Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 19/2018

26.07.2018

Influence of cobalt substitution on structural, optical, electrical and magnetic properties of nanosized lithium ferrite

verfasst von: Preeti Thakur, Parul Sharma, Jean-Luc Mattei, Patrick Queffelec, Alex V. Trukhanov, Sergei V. Trukhanov, Larissa V. Panina, Atul Thakur

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 19/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A series of Co2+ substituted Li0.5CoxFe2.5−xO4 (x = 0.1, 0.3, 0.5) has been prepared by a citrate precursor method. The distribution of cations on A-site and B-site was studied by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Mössbauer Spectroscopy. XRD confirmed the formation of ordered α-phase with prominent peaks at (220), (311), (400), (422), (511), (440). SEM and TEM confirmed the homogeneous formation of cubic phase with an average crystallite size of 50 nm. From FTIR studies, the bands at 603.78, 606.14 and 610.08 cm−1 confirmed the formation of Fe3+–O2− bond at tetrahedral (A-site), whereas bands at 477.25, 474.84 and 471.69 cm−1 confirmed the formation of Fe3+–O2− bond at octahedral site (B-site); shifting in frequency was observed with an increased amount of cobalt doping. Further, Raman spectra revealed the distribution of cations at tetrahedral and octahedral site by means of modes A1g, T2g, Eg. Mössbauer spectra with two magnetic sextets confirmed two different environments of Fe3+ ions. With an increase in cobalt doping, the crystallite size was observed to increase and hence an increase in relative area B/A ratio confirming the occupancy of Co2+ at B-site. The temperature dependence of DC resistivity was found to decrease with an increase in temperature. With an increase in cobalt substitution, DC resistivity was observed to increase from 2.32 × 106 to 3.46 × 107 Ω cm. A decrease in activation energy is noticed in the present investigation and this observed semiconducting behavior makes these nanomaterials suitable in NTC (negative temperature coefficient) devices. These observations were explained on various models and theories.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Cheruku, G. Govindaraj, L. Vijayan, Super-linear frequency dependence of ac conductivity in nanocrystalline lithium ferrite. Mater. Chem. Phys. 146, 389–398 (2014)CrossRef R. Cheruku, G. Govindaraj, L. Vijayan, Super-linear frequency dependence of ac conductivity in nanocrystalline lithium ferrite. Mater. Chem. Phys. 146, 389–398 (2014)CrossRef
2.
Zurück zum Zitat Y.-P. Fu, S.-H. Hu, Electrical and magnetic properties of magnesium-substituted lithium ferrite. Ceram. Int. 36, 1311–1317 (2010)CrossRef Y.-P. Fu, S.-H. Hu, Electrical and magnetic properties of magnesium-substituted lithium ferrite. Ceram. Int. 36, 1311–1317 (2010)CrossRef
3.
Zurück zum Zitat N. Gupta, M.C. Dimri, S.C. Kashyap, D.C. Dube, Processing and properties of cobalt-substituted lithium ferrite in the GHz frequency range. Ceram. Int. 31, 171–176 (2005)CrossRef N. Gupta, M.C. Dimri, S.C. Kashyap, D.C. Dube, Processing and properties of cobalt-substituted lithium ferrite in the GHz frequency range. Ceram. Int. 31, 171–176 (2005)CrossRef
4.
Zurück zum Zitat S.C. Watawe, B.D. Sarwade, S.S. Bellad, B.D. Sutar, B.K. Chougle, Microstructural, frequency, and temperature dependent dielectric properties of cobalt-substituted lithium ferrite. J. Magn. Magn. Mater. 214, 55–60 (2000)CrossRef S.C. Watawe, B.D. Sarwade, S.S. Bellad, B.D. Sutar, B.K. Chougle, Microstructural, frequency, and temperature dependent dielectric properties of cobalt-substituted lithium ferrite. J. Magn. Magn. Mater. 214, 55–60 (2000)CrossRef
5.
