Skip to main content
Erschienen in: Engineering with Computers 2/2022

06.07.2020 | Original Article

Integrated radial basis functions (IRBFs) to simulate nonlinear advection–diffusion equations with smooth and non-smooth initial data

verfasst von: Ali Ebrahimijahan, Mehdi Dehghan, Mostafa Abbaszadeh

Erschienen in: Engineering with Computers | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, a meshfree method for the numerical solution of conversation law equations is considered. Some problems which have shock such as advection problems are not properly solved by radial basis function collocation meshfree method. Therefore, we use the integrated radial basis function (IRBF) method for some of these problems. In the current study, the governing models have been discretized by IRBF technique in the spatial direction and by finite difference approximation for time variable. This converts the main problem to a system of nonlinear ordinary differential equations (ODEs). Furthermore, the obtained ODEs will be solved by Runge–Kutta technique. This is the meshless method of lines technique. Numerical examples indicate the acceptable accuracy, proficiency and easy implementation of the presented method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abbaszadeh M, Dehghan M (2019) The reproducing kernel particle Petrov–Galerkin method for solving two-dimensional nonstationary incompressible Boussinesq equations. Eng Anal Bound Elem 106:300–308MathSciNetMATH Abbaszadeh M, Dehghan M (2019) The reproducing kernel particle Petrov–Galerkin method for solving two-dimensional nonstationary incompressible Boussinesq equations. Eng Anal Bound Elem 106:300–308MathSciNetMATH
2.
Zurück zum Zitat Abbaszadeh M, Dehghan M (2019) A meshless numerical investigation based on the RBF-QR approach for elasticity problems. AUT J Math Comput (AJMC) (in press) Abbaszadeh M, Dehghan M (2019) A meshless numerical investigation based on the RBF-QR approach for elasticity problems. AUT J Math Comput (AJMC) (in press)
3.
Zurück zum Zitat Abbaszadeh M, Dehghan M (2019) The interpolating element-free Galerkin method for solving Korteweg-de Vries-Rosenau-regularized long-wave equation with error analysis. Nonlinear Dyn 96:1345–1365MATH Abbaszadeh M, Dehghan M (2019) The interpolating element-free Galerkin method for solving Korteweg-de Vries-Rosenau-regularized long-wave equation with error analysis. Nonlinear Dyn 96:1345–1365MATH
4.
Zurück zum Zitat Abedian R, Adibi H, Dehghan M (2013) A high-order weighted essentially non-oscillatory (WENO) finite difference scheme for nonlinear degenerate parabolic equations. Comput Phys Commun 184:1874–1888MathSciNetMATH Abedian R, Adibi H, Dehghan M (2013) A high-order weighted essentially non-oscillatory (WENO) finite difference scheme for nonlinear degenerate parabolic equations. Comput Phys Commun 184:1874–1888MathSciNetMATH
5.
Zurück zum Zitat Anderson D, Tannehill JC, Pletcher RH (2016) Computational fluid mechanics and heat transfer. CRC Press, LondonMATH Anderson D, Tannehill JC, Pletcher RH (2016) Computational fluid mechanics and heat transfer. CRC Press, LondonMATH
6.
Zurück zum Zitat Benkhaldoun F, Sari S, Seaid M (2015) A family of finite volume Eulerian-Lagrangian methods for two-dimensional conservation laws. J Comput Appl Math 285:181–202MathSciNetMATH Benkhaldoun F, Sari S, Seaid M (2015) A family of finite volume Eulerian-Lagrangian methods for two-dimensional conservation laws. J Comput Appl Math 285:181–202MathSciNetMATH
7.
Zurück zum Zitat Dag I, Canivar A, Sahin A (2011) Taylor–Galerkin and Taylor–Collocation methods for the numerical solutions of Burgers’ equation using B-splines. Commun Nonlinear Sci Numer Simul 16:2696–2708MathSciNetMATH Dag I, Canivar A, Sahin A (2011) Taylor–Galerkin and Taylor–Collocation methods for the numerical solutions of Burgers’ equation using B-splines. Commun Nonlinear Sci Numer Simul 16:2696–2708MathSciNetMATH
8.
