Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2022

21.03.2022 | Technical Article

Influence of Pre-strain on the Cementite Spheroidization of 22MnB5 Steel and Its Effect on Mechanical Properties

verfasst von: Gyan Shankar, Vivek Kumar Singh, Aditya Chepuri, Balasubramian Vengatesan, Satyam Suwas

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spheroidization is a common technique to improve the formability and machinability of material. Multiple combinations of deformation level and annealing time were employed to optimize the microstructure in 22MnB5 steel, aiming to achieve maximum spheroidization and keeping the process most economical. The critical annealing temperature for spheroidization was decided through differential scanning calorimetry measurement. Spheroidization was achieved by annealing of as-received and three different amounts of cold-rolled material, namely 10, 20, and 30% reduction in thickness. Annealing was done at 720 °C for four different times, 10, 20, 40, and 60 h, at all deformation levels. Convoluted multiple whole profile fitting technique of x-ray diffraction pattern was used to estimate the stored dislocation density in the material after different deformation levels. The microstructural investigation was performed using optical microscopy, scanning electron microscopy and EBSD techniques. The extent of spheroidization was measured through the average aspect ratio of cementite precipitate. Mechanical properties were measured through surface and core micro-hardness of initial and spheroidized samples. Microstructural characterization showed that deformation produced sub-grains and low angle grain boundaries, facilitating an easy path for diffusion of carbon. However, it was also found that a very high amount of pre-strain is also detrimental to the spheroidization process because it results in the formation of very long and sharp cementite lamella, which required more annealing time for spheroidization. The best processing parameter for spheroidization of 22MnB5 steel, considering the optimum spheroidization and minimum cost of the process, was found as 20% cold rolling reduction followed by 20 h annealing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Funakawa and Y. Nagataki, High Strength Steel Sheets for Weight Reduction of Automobiles, JFE Tech. Rep., 2019, 24, p 1–5. Y. Funakawa and Y. Nagataki, High Strength Steel Sheets for Weight Reduction of Automobiles, JFE Tech. Rep., 2019, 24, p 1–5.
2.
Zurück zum Zitat J.H. Schmitt and T. Iung, New Developments of Advanced High-Strength Steels for Automotive Applications, C R Acad. Sci. II, 2018, 19, p 641–656. J.H. Schmitt and T. Iung, New Developments of Advanced High-Strength Steels for Automotive Applications, C R Acad. Sci. II, 2018, 19, p 641–656.
3.
Zurück zum Zitat H. Safari, H. Nahvi and M. Esfahanian, Improving Automotive Crash Worthiness Using Advanced High Strength Steels, Int. J. Crashworthiness, 2018, 23, p 645–659.CrossRef H. Safari, H. Nahvi and M. Esfahanian, Improving Automotive Crash Worthiness Using Advanced High Strength Steels, Int. J. Crashworthiness, 2018, 23, p 645–659.CrossRef
4.
Zurück zum Zitat G. Venturato, S. Bruschi, A. Ghiotti and X. Chen, Numerical Modeling of the 22MnB5 Formability at High Temperature, Proced. Manuf., 2019, 29, p 428–434.CrossRef G. Venturato, S. Bruschi, A. Ghiotti and X. Chen, Numerical Modeling of the 22MnB5 Formability at High Temperature, Proced. Manuf., 2019, 29, p 428–434.CrossRef
5.
Zurück zum Zitat K. Ahn, Y. Jeong and J. Yoon, Thermo-Mechanical Constitutive Equation of 22MnB5 Steel Sheet for Hot Press Forming Process, Int. J. Precis. Eng. Manuf. Technol., 2019, 20, p 663–672.CrossRef K. Ahn, Y. Jeong and J. Yoon, Thermo-Mechanical Constitutive Equation of 22MnB5 Steel Sheet for Hot Press Forming Process, Int. J. Precis. Eng. Manuf. Technol., 2019, 20, p 663–672.CrossRef
6.
