipitates at the grain boundaries, are the contributive factors by virtue of which the alloy tempers at FCP did not exhibit SCC. However, the applied anodic potential resulted in rapid metal dissolution from the grain boundary region and led to SCC. The local anodic dissolution (LAD) is believed to be the associated SCC mechanism.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Z. Huda and P. Edi, Materials Selection in Design of Structures and Engines of Supersonic Aircrafts: A Review, Mater. Des., 2013, 46(April), p 552–560CrossRef Z. Huda and P. Edi, Materials Selection in Design of Structures and Engines of Supersonic Aircrafts: A Review, Mater. Des., 2013, 46(April), p 552–560CrossRef
2.
Zurück zum Zitat E.A. Starke, Jr., and J.T. Staley, Application of Modern Aluminium Alloys to Aircraft, Prog. Aerosp. Sci., 1996, 32(2–3), p 131–172CrossRef E.A. Starke, Jr., and J.T. Staley, Application of Modern Aluminium Alloys to Aircraft, Prog. Aerosp. Sci., 1996, 32(2–3), p 131–172CrossRef
3.
Zurück zum Zitat J.C. Williams and E.A. Starke, Jr., Progress in Structural Materials for Aerospace Systems, Acta Mater., 2003, 51(19), p 5775–5799CrossRef J.C. Williams and E.A. Starke, Jr., Progress in Structural Materials for Aerospace Systems, Acta Mater., 2003, 51(19), p 5775–5799CrossRef
4.
Zurück zum Zitat I.J. Polmear, Light Alloys-Metallurgy of the Light Metals, 2nd ed., Edward Arnold, London, 1989, p 18–143 I.J. Polmear, Light Alloys-Metallurgy of the Light Metals, 2nd ed., Edward Arnold, London, 1989, p 18–143
5.
Zurück zum Zitat A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, and R. Benedictus, Recent Development in Aluminium Alloys for Aerospace Applications, Mater. Sci. Eng. A, 2000, 280(1), p 102–107CrossRef A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, and R. Benedictus, Recent Development in Aluminium Alloys for Aerospace Applications, Mater. Sci. Eng. A, 2000, 280(1), p 102–107CrossRef
6.
Zurück zum Zitat J.C. Werenkiold, A. Deschamps, and Y. Brechet, Characterization and Modeling of Precipitation Kinetics in an Al-Zn-Mg Alloy, Mater. Sci. Eng. A, 2000, 293(1–2), p 267–274CrossRef J.C. Werenkiold, A. Deschamps, and Y. Brechet, Characterization and Modeling of Precipitation Kinetics in an Al-Zn-Mg Alloy, Mater. Sci. Eng. A, 2000, 293(1–2), p 267–274CrossRef
7.
Zurück zum Zitat K. Stiller, P.J. Warren, V. Hansen, J. Angenete, and J. Gjønnes, Investigation of Precipitation in an Al-Zn-Mg Alloy After Two-Step Ageing Treatment at 100° and 150°C, Mater. Sci. Eng. A, 1999, 270(1), p 55–63CrossRef K. Stiller, P.J. Warren, V. Hansen, J. Angenete, and J. Gjønnes, Investigation of Precipitation in an Al-Zn-Mg Alloy After Two-Step Ageing Treatment at 100° and 150°C, Mater. Sci. Eng. A, 1999, 270(1), p 55–63CrossRef
8.
Zurück zum Zitat J. Buha, R.N. Lumley, and A.G. Crosky, Secondary Ageing in an Aluminum Alloy 7050, Mater. Sci. Eng. A, 2008, 492(1–2), p 1–10CrossRef J. Buha, R.N. Lumley, and A.G. Crosky, Secondary Ageing in an Aluminum Alloy 7050, Mater. Sci. Eng. A, 2008, 492(1–2), p 1–10CrossRef
9.
Zurück zum Zitat M.O. Speidel, Stress Corrosion Cracking of Aluminium Alloys, Metall. Trans. A, 1975, 6(4), p 631–651CrossRef M.O. Speidel, Stress Corrosion Cracking of Aluminium Alloys, Metall. Trans. A, 1975, 6(4), p 631–651CrossRef
10.