Zurück zum Zitat Dehghan M, Abbaszadeh M (2017) The use of proper orthogonal decomposition (POD) meshless RBF-FD technique to simulate the shallow water equations. J Comput Phys 351:478–510MathSciNetMATH Dehghan M, Abbaszadeh M (2017) The use of proper orthogonal decomposition (POD) meshless RBF-FD technique to simulate the shallow water equations. J Comput Phys 351:478–510MathSciNetMATH
9.
Zurück zum Zitat Dehghan M, Shokri A (2008) A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math Comput Simul 79(3):700–715MathSciNetMATH Dehghan M, Shokri A (2008) A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math Comput Simul 79(3):700–715MathSciNetMATH
10.
Zurück zum Zitat Dehghan M, Abbaszadeh M (2018) The space-splitting idea combined with local radial basis function meshless approach to simulate conservation laws equations. Alex Eng J 57(2):1137–1156 Dehghan M, Abbaszadeh M (2018) The space-splitting idea combined with local radial basis function meshless approach to simulate conservation laws equations. Alex Eng J 57(2):1137–1156
11.
Zurück zum Zitat Dehghan M, Jazlanian R (2010) On the total variation of a third-order semi-discrete central scheme for 1D conservation laws. J Vib Cont 17(9):1348–1358MathSciNetMATH Dehghan M, Jazlanian R (2010) On the total variation of a third-order semi-discrete central scheme for 1D conservation laws. J Vib Cont 17(9):1348–1358MathSciNetMATH
12.
Zurück zum Zitat Dehghan M, Jazlanian R (2011) A high-order non-oscillatory central scheme with non-staggered grids for hyperbolic conservation laws. Comput Phys Commun 182:1284–1294MathSciNetMATH Dehghan M, Jazlanian R (2011) A high-order non-oscillatory central scheme with non-staggered grids for hyperbolic conservation laws. Comput Phys Commun 182:1284–1294MathSciNetMATH
13.
Zurück zum Zitat Dehghan M, Shokri A (2007) A numerical method for two-dimensional Schrodinger equation using collocation and radial basis functions. Comput Math Appl 54:136–146MathSciNetMATH Dehghan M, Shokri A (2007) A numerical method for two-dimensional Schrodinger equation using collocation and radial basis functions. Comput Math Appl 54:136–146MathSciNetMATH
14.
Zurück zum Zitat Dehghan M (2004) Numerical solution of the three-dimensional advection–diffusion equation. Appl Math Comput 150(1):5–19MathSciNetMATH Dehghan M (2004) Numerical solution of the three-dimensional advection–diffusion equation. Appl Math Comput 150(1):5–19MathSciNetMATH
15.
Zurück zum Zitat Driscoll TA, Heryudono ARH (2007) Adaptive residual subsampling methods for radial basis function interpolation and collocation problems. Comput Math Appl 53(6):927–939MathSciNetMATH Driscoll TA, Heryudono ARH (2007) Adaptive residual subsampling methods for radial basis function interpolation and collocation problems. Comput Math Appl 53(6):927–939MathSciNetMATH
16.
Zurück zum Zitat Duijn CJV, Peletier LA, Pop IS (2007) A new class of entropy solutions of Buckley–Leverett equation. SIAM J Math Anal 39(2):507–536MathSciNetMATH Duijn CJV, Peletier LA, Pop IS (2007) A new class of entropy solutions of Buckley–Leverett equation. SIAM J Math Anal 39(2):507–536MathSciNetMATH
17.
Zurück zum Zitat Fasshauer GE, McCourt M (2012) Stable evaluation of Gaussian RBF interpolants. SIAM J Sci Comput 34(2):737–762MathSciNetMATH Fasshauer GE, McCourt M (2012) Stable evaluation of Gaussian RBF interpolants. SIAM J Sci Comput 34(2):737–762MathSciNetMATH
18.
Zurück zum Zitat Fasshauer GE (2007) Meshfree approximation methods with MATLAB, vol 6. World Scientific, SingaporeMATH Fasshauer GE (2007) Meshfree approximation methods with MATLAB, vol 6. World Scientific, SingaporeMATH
19.
Zurück zum Zitat Fornberg B, Lehto E (2011) Stabilization of RBF-generated finite difference methods for convective PDEs. J Comput Phys 230:2270–2285MathSciNetMATH Fornberg B, Lehto E (2011) Stabilization of RBF-generated finite difference methods for convective PDEs. J Comput Phys 230:2270–2285MathSciNetMATH
20.