Zurück zum Zitat V. Verma, M.A. Dar, V. Pandey, A. Singh, S. Annapoorni, R.K. Kotnala, Magnetic properties of nano-crystalline Li0.35Cd0.3Fe2.35O4 ferrite prepared by modified citrate precursor method. J. Alloys Compd. 122, 133–137 (2010) V. Verma, M.A. Dar, V. Pandey, A. Singh, S. Annapoorni, R.K. Kotnala, Magnetic properties of nano-crystalline Li0.35Cd0.3Fe2.35O4 ferrite prepared by modified citrate precursor method. J. Alloys Compd. 122, 133–137 (2010)
6.
Zurück zum Zitat I. Soibam, S. Phanjoubam, L. Radhapiyari, Dielectric properties of Ni substituted Li-Zn ferrites. Physica B 405, 2181–2184 (2010)CrossRef I. Soibam, S. Phanjoubam, L. Radhapiyari, Dielectric properties of Ni substituted Li-Zn ferrites. Physica B 405, 2181–2184 (2010)CrossRef
7.
Zurück zum Zitat S.S. Teixeira, M.P.F. Graca, L.C. Costa, Dielectric, morphological and structural properties of lithium ferrite powders prepared by solid state method. J. Non-Cryst. Solids 358, 1924–1929 (2012)CrossRef S.S. Teixeira, M.P.F. Graca, L.C. Costa, Dielectric, morphological and structural properties of lithium ferrite powders prepared by solid state method. J. Non-Cryst. Solids 358, 1924–1929 (2012)CrossRef
8.
Zurück zum Zitat A. Gruskova, J. Slama, R. Dosoudil, M. Usakova, V. Jancarik, E. Usak, Microwave properties of some substituted LiZn ferrites. J. Magn. Magn. Mater. 320, e860–e864 (2008)CrossRef A. Gruskova, J. Slama, R. Dosoudil, M. Usakova, V. Jancarik, E. Usak, Microwave properties of some substituted LiZn ferrites. J. Magn. Magn. Mater. 320, e860–e864 (2008)CrossRef
9.
Zurück zum Zitat S. Verma, P.A. Joy, Low temperature synthesis of nanocrystalline lithium ferrite by a modified citrate gel precursor method. Mater. Res. Bull. 43, 3447–3456 (2008)CrossRef S. Verma, P.A. Joy, Low temperature synthesis of nanocrystalline lithium ferrite by a modified citrate gel precursor method. Mater. Res. Bull. 43, 3447–3456 (2008)CrossRef
10.
Zurück zum Zitat L.A. de Picciotto, M.M. Thackeray, Lithium insertion into the spinel LiFe5O8. Mater. Res. Bull. 21, 583–592 (1986)CrossRef L.A. de Picciotto, M.M. Thackeray, Lithium insertion into the spinel LiFe5O8. Mater. Res. Bull. 21, 583–592 (1986)CrossRef
11.
Zurück zum Zitat S.S. Teixeria, M.P.F. Graca, L.C. Costa, Dielectric morphological and structural properties of lithium ferrite powders prepared by solid state method. J. Non-Cryst. Solids 358, 1924–1929 (2012)CrossRef S.S. Teixeria, M.P.F. Graca, L.C. Costa, Dielectric morphological and structural properties of lithium ferrite powders prepared by solid state method. J. Non-Cryst. Solids 358, 1924–1929 (2012)CrossRef
12.
Zurück zum Zitat A. Ahnniyaz, T. Fujiwara, S.-W. Song, M. Yoshimura, Low temperature preparation of β-LiFe5O8 fine particles by hydrothermal ball milling. Solid State Ionics 15, 419–423 (2002)CrossRef A. Ahnniyaz, T. Fujiwara, S.-W. Song, M. Yoshimura, Low temperature preparation of β-LiFe5O8 fine particles by hydrothermal ball milling. Solid State Ionics 15, 419–423 (2002)CrossRef
13.
Zurück zum Zitat P. Mathur, A. Thakur, M. Singh, Low temperature processing of Mn-Zn nanoferrites. J. Mater. Sci. 42, 8189–8192 (2007)CrossRef P. Mathur, A. Thakur, M. Singh, Low temperature processing of Mn-Zn nanoferrites. J. Mater. Sci. 42, 8189–8192 (2007)CrossRef
14.