Zurück zum Zitat H. Fooladfar, B. Hashemi, and M. Younesi, The Effect of the Surface Treating and High Temperature Ageing on the Strength and SCC Susceptibility of 7075 Aluminium Alloy, J. Mater. Eng. Perform., 2010, 19(6), p 852–859CrossRef H. Fooladfar, B. Hashemi, and M. Younesi, The Effect of the Surface Treating and High Temperature Ageing on the Strength and SCC Susceptibility of 7075 Aluminium Alloy, J. Mater. Eng. Perform., 2010, 19(6), p 852–859CrossRef
11.
Zurück zum Zitat B. Cina, Reducing the Susceptibility of Alloys Particularly Aluminium Alloys to Stress Corrosion Cracking, US Patent, 3856584, 24 Dec 1974 B. Cina, Reducing the Susceptibility of Alloys Particularly Aluminium Alloys to Stress Corrosion Cracking, US Patent, 3856584, 24 Dec 1974
12.
Zurück zum Zitat L.P. Huang, K.H. Chen, and S. Li, Influence of Grain-Boundary Pre-precipitation and Corrosion Characteristics of Inter-granular Phases on Corrosion Behaviours of an Al-Zn-Mg-Cu Alloy, Mater. Sci. Eng. B, 2012, 177(11), p 862–868CrossRef L.P. Huang, K.H. Chen, and S. Li, Influence of Grain-Boundary Pre-precipitation and Corrosion Characteristics of Inter-granular Phases on Corrosion Behaviours of an Al-Zn-Mg-Cu Alloy, Mater. Sci. Eng. B, 2012, 177(11), p 862–868CrossRef
13.
Zurück zum Zitat D. Najjar, T. Magnin, and T.J. Warne, Influence of Critical Surface Defects and Localized Competition Between Anodic Dissolution and Hydrogen Effects During Stress Corrosion Cracking of a 7050 aluminium alloy, Mater. Sci. Eng. A, 1997, 238(2), p 293–302CrossRef D. Najjar, T. Magnin, and T.J. Warne, Influence of Critical Surface Defects and Localized Competition Between Anodic Dissolution and Hydrogen Effects During Stress Corrosion Cracking of a 7050 aluminium alloy, Mater. Sci. Eng. A, 1997, 238(2), p 293–302CrossRef
14.
Zurück zum Zitat R.G. Song, W. Dietzel, B.J. Zhang, W.J. Liu, M.K. Tseng, and A. Atrens, Stress Corrosion Cracking and Hydrogen Embrittlement of an Al-Zn-Mg-(Cu) Alloy, Acta Mater., 2004, 52(4), p 4727–4743CrossRef R.G. Song, W. Dietzel, B.J. Zhang, W.J. Liu, M.K. Tseng, and A. Atrens, Stress Corrosion Cracking and Hydrogen Embrittlement of an Al-Zn-Mg-(Cu) Alloy, Acta Mater., 2004, 52(4), p 4727–4743CrossRef
15.
Zurück zum Zitat M.B. Kanan, V.S. Raja, R. Raman, and A.K. Mukhopadhay, Influence of Multistep Ageing on Stress Corrosion Cracking Behaviour of Aluminium Alloy, Corrosion, 2003, 59(10), p 881–889CrossRef M.B. Kanan, V.S. Raja, R. Raman, and A.K. Mukhopadhay, Influence of Multistep Ageing on Stress Corrosion Cracking Behaviour of Aluminium Alloy, Corrosion, 2003, 59(10), p 881–889CrossRef
16.
Zurück zum Zitat R.K. Viswanadham, T.S. Sun, and J.A.S. Green, Grain Boundary Segregation in Al-Zn-Mg Alloys—Implications to Stress Corrosion Cracking, Metall. Trans. A, 1980, 11(1), p 85–89 R.K. Viswanadham, T.S. Sun, and J.A.S. Green, Grain Boundary Segregation in Al-Zn-Mg Alloys—Implications to Stress Corrosion Cracking, Metall. Trans. A, 1980, 11(1), p 85–89
17.