Zurück zum Zitat Fornberg B, Lehto E, Powell C (2013) Stable calculation of Gaussian-based RBF-FD stencils. Comput Math Appl 65:627–637MathSciNetMATH Fornberg B, Lehto E, Powell C (2013) Stable calculation of Gaussian-based RBF-FD stencils. Comput Math Appl 65:627–637MathSciNetMATH
21.
Zurück zum Zitat Ho PL, Le CV, Tran-Cong T (2018) Limit state analysis of reinforced concrete slabs using an integrated radial basis function based mesh-free method. Appl Math Model 53:1–11MATH Ho PL, Le CV, Tran-Cong T (2018) Limit state analysis of reinforced concrete slabs using an integrated radial basis function based mesh-free method. Appl Math Model 53:1–11MATH
22.
Zurück zum Zitat Ho PL, Le CV, Tran-Cong T (2016) Displacement and equilibrium mesh-free formulation based on integrated radial basis functions for dual yield design. Eng Anal Bound Elem 71:92–100MathSciNetMATH Ho PL, Le CV, Tran-Cong T (2016) Displacement and equilibrium mesh-free formulation based on integrated radial basis functions for dual yield design. Eng Anal Bound Elem 71:92–100MathSciNetMATH
23.
Zurück zum Zitat Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76:1905–1915 Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76:1905–1915
24.
Zurück zum Zitat Lin J, Zhang C, Sun L, Lu J (2018) Simulation of seismic wave scattering by embedded cavities in an elastic half-plane using the novel singular boundary method. Adv Appl Math Mech 10(2):322–342MathSciNetMATH Lin J, Zhang C, Sun L, Lu J (2018) Simulation of seismic wave scattering by embedded cavities in an elastic half-plane using the novel singular boundary method. Adv Appl Math Mech 10(2):322–342MathSciNetMATH
25.
Zurück zum Zitat Lin J, Reutskiy YS, Lu J (2018) A novel meshless method for fully nonlinear advection–diffusion–reaction problems to model transfer in anisotropic media. Appl Math Comput 339:459–476MathSciNetMATH Lin J, Reutskiy YS, Lu J (2018) A novel meshless method for fully nonlinear advection–diffusion–reaction problems to model transfer in anisotropic media. Appl Math Comput 339:459–476MathSciNetMATH
26.
Zurück zum Zitat Lin J, Xu Y, Zhang Y (2020) Simulation of linear and nonlinear advection-diffusion-reaction problems by a novel localized scheme. Appl Math Lett 99. Article ID 106005 Lin J, Xu Y, Zhang Y (2020) Simulation of linear and nonlinear advection-diffusion-reaction problems by a novel localized scheme. Appl Math Lett 99. Article ID 106005
27.
Zurück zum Zitat Lin J, Reutskiy S, (2020) A cubic B-spline semi-analytical method for 3D steady-state convection–diffusion–reaction problems. Appl Math Comput 371. Article ID 124944 Lin J, Reutskiy S, (2020) A cubic B-spline semi-analytical method for 3D steady-state convection–diffusion–reaction problems. Appl Math Comput 371. Article ID 124944
28.
Zurück zum Zitat Li XK, Zienkiewicz OC (1990) A numerical model for immiscible two-phase fluid flow in a porous medium and its time domain. Int J Numer Meth Eng 30(6):1195–1212MATH Li XK, Zienkiewicz OC (1990) A numerical model for immiscible two-phase fluid flow in a porous medium and its time domain. Int J Numer Meth Eng 30(6):1195–1212MATH
29.
Zurück zum Zitat Li XK, Zhang S, Wang Y, Chen H (2016) Analysis and application of the element-free Galerkin method for nonlinear sine-Gordon and generalized sinh-Gordon equations. Comput Math Appl 71:1655–1678MathSciNetMATH Li XK, Zhang S, Wang Y, Chen H (2016) Analysis and application of the element-free Galerkin method for nonlinear sine-Gordon and generalized sinh-Gordon equations. Comput Math Appl 71:1655–1678MathSciNetMATH
30.
Zurück zum Zitat Lin SY, Wu TM, Chin YS (1993) Upwind finite-volume method with a triangular mesh for conservation laws. J Comput Phys 107:324–337MathSciNetMATH Lin SY, Wu TM, Chin YS (1993) Upwind finite-volume method with a triangular mesh for conservation laws. J Comput Phys 107:324–337MathSciNetMATH
31.
