Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 8/2015

01.08.2015

Influence of temperature on MWCNT bundle, SWCNT bundle and copper interconnects for nanoscaled technology nodes

verfasst von: Karmjit Singh, Balwinder Raj

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 8/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents the comparative analysis of temperature dependent performance of Multi-walled carbon nanotubes (MWCNT), Single-walled carbon nanotube (SWCNT) and copper interconnects for nanoscaled technology nodes. The temperature dependent impedance circuit model is proposed for MWCNT bundle interconnects. The proposed model for MWCNT bundle shows the various electron–phonon scattering mechanisms dependency as a function of temperature. The performance in terms of propagation delay, power dissipation and power delay product for MWCNT bundle interconnects is simulated on the basis of temperature dependent electrical parameters for global interconnects at three different technology nodes viz. 32, 22 and 16 nm for temperature range 200 to 450 K. A similar analysis is performed for SWCNT bundle and copper interconnects and results are compared with the MWCNT bundle interconnects. The comparative results revealed that the performance of MWCNT bundle interconnects is better than the performance of SWCNT bundle and copper interconnects at different temperature ranging from 200 to 450 K for 32, 22 and 16 nm technology nodes at global interconnects.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W. Steinhogl, G. Schindler, G. Steinlesberger, M. Traving, M. Engelhardt, Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller. J. Appl. Phys. 97, 023706/1–023706/7 (2005)CrossRef W. Steinhogl, G. Schindler, G. Steinlesberger, M. Traving, M. Engelhardt, Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller. J. Appl. Phys. 97, 023706/1–023706/7 (2005)CrossRef
2.
Zurück zum Zitat A. Naeemi, R. Sarvari, J.D. Meindl, Performance comparison between carbon nanotube and copper interconnects for giga scale integration (GSI). Electron Device Lett. 26(2), 84–86 (2005)CrossRef A. Naeemi, R. Sarvari, J.D. Meindl, Performance comparison between carbon nanotube and copper interconnects for giga scale integration (GSI). Electron Device Lett. 26(2), 84–86 (2005)CrossRef
3.
Zurück zum Zitat H. Li, C. Xu, N. Srivastava, K. Banerjee, Carbon nanomaterials for next-generation interconnects and passives: physics, status and prospects. IEEE Trans. Electron Devices 56(9), 1799–1821 (2009)CrossRef H. Li, C. Xu, N. Srivastava, K. Banerjee, Carbon nanomaterials for next-generation interconnects and passives: physics, status and prospects. IEEE Trans. Electron Devices 56(9), 1799–1821 (2009)CrossRef
4.
Zurück zum Zitat K. Banerjee, N. Srivastava, Are carbon nanotubes the future of VLSI interconnections?. in Proceedings of Design Automation Conference, pp. 809–814 (2006) K. Banerjee, N. Srivastava, Are carbon nanotubes the future of VLSI interconnections?. in Proceedings of Design Automation Conference, pp. 809–814 (2006)
5.
Zurück zum Zitat M.K. Rai, S. Sarkar, Influence of distance between adjacent tubes on SWCNT bundle interconnects delay and power dissipation. J. Comput. Electron. 12(4), 796–802 (2013)CrossRef M.K. Rai, S. Sarkar, Influence of distance between adjacent tubes on SWCNT bundle interconnects delay and power dissipation. J. Comput. Electron. 12(4), 796–802 (2013)CrossRef
6.