Zurück zum Zitat J. Albrecht, I.M. Bernstein, and A.W. Thompson, Thermotransport of Hydrogen and Deuterium in Vanadium, Niobium, and Tantalum, Metall. Trans. A, 1982, 13, p 811–820CrossRef J. Albrecht, I.M. Bernstein, and A.W. Thompson, Thermotransport of Hydrogen and Deuterium in Vanadium, Niobium, and Tantalum, Metall. Trans. A, 1982, 13, p 811–820CrossRef
18.
Zurück zum Zitat L.M. Wu, W.H. Wang, Y.F. Hsu, and S. Trong, Effects of Microstructure on the Mechanical Properties and Stress Corrosion Cracking of an Al-Zn-Mg-Sc-Zr Alloy by Various Temper Treatments, Mater. Trans, 2007, 48(3), p 600–609CrossRef L.M. Wu, W.H. Wang, Y.F. Hsu, and S. Trong, Effects of Microstructure on the Mechanical Properties and Stress Corrosion Cracking of an Al-Zn-Mg-Sc-Zr Alloy by Various Temper Treatments, Mater. Trans, 2007, 48(3), p 600–609CrossRef
19.
Zurück zum Zitat N.H. Holroyd and G.M. Scamans, Stress Corrosion Cracking in Al-Zn-Mg-Cu Aluminium Alloys in Saline Environments, Metall. Mater. Trans. A, 2013, 44(March), p 1230–1253CrossRef N.H. Holroyd and G.M. Scamans, Stress Corrosion Cracking in Al-Zn-Mg-Cu Aluminium Alloys in Saline Environments, Metall. Mater. Trans. A, 2013, 44(March), p 1230–1253CrossRef
20.
Zurück zum Zitat W. Gruhl, Stress Corrosion Cracking of High Strength Aluminium Alloys, Z. Metallkd., 1984, 75, p 819–826 W. Gruhl, Stress Corrosion Cracking of High Strength Aluminium Alloys, Z. Metallkd., 1984, 75, p 819–826
21.
Zurück zum Zitat M.B. Kannan and V.S. Raja, Enhancing Stress Corrosion Cracking Resistance in Al-Zn-Mg-Cu-Zr alloy through inhibiting recrystalization, Eng. Fract. Mech., 2010, 77(2), p 249–256CrossRef M.B. Kannan and V.S. Raja, Enhancing Stress Corrosion Cracking Resistance in Al-Zn-Mg-Cu-Zr alloy through inhibiting recrystalization, Eng. Fract. Mech., 2010, 77(2), p 249–256CrossRef
22.
Zurück zum Zitat Y. Deng, Z. Yin, K. Zhao, J. Duan, J. Hu, and Z. He, Effects of Sc and Zr Microalloying Additions and Ageing Time at 120°C on the Corrosion Behaviour of an Al-Zn-Mg Alloy, Corros. Sci., 2012, 65(December), p 288–299CrossRef Y. Deng, Z. Yin, K. Zhao, J. Duan, J. Hu, and Z. He, Effects of Sc and Zr Microalloying Additions and Ageing Time at 120°C on the Corrosion Behaviour of an Al-Zn-Mg Alloy, Corros. Sci., 2012, 65(December), p 288–299CrossRef
23.
Zurück zum Zitat P.K. Rout, M.M. Ghosh, and K.S. Ghosh, Effect of Solution pH on Electrochemical and Stress Corrosion Cracking Behaviour of a 7150 Al-Zn-Mg-Cu Alloy, Mater. Sci. Eng. A, 2014, 604(May), p 156–165CrossRef P.K. Rout, M.M. Ghosh, and K.S. Ghosh, Effect of Solution pH on Electrochemical and Stress Corrosion Cracking Behaviour of a 7150 Al-Zn-Mg-Cu Alloy, Mater. Sci. Eng. A, 2014, 604(May), p 156–165CrossRef
24.
Zurück zum Zitat M. Czechowski, Effect of Anodic Polarization on Stress Corrosion Cracking of Some Aluminium Alloy, Adv. Mater. Sci., 2007, 7(1), p 13–20 M. Czechowski, Effect of Anodic Polarization on Stress Corrosion Cracking of Some Aluminium Alloy, Adv. Mater. Sci., 2007, 7(1), p 13–20
25.