Zurück zum Zitat Z. Yue, J. Zhou, X. Wang, Z. Gui, L. Li, Preparation and magnetic properties of titanium-substituted LiZn ferrites via a sol-gel auto-combustion process. J. Eur. Ceram. Soc. 23, 189–193 (2003)CrossRef Z. Yue, J. Zhou, X. Wang, Z. Gui, L. Li, Preparation and magnetic properties of titanium-substituted LiZn ferrites via a sol-gel auto-combustion process. J. Eur. Ceram. Soc. 23, 189–193 (2003)CrossRef
15.
Zurück zum Zitat V. Verma, V. Pandey, S. Singh, R.P. Aloysius, S. Annapoorni, R.K. Kotnala, Comparative study of structural and magnetic properties of nano-crystalline Li0.5Fe2.5O4 prepared by various methods. Physica B 404, 2309–2314 (2009)CrossRef V. Verma, V. Pandey, S. Singh, R.P. Aloysius, S. Annapoorni, R.K. Kotnala, Comparative study of structural and magnetic properties of nano-crystalline Li0.5Fe2.5O4 prepared by various methods. Physica B 404, 2309–2314 (2009)CrossRef
16.
Zurück zum Zitat M.A. Dar, J. Shah, W.A. Siddiqui, R.K. Kotnala, Influence of synthesis approach on structural and magnetic properties of lithium ferrite nanoparticles. J. Alloys Compd. 523, 36–42 (2012)CrossRef M.A. Dar, J. Shah, W.A. Siddiqui, R.K. Kotnala, Influence of synthesis approach on structural and magnetic properties of lithium ferrite nanoparticles. J. Alloys Compd. 523, 36–42 (2012)CrossRef
17.
Zurück zum Zitat K. Rana, P. Thakur, P. Sharma, M. Tomar, V. Gupta, A. Thakur, Improved structural and magnetic properties of cobalt nanoferrites: influence of sintering temperature. Ceram. Int. 41, 4492–4497 (2015)CrossRef K. Rana, P. Thakur, P. Sharma, M. Tomar, V. Gupta, A. Thakur, Improved structural and magnetic properties of cobalt nanoferrites: influence of sintering temperature. Ceram. Int. 41, 4492–4497 (2015)CrossRef
18.
Zurück zum Zitat M. Ramesh, G.S.N. Rao, K. Samatha, B.P. Rao, Cation distribution of Ni-Cu substituted Li-ferrites. Ceram. Int. 41, 1765–1770 (2015)CrossRef M. Ramesh, G.S.N. Rao, K. Samatha, B.P. Rao, Cation distribution of Ni-Cu substituted Li-ferrites. Ceram. Int. 41, 1765–1770 (2015)CrossRef
19.
Zurück zum Zitat M. Arana, V. Galvan, S.E. Jacobo, P.G. Bercoff, Cation distribution and magnetic properties of LiMnZn ferrites. J. Alloys Compd. 568, 5–10 (2013)CrossRef M. Arana, V. Galvan, S.E. Jacobo, P.G. Bercoff, Cation distribution and magnetic properties of LiMnZn ferrites. J. Alloys Compd. 568, 5–10 (2013)CrossRef
20.
Zurück zum Zitat A.E. van Arkel, U. Spitsbergen, R.D. Heyding, Note on the volatility of lithium oxide. Can. J. Chem. 31, 446–447 (1953)CrossRef A.E. van Arkel, U. Spitsbergen, R.D. Heyding, Note on the volatility of lithium oxide. Can. J. Chem. 31, 446–447 (1953)CrossRef
21.
Zurück zum Zitat A. Thakur, M. Singh, Preparation and characterization of nanosized Mn0.4Zn0.6Fe2O4 ferrite by citrate precursor method. Ceram. Int. 29, 505–511 (2003)CrossRef A. Thakur, M. Singh, Preparation and characterization of nanosized Mn0.4Zn0.6Fe2O4 ferrite by citrate precursor method. Ceram. Int. 29, 505–511 (2003)CrossRef
22.