Zurück zum Zitat Q. Jiang, Y. Zhao, X.Y. Lu, Q. Zhan, Y. L. Zhou, Effects of activation temperature on the electrochemical capacitance of activated carbon nanotubes. J. Mater. Sci. Mater. Electron. doi:10.1007/s10854-006-7473-4 Q. Jiang, Y. Zhao, X.Y. Lu, Q. Zhan, Y. L. Zhou, Effects of activation temperature on the electrochemical capacitance of activated carbon nanotubes. J. Mater. Sci. Mater. Electron. doi:10.​1007/​s10854-006-7473-4
7.
Zurück zum Zitat N. Srivastava, H. Li, F. Kreupl, K. Banerjee, On the applicability of single-walled carbon nanotubes as VLSI interconnects. IEEE Trans. Nanotechnol. 8(4), 542–559 (2009)CrossRef N. Srivastava, H. Li, F. Kreupl, K. Banerjee, On the applicability of single-walled carbon nanotubes as VLSI interconnects. IEEE Trans. Nanotechnol. 8(4), 542–559 (2009)CrossRef
8.
Zurück zum Zitat P.J. Burke, Lüttinger liquid theory as a model of the Gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol. 1(3), 129–144 (2002)CrossRef P.J. Burke, Lüttinger liquid theory as a model of the Gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol. 1(3), 129–144 (2002)CrossRef
9.
Zurück zum Zitat A. Hosseini, V. Shbro, Thermally-aware modeling and performance evaluation for single-walled carbon nanotube-based interconnects for future high performance integrated circuits. Microelectron. Eng. 87(10), 1955–1962 (2010)CrossRef A. Hosseini, V. Shbro, Thermally-aware modeling and performance evaluation for single-walled carbon nanotube-based interconnects for future high performance integrated circuits. Microelectron. Eng. 87(10), 1955–1962 (2010)CrossRef
10.
Zurück zum Zitat E. Pop, D. Mann, J. Reifenberg, K. Goodson, H. Dai, Electrical and thermal transport in metalic single-wall carbon nanotubes for interconnect application. J. Appl. Phys. 101, 093710–093720 (2007)CrossRef E. Pop, D. Mann, J. Reifenberg, K. Goodson, H. Dai, Electrical and thermal transport in metalic single-wall carbon nanotubes for interconnect application. J. Appl. Phys. 101, 093710–093720 (2007)CrossRef
11.
Zurück zum Zitat E. Pop, D. Mann, J. Reifenberg, K. Goodson, H. Dai, Electro-thermal transport in metalic single-wall carbon nanotubes for interconnect application. in Technical Digest of IEEE International Electron device meeting 2005 IEDM, pp. 254–256 (2005) E. Pop, D. Mann, J. Reifenberg, K. Goodson, H. Dai, Electro-thermal transport in metalic single-wall carbon nanotubes for interconnect application. in Technical Digest of IEEE International Electron device meeting 2005 IEDM, pp. 254–256 (2005)
12.
Zurück zum Zitat A.G. Chiarillo, G. Miano, A. Maffucci, Size and temperature on resistance of copper and carbon nanotubes nano-interconnects. IEEE Electron Devices Lett. 55(6), 97–100 (2010) A.G. Chiarillo, G. Miano, A. Maffucci, Size and temperature on resistance of copper and carbon nanotubes nano-interconnects. IEEE Electron Devices Lett. 55(6), 97–100 (2010)
13.
Zurück zum Zitat W. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, H. Park, Fabry-Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001)CrossRef W. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, H. Park, Fabry-Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001)CrossRef
14.
Zurück zum Zitat H. Li, W.Y. Yin, K. Banerjee, J.F. Mao, Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects. IEEE Trans. Electron Devices 55(6), 1328–1337 (2008)CrossRef H. Li, W.Y. Yin, K. Banerjee, J.F. Mao, Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects. IEEE Trans. Electron Devices 55(6), 1328–1337 (2008)CrossRef
15.