Zurück zum Zitat A.E. Patterson, Introduction to Aluminium, Aluminium Federation of South Africa, Gauteng, 2007 A.E. Patterson, Introduction to Aluminium, Aluminium Federation of South Africa, Gauteng, 2007
26.
Zurück zum Zitat K.S. Kumar, D. Singh, and T.B. Bhat, Studies on Aluminum Armour Plates Impacted by Deformable and Non-deformable Projectiles, Mater. Sci. Forum, 2004, 465–466, p 79–84CrossRef K.S. Kumar, D. Singh, and T.B. Bhat, Studies on Aluminum Armour Plates Impacted by Deformable and Non-deformable Projectiles, Mater. Sci. Forum, 2004, 465–466, p 79–84CrossRef
27.
Zurück zum Zitat C.G. Cordovilla, E. Louis, A. Pamies, L. Caballero, and M. Elices, Microstructure and Susceptibility to Stress Corrosion Cracking of Al-Zn-Mg Weldments (AA-7017), Mater. Sci. Eng. A, 1994, 174(2), p 173–186CrossRef C.G. Cordovilla, E. Louis, A. Pamies, L. Caballero, and M. Elices, Microstructure and Susceptibility to Stress Corrosion Cracking of Al-Zn-Mg Weldments (AA-7017), Mater. Sci. Eng. A, 1994, 174(2), p 173–186CrossRef
28.
Zurück zum Zitat K.S.S. Eswar Raju, A.K. Mukhopadhayay, and S.V. Kamat, The Effect of Ageing on Tensile Behaviour, Mode I, and Mixed Mode I/III, Fracture Toughness of 7010 Aluminium Alloy, Int. J. Mater. Res., 2006, 97(11), p 1550–1558CrossRef K.S.S. Eswar Raju, A.K. Mukhopadhayay, and S.V. Kamat, The Effect of Ageing on Tensile Behaviour, Mode I, and Mixed Mode I/III, Fracture Toughness of 7010 Aluminium Alloy, Int. J. Mater. Res., 2006, 97(11), p 1550–1558CrossRef
29.
Zurück zum Zitat A.K. Mukhopadhyay, K.S. Prasad, V. Kumar, G.M. Reddy, S.V. Kamat, and V.K. Varma, Key Microstructural Features Responsible for Improved Stress Corrosion Cracking Resistance and Weldability in 7xxx Series Al Alloys Containing Micro/Trace Alloying Additions, Mater. Sci. Forum, 2006, 519–521, p 315–320CrossRef A.K. Mukhopadhyay, K.S. Prasad, V. Kumar, G.M. Reddy, S.V. Kamat, and V.K. Varma, Key Microstructural Features Responsible for Improved Stress Corrosion Cracking Resistance and Weldability in 7xxx Series Al Alloys Containing Micro/Trace Alloying Additions, Mater. Sci. Forum, 2006, 519–521, p 315–320CrossRef
30.
Zurück zum Zitat C.G. Cordovilla, E. Louis, A. Pamies, L. Caballero, V. Sanchez-Galvez, and M. Elices, Stress Corrosion Susceptibility of Al-Zn-Mg Weldments: Microstructural Effects, Scr. Metall., 1989, 23(12), p 2091–2096CrossRef C.G. Cordovilla, E. Louis, A. Pamies, L. Caballero, V. Sanchez-Galvez, and M. Elices, Stress Corrosion Susceptibility of Al-Zn-Mg Weldments: Microstructural Effects, Scr. Metall., 1989, 23(12), p 2091–2096CrossRef
31.
Zurück zum Zitat J.C.F. Millette, N.K. Bourne, and M.R. Edwards, The Effect of Heat Treatment on the Shock Induced Mechanical Properties of the 7017 Aluminium Alloy, Scr. Mater., 2004, 51(10), p 967–971CrossRef J.C.F. Millette, N.K. Bourne, and M.R. Edwards, The Effect of Heat Treatment on the Shock Induced Mechanical Properties of the 7017 Aluminium Alloy, Scr. Mater., 2004, 51(10), p 967–971CrossRef
32.