Zurück zum Zitat Kansa EJ, Aldredge RC, Ling L (2009) Numerical simulation of two-dimensional combustion using mesh-free methods. Eng Anal Bound Elem 33:940–950MathSciNetMATH Kansa EJ, Aldredge RC, Ling L (2009) Numerical simulation of two-dimensional combustion using mesh-free methods. Eng Anal Bound Elem 33:940–950MathSciNetMATH
32.
Zurück zum Zitat Jiwari R (2015) A hybrid numerical scheme for the numerical solution of the Burgers’ equation. Comput Phys Commun 188:59–67MathSciNetMATH Jiwari R (2015) A hybrid numerical scheme for the numerical solution of the Burgers’ equation. Comput Phys Commun 188:59–67MathSciNetMATH
33.
Zurück zum Zitat Powell MJD (1992) The theory of radial basis function approximation in 1990. Adv Numer Anal 105–210 Powell MJD (1992) The theory of radial basis function approximation in 1990. Adv Numer Anal 105–210
34.
Zurück zum Zitat Mai-Duy N, Tanner RI (2007) A collocation method based on one-dimensional RBF interpolation scheme for solving PDEs. Int J Numer Meth H 17(2):165–186MathSciNetMATH Mai-Duy N, Tanner RI (2007) A collocation method based on one-dimensional RBF interpolation scheme for solving PDEs. Int J Numer Meth H 17(2):165–186MathSciNetMATH
35.
Zurück zum Zitat Mai-Duy N, Tran-Cong T (2008) A multidomain integrated radial basis function collocation method for elliptic problems. Numer Meth Part Differ Equ 24(5):1301–1320MathSciNetMATH Mai-Duy N, Tran-Cong T (2008) A multidomain integrated radial basis function collocation method for elliptic problems. Numer Meth Part Differ Equ 24(5):1301–1320MathSciNetMATH
36.
Zurück zum Zitat Mai-Duy N (2017) Compact approximation stencils based on integrated flat radial basis functions. Eng Anal Bound Elem 74:79–87MathSciNetMATH Mai-Duy N (2017) Compact approximation stencils based on integrated flat radial basis functions. Eng Anal Bound Elem 74:79–87MathSciNetMATH
37.
Zurück zum Zitat Mai-Duy N (2014) A compact 9 point stencil based on integrated RBFs for the convection-diffusion equation. Appl Math Model 38(4):1495–1510MathSciNetMATH Mai-Duy N (2014) A compact 9 point stencil based on integrated RBFs for the convection-diffusion equation. Appl Math Model 38(4):1495–1510MathSciNetMATH
38.
Zurück zum Zitat Mai-Duy N, Tran-Cong T (2011) Compact local integrated-RBF approximations for second-order elliptic differential problems. J Comput Phys 230(12):4772–4794MathSciNetMATH Mai-Duy N, Tran-Cong T (2011) Compact local integrated-RBF approximations for second-order elliptic differential problems. J Comput Phys 230(12):4772–4794MathSciNetMATH
39.
Zurück zum Zitat Muller F, Jenny P, Meyer DW (2013) Multilevel Monte Carlo for two phase flow and Buckley–Leverett transport in random heterogeneous porous media. J Comput Phys 250:685–702MathSciNet Muller F, Jenny P, Meyer DW (2013) Multilevel Monte Carlo for two phase flow and Buckley–Leverett transport in random heterogeneous porous media. J Comput Phys 250:685–702MathSciNet
40.
Zurück zum Zitat Sarra SA (2012) A local radial basis function method for advection diffusion reaction equations on complexly shaped domains. Appl Math Comput 218:9853–9865MathSciNetMATH Sarra SA (2012) A local radial basis function method for advection diffusion reaction equations on complexly shaped domains. Appl Math Comput 218:9853–9865MathSciNetMATH
41.
Zurück zum Zitat Sarra SA (2014) Regularized symmetric positive definite matrix factorizations for linear systems arising from RBF interpolation and differentiation. Eng Anal Bound Elem 44:76–86MathSciNetMATH Sarra SA (2014) Regularized symmetric positive definite matrix factorizations for linear systems arising from RBF interpolation and differentiation. Eng Anal Bound Elem 44:76–86MathSciNetMATH
42.