Zurück zum Zitat P. Zhang, L. Zhu, C. Xi and J. Luo, Study on Phase Transformation in hot Stamping Process of USIBOR®1500 High-Strength Steel, Metals (Basel), 2019, 9, p 1–10.CrossRef P. Zhang, L. Zhu, C. Xi and J. Luo, Study on Phase Transformation in hot Stamping Process of USIBOR®1500 High-Strength Steel, Metals (Basel), 2019, 9, p 1–10.CrossRef
7.
Zurück zum Zitat E. Gracia-Escosa, I. García, J.J.D. Damborenea and A. Conde, Friction and Wear Behaviour of Tool Steels Sliding Against 22MnB5steel, J. Mater. Res. Technol., 2017, 6, p 241–50.CrossRef E. Gracia-Escosa, I. García, J.J.D. Damborenea and A. Conde, Friction and Wear Behaviour of Tool Steels Sliding Against 22MnB5steel, J. Mater. Res. Technol., 2017, 6, p 241–50.CrossRef
8.
Zurück zum Zitat R. Song, D. Ponge, D. Raabe and R. Kaspar, Microstructure and Crystallographic Texture of an Ultrafine Grained C–Mn Steel and Their Evolution During Warm Deformation and Annealing, Acta Mater., 2005, 53, p 845–858.CrossRef R. Song, D. Ponge, D. Raabe and R. Kaspar, Microstructure and Crystallographic Texture of an Ultrafine Grained C–Mn Steel and Their Evolution During Warm Deformation and Annealing, Acta Mater., 2005, 53, p 845–858.CrossRef
9.
Zurück zum Zitat R. Song, D. Ponge and D. Raabe, Mechanical Properties of an Ultrafine Grained C-Mn Steel Processed by Warm Deformation and Annealing, Acta Mater., 2005, 53, p 4881–4892.CrossRef R. Song, D. Ponge and D. Raabe, Mechanical Properties of an Ultrafine Grained C-Mn Steel Processed by Warm Deformation and Annealing, Acta Mater., 2005, 53, p 4881–4892.CrossRef
10.
Zurück zum Zitat R. Song, D. Ponge and D. Raabe, Improvement of the Work Hardening Rate Of Ultrafine Grained Steels Through Second Phase Particles, Scr. Mater., 2005, 52, p 1075–1080.CrossRef R. Song, D. Ponge and D. Raabe, Improvement of the Work Hardening Rate Of Ultrafine Grained Steels Through Second Phase Particles, Scr. Mater., 2005, 52, p 1075–1080.CrossRef
11.
Zurück zum Zitat L. Storojeva, D. Ponge, R. Kaspar and D. Raabe, Development of Microstructure and Texture of Medium Carbon Steel During Heavy Warm Deformation, Acta Mater., 2004, 52, p 2209–2220.CrossRef L. Storojeva, D. Ponge, R. Kaspar and D. Raabe, Development of Microstructure and Texture of Medium Carbon Steel During Heavy Warm Deformation, Acta Mater., 2004, 52, p 2209–2220.CrossRef
12.
Zurück zum Zitat N. Jia, Y.F. Shen, J.W. Liang, X.W. Feng, H.B. Wang and R.D.K. Misra, Nanoscale Spheroidized Cementite Induced Ultrahigh Strength-Ductility Combination in Innovatively Processed Ultrafine-Grained Low Alloy Medium-Carbon Steel, Sci. Rep., 2017, 7, p 2679.CrossRef N. Jia, Y.F. Shen, J.W. Liang, X.W. Feng, H.B. Wang and R.D.K. Misra, Nanoscale Spheroidized Cementite Induced Ultrahigh Strength-Ductility Combination in Innovatively Processed Ultrafine-Grained Low Alloy Medium-Carbon Steel, Sci. Rep., 2017, 7, p 2679.CrossRef
13.