Zurück zum Zitat M. Sahoo, H. Rahaman, Performance analysis of multiwalled carbon nanotube bundles. in IEEE XXXIII International Scientific Conference Electronics and Nanotechnology (ELNANO), pp. 200–203 (2013) M. Sahoo, H. Rahaman, Performance analysis of multiwalled carbon nanotube bundles. in IEEE XXXIII International Scientific Conference Electronics and Nanotechnology (ELNANO), pp. 200–203 (2013)
16.
Zurück zum Zitat H.J. Li, W.G. Lu, J.J. Li, X.D. Bai, C.Z. Gu, Multichannel ballistic transport in multiwall carbon nanotubes. Phys. Rev. Lett. 95(8), 86601 (2005)CrossRef H.J. Li, W.G. Lu, J.J. Li, X.D. Bai, C.Z. Gu, Multichannel ballistic transport in multiwall carbon nanotubes. Phys. Rev. Lett. 95(8), 86601 (2005)CrossRef
17.
Zurück zum Zitat A. Naeemi, J.D. Meindl, A compact physical model for multiwall carbon-nanotube interconnects. IEEE Electron Device Lett. 27(5), 338–340 (2006)CrossRef A. Naeemi, J.D. Meindl, A compact physical model for multiwall carbon-nanotube interconnects. IEEE Electron Device Lett. 27(5), 338–340 (2006)CrossRef
18.
Zurück zum Zitat C. Rutherglen, P.J. Burke, Nanoelectromagnetics: circuit and electromagnetic properties of carbon nanotubes. Small 5(8), 884–906 (2009)CrossRef C. Rutherglen, P.J. Burke, Nanoelectromagnetics: circuit and electromagnetic properties of carbon nanotubes. Small 5(8), 884–906 (2009)CrossRef
19.
Zurück zum Zitat P.G. Collins, P. Avouris, Multishell conduction in multiwalled carbon nanotubes. Appl. Phys. A Solids Surf. 74(3), 329–332 (2002)CrossRef P.G. Collins, P. Avouris, Multishell conduction in multiwalled carbon nanotubes. Appl. Phys. A Solids Surf. 74(3), 329–332 (2002)CrossRef
20.
Zurück zum Zitat Ashok Srivastav, Yao Xu, Ashwani K. Sharma, Carbon nanotubes for next generation very large scale integration interconnects. J. Nanophotonics 4(1), 041690 (2010)CrossRef Ashok Srivastav, Yao Xu, Ashwani K. Sharma, Carbon nanotubes for next generation very large scale integration interconnects. J. Nanophotonics 4(1), 041690 (2010)CrossRef
21.
Zurück zum Zitat Y.G. Yoon, P. Delaney, S.G. Louie, Quantum conductance of multiwall carbon nanotubes. Phys. Rev. B 66(7), 073407/1–073407/7 (2002)CrossRef Y.G. Yoon, P. Delaney, S.G. Louie, Quantum conductance of multiwall carbon nanotubes. Phys. Rev. B 66(7), 073407/1–073407/7 (2002)CrossRef
23.
Zurück zum Zitat B. Kumar, B.K. Kaushik, Y.S. Negi, Perspectives and challenges for organic thin film transistors: materials, devices, processes and applications. J. Mater. Sci. Mater. Electron. 25(1), 1–30 (2014)CrossRef B. Kumar, B.K. Kaushik, Y.S. Negi, Perspectives and challenges for organic thin film transistors: materials, devices, processes and applications. J. Mater. Sci. Mater. Electron. 25(1), 1–30 (2014)CrossRef
25.
Zurück zum Zitat M.K. Majumder, N.D. Pandya, B.K. Kaushik, S.K. Manhas, Analysis of MWCNT and bundled SWCNT interconnects: impact on crosstalk and area. IEEE Electron Device Lett. 33(8), 1080–1082 (2012)CrossRef M.K. Majumder, N.D. Pandya, B.K. Kaushik, S.K. Manhas, Analysis of MWCNT and bundled SWCNT interconnects: impact on crosstalk and area. IEEE Electron Device Lett. 33(8), 1080–1082 (2012)CrossRef
Metadaten
Titel
Influence of temperature on MWCNT bundle, SWCNT bundle and copper interconnects for nanoscaled technology nodes
verfasst von
Karmjit Singh
Balwinder Raj
Publikationsdatum
01.08.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 8/2015
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-015-3193-y

Weitere Artikel der Ausgabe 8/2015

Journal of Materials Science: Materials in Electronics 8/2015 Zur Ausgabe

Neuer Inhalt