Zurück zum Zitat H. Möller and G. Govender, The Heat Treatment of Rheo-High Pressure Die Cast Al-Zn-Mg Alloy 7017, Solid State Phenom., 2013, 192–193, p 155–160J H. Möller and G. Govender, The Heat Treatment of Rheo-High Pressure Die Cast Al-Zn-Mg Alloy 7017, Solid State Phenom., 2013, 192–193, p 155–160J
33.
Zurück zum Zitat Y. He, X. Zhang, and J. You, Effect of Minor Sc and Zr on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu Alloy, Trans. Nonferrous Met. Soc. China, 2006, 16(5), p 1228–1235CrossRef Y. He, X. Zhang, and J. You, Effect of Minor Sc and Zr on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu Alloy, Trans. Nonferrous Met. Soc. China, 2006, 16(5), p 1228–1235CrossRef
34.
Zurück zum Zitat Z. Li, B. Xiong, Y. Zhang, B. Zhu, F. Wang, and H. Liu, Ageing Behaviour of an Al-Zn-Mg-Cu Alloy Pre-stretched Thick Plate, Material, 2007, 14(3), p 246–250 Z. Li, B. Xiong, Y. Zhang, B. Zhu, F. Wang, and H. Liu, Ageing Behaviour of an Al-Zn-Mg-Cu Alloy Pre-stretched Thick Plate, Material, 2007, 14(3), p 246–250
35.
Zurück zum Zitat R.H. Brown and L.A. Willey, Constitution of Alloy, Aluminium, Vol 1, K.R. Van-Horn, Ed., ASM, Metal Park, 1967, p 31–54 R.H. Brown and L.A. Willey, Constitution of Alloy, Aluminium, Vol 1, K.R. Van-Horn, Ed., ASM, Metal Park, 1967, p 31–54
36.
Zurück zum Zitat A.K. Mukhopadhyay, C.N.J. Tite, H.M. Flower, P.J. Gregson, and F. Sale, Aluminium Lithium Alloys IV, Proceedings of the 4th International Conference on Aluminium Lithium Alloys, G. Champier, B. Dubost, D. Miannay and L. Sabetay, Paris, Ed., June, 1987 (Journal de Phyique, Suppl. 48), p C3:439. A.K. Mukhopadhyay, C.N.J. Tite, H.M. Flower, P.J. Gregson, and F. Sale, Aluminium Lithium Alloys IV, Proceedings of the 4th International Conference on Aluminium Lithium Alloys, G. Champier, B. Dubost, D. Miannay and L. Sabetay, Paris, Ed., June, 1987 (Journal de Phyique, Suppl. 48), p C3:439.
37.
Zurück zum Zitat J.T. Jiang, W.Q. Xiao, L. Yang, W.Z. Shao, S.J. Yuan, and L. Zhen, Ageing Behaviour and Stress Corrosion Cracking Resistance of a Non-isothermally Aged Al-Zn-Ng-Cu Alloy, Mater. Sci. Eng. A, 2014, 605, p 167–175CrossRef J.T. Jiang, W.Q. Xiao, L. Yang, W.Z. Shao, S.J. Yuan, and L. Zhen, Ageing Behaviour and Stress Corrosion Cracking Resistance of a Non-isothermally Aged Al-Zn-Ng-Cu Alloy, Mater. Sci. Eng. A, 2014, 605, p 167–175CrossRef
38.
Zurück zum Zitat X. Fang, Y. Du, C. Jiang, M. Song, and K. Li, Effects of Cu Content on the Precipitation Process of Al-Zn-Mg Alloys, J. Mater. Sci., 2012, 47(23), p 8174–8187CrossRef X. Fang, Y. Du, C. Jiang, M. Song, and K. Li, Effects of Cu Content on the Precipitation Process of Al-Zn-Mg Alloys, J. Mater. Sci., 2012, 47(23), p 8174–8187CrossRef
39.