Zurück zum Zitat G.E. Totten, Steel Heat Treatment Metallurgy and Technologies, CRC Press, Boca Raton, 2007. G.E. Totten, Steel Heat Treatment Metallurgy and Technologies, CRC Press, Boca Raton, 2007.
14.
Zurück zum Zitat D.X. Han, L.X. Du, B. Zhang et al., Effect of Deformation on Deformation-Induced Carbides and Spheroidization in Bearing Steel, J. Mater. Sci., 2019, 54(3), p 2612–2627.CrossRef D.X. Han, L.X. Du, B. Zhang et al., Effect of Deformation on Deformation-Induced Carbides and Spheroidization in Bearing Steel, J. Mater. Sci., 2019, 54(3), p 2612–2627.CrossRef
15.
Zurück zum Zitat H.L. Yi, Z.Y. Hou and Y.B. Xu, Acceleration of spheroidization in eutectoid steels by the addition of aluminium, Scr. Mater., 2012, 7–8(67), p 645–648.CrossRef H.L. Yi, Z.Y. Hou and Y.B. Xu, Acceleration of spheroidization in eutectoid steels by the addition of aluminium, Scr. Mater., 2012, 7–8(67), p 645–648.CrossRef
16.
Zurück zum Zitat H. Li, B. Wang, X. Song et al., New Spheroidizing Technique of Ultra-High Carbon Steel with Aluminium Addition, J. Iron. Steel Res. Int., 2006, 13(3), p 9–13.CrossRef H. Li, B. Wang, X. Song et al., New Spheroidizing Technique of Ultra-High Carbon Steel with Aluminium Addition, J. Iron. Steel Res. Int., 2006, 13(3), p 9–13.CrossRef
17.
Zurück zum Zitat B. Wang, X. Song and H. Peng, Design of a Spheroidization Processing for Ultrahigh Carbon Steels Containing Al, Mater. Des., 2007, 28(2), p 562–568.CrossRef B. Wang, X. Song and H. Peng, Design of a Spheroidization Processing for Ultrahigh Carbon Steels Containing Al, Mater. Des., 2007, 28(2), p 562–568.CrossRef
18.
Zurück zum Zitat Z.Q. Lv, B. Wang, Z.H. Wang et al., Effect of Cyclic Heat Treatments on Spheroidizing Behaviour of Cementite in High Carbon Steel, Mater. Sci. Eng. A, 2013, 574, p 143–148.CrossRef Z.Q. Lv, B. Wang, Z.H. Wang et al., Effect of Cyclic Heat Treatments on Spheroidizing Behaviour of Cementite in High Carbon Steel, Mater. Sci. Eng. A, 2013, 574, p 143–148.CrossRef
19.
Zurück zum Zitat D. Hernandez-Silva, The Spheroidization of Cementite in a Medium Carbon Steel by Means of Subcritical and Inter Critical Annealing, ISIJ Int., 1992, 32(12), p 1297–1305.CrossRef D. Hernandez-Silva, The Spheroidization of Cementite in a Medium Carbon Steel by Means of Subcritical and Inter Critical Annealing, ISIJ Int., 1992, 32(12), p 1297–1305.CrossRef
20.
Zurück zum Zitat A. Saha, D.K. Mondal and J. Maity, Effect of Cyclic Heat Treatment on Microstructure and Mechanical Properties of 0.6 wt.% Carbon Steel, Mater. Sci. Eng. A, 2010, 527(16), p 4001–4007. CrossRef A. Saha, D.K. Mondal and J. Maity, Effect of Cyclic Heat Treatment on Microstructure and Mechanical Properties of 0.6 wt.% Carbon Steel, Mater. Sci. Eng. A, 2010, 527(16), p 4001–4007. CrossRef
21.
Zurück zum Zitat A. Saha, D.K. Mondal, K. Biswas et al., Development of High Strength Ductile Hypereutectoid Steel by Cyclic Heat Treatment Process, Mater. Sci. Eng. A, 2012, 541, p 204–215.CrossRef A. Saha, D.K. Mondal, K. Biswas et al., Development of High Strength Ductile Hypereutectoid Steel by Cyclic Heat Treatment Process, Mater. Sci. Eng. A, 2012, 541, p 204–215.CrossRef
22.