Zurück zum Zitat Y.-P. Fu, Electrical conductivity and magnetic properties of Li0.5Fe2.5−xCrxO4 ferrite. Mater. Chem. Phys. 115, 334–338 (2009)CrossRef Y.-P. Fu, Electrical conductivity and magnetic properties of Li0.5Fe2.5−xCrxO4 ferrite. Mater. Chem. Phys. 115, 334–338 (2009)CrossRef
23.
Zurück zum Zitat J.L. Dormann, A. Tomas, M. Nogues, Cation ordering in LiFe5O8 studied by Mössbauer Spectroscopy and X-ray crystallography. Phys. Status Solidi A 77, 611–618 (1983)CrossRef J.L. Dormann, A. Tomas, M. Nogues, Cation ordering in LiFe5O8 studied by Mössbauer Spectroscopy and X-ray crystallography. Phys. Status Solidi A 77, 611–618 (1983)CrossRef
24.
Zurück zum Zitat A. Thakur, A. Chevalier, J.L. Mattei, P. Queffelec, Low-loss spinel nanoferrite with matching permeability and permittivity in the ultrahigh frequency range. J. Appl. Phys. 108, 014301 (2010)CrossRef A. Thakur, A. Chevalier, J.L. Mattei, P. Queffelec, Low-loss spinel nanoferrite with matching permeability and permittivity in the ultrahigh frequency range. J. Appl. Phys. 108, 014301 (2010)CrossRef
25.
Zurück zum Zitat R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727–1733 (1955)CrossRef R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727–1733 (1955)CrossRef
26.
Zurück zum Zitat S. Hafner, The absorption of some metal oxides with spinel structure. Z. Kristallogr. 115, 331–358 (1961)CrossRef S. Hafner, The absorption of some metal oxides with spinel structure. Z. Kristallogr. 115, 331–358 (1961)CrossRef
27.
Zurück zum Zitat V.S. Sawant, A.A. Bagade, S.V. Mohite, K.Y. Rajpure, IR absorption spectroscopic study of mixed cobalt substitutd lithium ferrites. Physica B 451, 39–42 (2014)CrossRef V.S. Sawant, A.A. Bagade, S.V. Mohite, K.Y. Rajpure, IR absorption spectroscopic study of mixed cobalt substitutd lithium ferrites. Physica B 451, 39–42 (2014)CrossRef
28.
Zurück zum Zitat R.H. Kadam, S.T. Alone, M.L. Mane, A.R. Biradar, S.E. Shirsath, Phase evaluation of Li+ substituted CoFe2O4 nanoparticles, their characterization and magnetic properties. J. Magn. Magn. Mater. 355, 70–75 (2014)CrossRef R.H. Kadam, S.T. Alone, M.L. Mane, A.R. Biradar, S.E. Shirsath, Phase evaluation of Li+ substituted CoFe2O4 nanoparticles, their characterization and magnetic properties. J. Magn. Magn. Mater. 355, 70–75 (2014)CrossRef
29.
Zurück zum Zitat O.N. Shebanova, P. Lazor, Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. J. Solid State Chem. 174, 424–430 (2003)CrossRef O.N. Shebanova, P. Lazor, Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. J. Solid State Chem. 174, 424–430 (2003)CrossRef
30.
Zurück zum Zitat S. Thota, S.C. Kashyap, S.K. Sharma, V.R. Reddy, Micro Raman, Mössbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: role of Mn. J. Phys. Chem. Solids 91, 136–144 (2016)CrossRef S. Thota, S.C. Kashyap, S.K. Sharma, V.R. Reddy, Micro Raman, Mössbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: role of Mn. J. Phys. Chem. Solids 91, 136–144 (2016)CrossRef
31.
Zurück zum Zitat W.B. White, B.A. Deangelis, Interpretation of the vibrational spectra of spinels. Spectrochim. Acta 23A, 985–995 (1967)CrossRef W.B. White, B.A. Deangelis, Interpretation of the vibrational spectra of spinels. Spectrochim. Acta 23A, 985–995 (1967)CrossRef
32.