Zurück zum Zitat N. Birbilis and R.G. Buchheit, Investigation and Discussion of Characteristics for Intermetallic Phases Common to Aluminium Alloys as a Function of Solution pH, J. Electrochem. Soc., 2008, 155(3), p 117–126CrossRef N. Birbilis and R.G. Buchheit, Investigation and Discussion of Characteristics for Intermetallic Phases Common to Aluminium Alloys as a Function of Solution pH, J. Electrochem. Soc., 2008, 155(3), p 117–126CrossRef
40.
Zurück zum Zitat Y.L. Wua, U.F.H. Froesa, A. Alvareza, C.G. Lib, and J. Liuc, Microstructure and Properties of a New Super-High-Strength Al-Zn-Mg-Cu Alloy, C912, Mater. Des., 1997, 18(4–6), p 211–215CrossRef Y.L. Wua, U.F.H. Froesa, A. Alvareza, C.G. Lib, and J. Liuc, Microstructure and Properties of a New Super-High-Strength Al-Zn-Mg-Cu Alloy, C912, Mater. Des., 1997, 18(4–6), p 211–215CrossRef
41.
Zurück zum Zitat H.C. Fang, K.H. Chen, X. Chen, H. Chao, and G.S. Peng, Effect of Cr, Yb and Zr Additions on Localized Corrosion of Al-Zn-Mg-Cu Alloy, Corros. Sci., 2009, 51(12), p 2872–2877CrossRef H.C. Fang, K.H. Chen, X. Chen, H. Chao, and G.S. Peng, Effect of Cr, Yb and Zr Additions on Localized Corrosion of Al-Zn-Mg-Cu Alloy, Corros. Sci., 2009, 51(12), p 2872–2877CrossRef
42.
Zurück zum Zitat S. Chen, K. Chen, P. Dong, S. Ye, and L. Huang, Effect of Recrystallization and Heat Treatment on Strength and SCC of an Al-Zn-Mg-Cu Alloy, J. Alloys Compd., 2013, 581(December), p 705–709CrossRef S. Chen, K. Chen, P. Dong, S. Ye, and L. Huang, Effect of Recrystallization and Heat Treatment on Strength and SCC of an Al-Zn-Mg-Cu Alloy, J. Alloys Compd., 2013, 581(December), p 705–709CrossRef
43.
Zurück zum Zitat G.S. Peng, K.H. Chen, H.C. Feng, Y.S. Chen, and H. Chao, The Effect of Recrystallization on Corrosion and Electrochemical Behaviour of 7150 Al Alloy, Mater. Corros., 2011, 62(1), p 35–40CrossRef G.S. Peng, K.H. Chen, H.C. Feng, Y.S. Chen, and H. Chao, The Effect of Recrystallization on Corrosion and Electrochemical Behaviour of 7150 Al Alloy, Mater. Corros., 2011, 62(1), p 35–40CrossRef
44.
Zurück zum Zitat A.K. Jha, P.R. Narayanan, K. Sreekumar, and P.P. Sinha, Cracking of Al-4.5Zn-1.5Mg Aluminium Alloy Propellant Tank—A Metallurgical Investigation, Eng. Fail. Anal., 2010, 17(2), p 562–570CrossRef A.K. Jha, P.R. Narayanan, K. Sreekumar, and P.P. Sinha, Cracking of Al-4.5Zn-1.5Mg Aluminium Alloy Propellant Tank—A Metallurgical Investigation, Eng. Fail. Anal., 2010, 17(2), p 562–570CrossRef
45.
Zurück zum Zitat R.H. Jones, ASM Handbook 13A. Corrosion: Fundamentals, Testing, and Protections, Metal Park, ASM, 2003, p 349–350 R.H. Jones, ASM Handbook 13A. Corrosion: Fundamentals, Testing, and Protections, Metal Park, ASM, 2003, p 349–350
Metadaten
Titel
Influence of Aging Treatments on Alterations of Microstructural Features and Stress Corrosion Cracking Behavior of an Al-Zn-Mg Alloy
verfasst von
Prasanta Kumar Rout
M. M. Ghosh
K. S. Ghosh
Publikationsdatum
01.07.2015
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2015
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-015-1559-1

Weitere Artikel der Ausgabe 7/2015

Journal of Materials Engineering and Performance 7/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.