Zurück zum Zitat R. Sabban, S. Bahl, K. Chatterjee et al., Globularization Using Heat Treatment in Additively Manufactured Ti-6Al-4V for High Strength and Toughness, Acta Mater., 2019, 162, p 239–254.CrossRef R. Sabban, S. Bahl, K. Chatterjee et al., Globularization Using Heat Treatment in Additively Manufactured Ti-6Al-4V for High Strength and Toughness, Acta Mater., 2019, 162, p 239–254.CrossRef
23.
Zurück zum Zitat W.T. Yu, J. Li, C.B. Shi et al., Effect of Spheroidizing Annealing on Microstructure and Mechanical Properties of high-Carbon Martensitic Stainless Steel 8Cr13MoV, J. Mater. Eng. Perform., 2017, 26(2), p 478–487.CrossRef W.T. Yu, J. Li, C.B. Shi et al., Effect of Spheroidizing Annealing on Microstructure and Mechanical Properties of high-Carbon Martensitic Stainless Steel 8Cr13MoV, J. Mater. Eng. Perform., 2017, 26(2), p 478–487.CrossRef
24.
Zurück zum Zitat W. Hui, H. Dong, Y. Weng et al., Effect of Heat Treatment Parameters on Mechanical Properties Of High Strength Cr-Mo-V Steel, Acta Metall. Sin.-Chin. Ed., 2002, 38(10), p 1009–1014. W. Hui, H. Dong, Y. Weng et al., Effect of Heat Treatment Parameters on Mechanical Properties Of High Strength Cr-Mo-V Steel, Acta Metall. Sin.-Chin. Ed., 2002, 38(10), p 1009–1014.
25.
Zurück zum Zitat J.D. Verhoeven and E.D. Gibson, The Divorced Eutectoid Transformation in Steel, Metall. Mater. Trans. A, 1998, 29(4), p 1181–1189.CrossRef J.D. Verhoeven and E.D. Gibson, The Divorced Eutectoid Transformation in Steel, Metall. Mater. Trans. A, 1998, 29(4), p 1181–1189.CrossRef
26.
Zurück zum Zitat J.D. Verhoeven, The Role of the Divorced Eutectoid Transformation in the Spheroidization of 52100 Steel, Metall. Mater. Trans. A, 2000, 31(10), p 2431–2438.CrossRef J.D. Verhoeven, The Role of the Divorced Eutectoid Transformation in the Spheroidization of 52100 Steel, Metall. Mater. Trans. A, 2000, 31(10), p 2431–2438.CrossRef
27.
Zurück zum Zitat G. Ribárik, T. Ungár and J. Gubicza, MWP-fit: A Program for Multiple Whole-Profile Fitting of Diffraction Peak Profiles by ab Initio Theoretical Functions, J. Appl. Crystallogr., 2001, 34, p 669.CrossRef G. Ribárik, T. Ungár and J. Gubicza, MWP-fit: A Program for Multiple Whole-Profile Fitting of Diffraction Peak Profiles by ab Initio Theoretical Functions, J. Appl. Crystallogr., 2001, 34, p 669.CrossRef
28.
Zurück zum Zitat M. Wilkens, The Determination of Density and Distribution of Dislocations in Deformed Single Crystals from Broadened x-ray Diffraction Profiles, Phys. Status Solidi A, 1970, 2, p 359.CrossRef M. Wilkens, The Determination of Density and Distribution of Dislocations in Deformed Single Crystals from Broadened x-ray Diffraction Profiles, Phys. Status Solidi A, 1970, 2, p 359.CrossRef
29.