Zurück zum Zitat K. Mohit, V.R. Gupta, N. Gupta, S.K. Rout, Structural and microwave characterization of Ni0.2CoxZn0.8−xFe2O4 for antenna applications. Ceram. Int. 40, 1575–1586 (2014)CrossRef K. Mohit, V.R. Gupta, N. Gupta, S.K. Rout, Structural and microwave characterization of Ni0.2CoxZn0.8−xFe2O4 for antenna applications. Ceram. Int. 40, 1575–1586 (2014)CrossRef
33.
Zurück zum Zitat S. Sutradhar, S. Pati, S. Acharya, S. Das, D. Das, P.K. Chakrabarti, Sol-gel derived nanoparticles of Zn substituted lithium ferrite (Li0.32Zn0.36Fe2.32O4): magnetic and Mössbauer effect measurements and theoretical analysis. J. Magn. Magn. Mater. 324, 1317–1325 (2012)CrossRef S. Sutradhar, S. Pati, S. Acharya, S. Das, D. Das, P.K. Chakrabarti, Sol-gel derived nanoparticles of Zn substituted lithium ferrite (Li0.32Zn0.36Fe2.32O4): magnetic and Mössbauer effect measurements and theoretical analysis. J. Magn. Magn. Mater. 324, 1317–1325 (2012)CrossRef
34.
Zurück zum Zitat M.M. Costa, R.S.T.M. Sohn, A.A.M. Macedo, S.E. Mazzetto, M.P.F. Graca, A.S.B. Sombra, Study of the temperature and organic bindings effects in the dielectric and structural properties of the lithium ferrite ceramic matrix (LiFe5O8). J. Alloys Compd. 509, 9466–9471 (2011)CrossRef M.M. Costa, R.S.T.M. Sohn, A.A.M. Macedo, S.E. Mazzetto, M.P.F. Graca, A.S.B. Sombra, Study of the temperature and organic bindings effects in the dielectric and structural properties of the lithium ferrite ceramic matrix (LiFe5O8). J. Alloys Compd. 509, 9466–9471 (2011)CrossRef
35.
Zurück zum Zitat A. Thakur, P. Sharma, P. Thakur, Effect of high spin Mn2+/Mn3+ ions on microstructural, optical, magnetic and electrical properties of hydrothermally prepared Ni-Mgnanoferrites. Int. J. Mod. Phys. B 29, 1550183 (2015)CrossRef A. Thakur, P. Sharma, P. Thakur, Effect of high spin Mn2+/Mn3+ ions on microstructural, optical, magnetic and electrical properties of hydrothermally prepared Ni-Mgnanoferrites. Int. J. Mod. Phys. B 29, 1550183 (2015)CrossRef
36.
Zurück zum Zitat P. Mathur, A. Thakur, M. Singh, Low temperature synthesis of Mn0.4Zn0.6In0.5Fe1.5O4 nanoferrite for high frequency applications. J. Phys. Chem. Solids 69, 187–192 (2008)CrossRef P. Mathur, A. Thakur, M. Singh, Low temperature synthesis of Mn0.4Zn0.6In0.5Fe1.5O4 nanoferrite for high frequency applications. J. Phys. Chem. Solids 69, 187–192 (2008)CrossRef
37.
Zurück zum Zitat A. Goldman, Modern Ferrite Technology, 2nd edn. (Springer, New York, 2006) A. Goldman, Modern Ferrite Technology, 2nd edn. (Springer, New York, 2006)
38.
Zurück zum Zitat E.J.W. Verwey, P.W. Haayman, Electronic conductivity and transition point of magnetite(Fe3O4). Physica 8(9), 979–987 (1941)CrossRef E.J.W. Verwey, P.W. Haayman, Electronic conductivity and transition point of magnetite(Fe3O4). Physica 8(9), 979–987 (1941)CrossRef
Metadaten
Titel
Influence of cobalt substitution on structural, optical, electrical and magnetic properties of nanosized lithium ferrite
verfasst von
Preeti Thakur
Parul Sharma
Jean-Luc Mattei
Patrick Queffelec
Alex V. Trukhanov
Sergei V. Trukhanov
Larissa V. Panina
Atul Thakur
Publikationsdatum
26.07.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 19/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9744-2

Weitere Artikel der Ausgabe 19/2018

Journal of Materials Science: Materials in Electronics 19/2018 Zur Ausgabe

Neuer Inhalt