Zurück zum Zitat Sarra SA (2011) Radial basis function approximation methods with extended precision floating point arithmetic. Eng Anal Bound Elem 35:68–76MathSciNetMATH Sarra SA (2011) Radial basis function approximation methods with extended precision floating point arithmetic. Eng Anal Bound Elem 35:68–76MathSciNetMATH
43.
Zurück zum Zitat Sarra SA (2005) Adaptive radial basis function methods for time dependent partial differential equations. Appl Numer Math 54:79–94MathSciNetMATH Sarra SA (2005) Adaptive radial basis function methods for time dependent partial differential equations. Appl Numer Math 54:79–94MathSciNetMATH
44.
Zurück zum Zitat Sarra SA, Kansa EJ (2009) Multiquadric radial basis function approximation methods for the numerical solution of partial differential equations. Adv Comput Mech 2(2) Sarra SA, Kansa EJ (2009) Multiquadric radial basis function approximation methods for the numerical solution of partial differential equations. Adv Comput Mech 2(2)
45.
Zurück zum Zitat Sarra SA (2006) Integrated multiquadric radial basis function approximation methods. Comput Math Appl 51:1283–1296MathSciNetMATH Sarra SA (2006) Integrated multiquadric radial basis function approximation methods. Comput Math Appl 51:1283–1296MathSciNetMATH
46.
Zurück zum Zitat Sethian JA, Chorin AJ, Concus P (1983) Numerical solution of the Buckley–Leverett equations. SPE Reservoir Simulation Symposium, 15–18 November, California Sethian JA, Chorin AJ, Concus P (1983) Numerical solution of the Buckley–Leverett equations. SPE Reservoir Simulation Symposium, 15–18 November, California
47.
Zurück zum Zitat Seydaoglu M, Erdogan U, Ozis T (2016) Numerical solution of Burgers equation with high order splitting methods. J Comput Appl Math 291:410–421MathSciNetMATH Seydaoglu M, Erdogan U, Ozis T (2016) Numerical solution of Burgers equation with high order splitting methods. J Comput Appl Math 291:410–421MathSciNetMATH
48.
Zurück zum Zitat Shu C, Wu YL (2007) Integrated radial basis functions-based differential quadrature method and its performance. Int J Numer Meth Fluids 5(6):969–984MATH Shu C, Wu YL (2007) Integrated radial basis functions-based differential quadrature method and its performance. Int J Numer Meth Fluids 5(6):969–984MATH
49.
Zurück zum Zitat Wang Y, Kao CY (2013) Central schemes for the modified Buckley–Leverett equation. J Comput Sci 4:12–23 Wang Y, Kao CY (2013) Central schemes for the modified Buckley–Leverett equation. J Comput Sci 4:12–23
50.
Zurück zum Zitat Wazwaz AM (2007) Multiple-front solutions for the Burgers equation and the coupled Burgers equations. Appl Math Comput 190:1198–1206MathSciNetMATH Wazwaz AM (2007) Multiple-front solutions for the Burgers equation and the coupled Burgers equations. Appl Math Comput 190:1198–1206MathSciNetMATH
51.
Zurück zum Zitat Wu YS, Pruess K, Chen ZX (1990) Buckley–Leverett flow in composite porous media. SPE Advanced Technology Series Wu YS, Pruess K, Chen ZX (1990) Buckley–Leverett flow in composite porous media. SPE Advanced Technology Series
52.
Zurück zum Zitat Zhang L, Ouyang J, Wang X, Zhang X (2010) Variational multiscale element-free Galerkin method for 2D Burgers equation. J Comput Phys 229:7147–7161MathSciNetMATH Zhang L, Ouyang J, Wang X, Zhang X (2010) Variational multiscale element-free Galerkin method for 2D Burgers equation. J Comput Phys 229:7147–7161MathSciNetMATH
Metadaten
Titel
Integrated radial basis functions (IRBFs) to simulate nonlinear advection–diffusion equations with smooth and non-smooth initial data
verfasst von
Ali Ebrahimijahan
Mehdi Dehghan
Mostafa Abbaszadeh
Publikationsdatum
06.07.2020
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 2/2022
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-020-01039-2

Weitere Artikel der Ausgabe 2/2022

Engineering with Computers 2/2022 Zur Ausgabe

Neuer Inhalt