Zurück zum Zitat G. Ribárik, J. Gubicza and T. Ungár, Correlation Between Strength and Microstructure of Ball-Milled Al-Mg Alloys Determined by x-ray Diffraction, Mater. Sci. Eng. A, 2004, 387, p 343.CrossRef G. Ribárik, J. Gubicza and T. Ungár, Correlation Between Strength and Microstructure of Ball-Milled Al-Mg Alloys Determined by x-ray Diffraction, Mater. Sci. Eng. A, 2004, 387, p 343.CrossRef
30.
Zurück zum Zitat C. Prasad, P. Bhuyan, C. Kaithwas, R. Saha and S. Mandal, Microstructure Engineering by Dispersing Nano-Spheroid Cementite in Ultrafine-Grained Ferrite and Its Implications on Strength-Ductility Relationship in High Carbon Steel, Mater. Des., 2018, 139, p 324–335.CrossRef C. Prasad, P. Bhuyan, C. Kaithwas, R. Saha and S. Mandal, Microstructure Engineering by Dispersing Nano-Spheroid Cementite in Ultrafine-Grained Ferrite and Its Implications on Strength-Ductility Relationship in High Carbon Steel, Mater. Des., 2018, 139, p 324–335.CrossRef
31.
Zurück zum Zitat W.W. Mullins, Flattening of a Nearly Plane Solid Surface due to Capillarity, J. Appl. Phys., 1959, 30, p 77–83.CrossRef W.W. Mullins, Flattening of a Nearly Plane Solid Surface due to Capillarity, J. Appl. Phys., 1959, 30, p 77–83.CrossRef
32.
Zurück zum Zitat Y.L. Tian and R.W. Kraft, Kinetics of Pearlite Spheroidization, Metall. Trans. A., 1987, 18, p 1359–1369.CrossRef Y.L. Tian and R.W. Kraft, Kinetics of Pearlite Spheroidization, Metall. Trans. A., 1987, 18, p 1359–1369.CrossRef
33.
Zurück zum Zitat J. Moon, H. Jeong, J. Lee and C. Lee, Particle Coarsening Kinetics Considering Critical Particle Size in the Presence of Multiple Particles in the Heat-Affected Zone of a Weld, Mater. Sci. Eng. A, 2008, 483–484, p 633–636.CrossRef J. Moon, H. Jeong, J. Lee and C. Lee, Particle Coarsening Kinetics Considering Critical Particle Size in the Presence of Multiple Particles in the Heat-Affected Zone of a Weld, Mater. Sci. Eng. A, 2008, 483–484, p 633–636.CrossRef
34.
Zurück zum Zitat A.M. Cree, R.G. Faulkner and A.T. Lyne, Cementite Particle Coarsening During Spheroidization of Bearing Steel SAE 52100, Mater. Sci. Technol., 1995, 11, p 566–571.CrossRef A.M. Cree, R.G. Faulkner and A.T. Lyne, Cementite Particle Coarsening During Spheroidization of Bearing Steel SAE 52100, Mater. Sci. Technol., 1995, 11, p 566–571.CrossRef
35.
Zurück zum Zitat R. Xie, S. Lu, W. Li, Y. Tian and L. Vitos, Dissociated Dislocation-Mediated Carbon Transport and Diffusion in Austenitic Iron, Acta Mater., 2020, 191, p 3–50.CrossRef R. Xie, S. Lu, W. Li, Y. Tian and L. Vitos, Dissociated Dislocation-Mediated Carbon Transport and Diffusion in Austenitic Iron, Acta Mater., 2020, 191, p 3–50.CrossRef
Metadaten
Titel
Influence of Pre-strain on the Cementite Spheroidization of 22MnB5 Steel and Its Effect on Mechanical Properties
verfasst von
Gyan Shankar
Vivek Kumar Singh
Aditya Chepuri
Balasubramian Vengatesan
Satyam Suwas
Publikationsdatum
21.03.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06785-6

Weitere Artikel der Ausgabe 9/2022

Journal of Materials Engineering and Performance 9/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.