Skip to main content
Erschienen in: Engineering with Computers 2/2022

07.07.2020 | Original Article

Stability of hydromagnetic boundary layer flow of non-Newtonian power-law fluid flow over a moving wedge

verfasst von: Ramesh B. Kudenatti, Noor- E- Misbah, M. C. Bharathi

Erschienen in: Engineering with Computers | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We consider the two-dimensional laminar boundary-layer flow of power-law fluid over a moving wedge in which the uniform magnetic field is applied normally to the flow. The motion of the mainstream and wedge is approximated in terms of the power of the distance from leading boundary-layer edge which helps to reduce the governing partial differential equations to an ordinary differential equation. No analytic solution is feasible due to high nonlinearity; therefore, the numerical simulations are sought by Chebyshev collocation and shooting techniques. These techniques provide a means to assess physical insights into the hydrodynamics of complex flows and particularly the Chebyshev collocation method enables the construction of efficient tools suitable for nonlinear problems. This method often leads to a matrix-based analysis and an iterative technique needs to be employed to solve the problem. The various results on the physical parameters show that the shear-thinning and shear-thickening solutions are demarcated by the Newtonian fluid. It is also noticed that the system yielded a non-unique solution structure for a given set of parameters. However, the non-uniqueness of the solutions disappears for increasing the magnetic field. To assess the nature of the non-unique solutions, it is important to perform the linear stability using large-time asymptotics. This analysis gives as to which of these solutions is practically feasible and models the flow. Eigensolution-based analysis reveals that the first solution is always stable while the other one leading to unstable mode. The results further show that an increase in the magnetic field stabilizes the fluid flow over the moving wedge and promotes the unique solution to the problem. Further, the obtained numerical results are compared by examining the large λ asymptotics. It is observed that there is a qualitative comparison between solutions. The hydrodynamics behind the magnetic field and non-Newtonian fluid are discussed in detail.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. Vol. 1: fluid mechanics, second edition,. Wiley-Interscience publication, Hoboken Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. Vol. 1: fluid mechanics, second edition,. Wiley-Interscience publication, Hoboken
2.
Zurück zum Zitat Schowalter WR (1960) The application of boundary-layer theory to power-law pseudoplastic fluids: similar solutions. AIChE J 6(1):24–28CrossRef Schowalter WR (1960) The application of boundary-layer theory to power-law pseudoplastic fluids: similar solutions. AIChE J 6(1):24–28CrossRef
3.
Zurück zum Zitat Sakiadis BC (1961) Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AIChE J 7(1):26–28CrossRef Sakiadis BC (1961) Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AIChE J 7(1):26–28CrossRef
4.
Zurück zum Zitat Andersson HI, Aarseth JB, Braud N, Dandapat BS (1996) Flow of a power-law fluid film on an unsteady stretching surface. J Non-Newtonian Fluid Mech 62(1):1–8CrossRef Andersson HI, Aarseth JB, Braud N, Dandapat BS (1996) Flow of a power-law fluid film on an unsteady stretching surface. J Non-Newtonian Fluid Mech 62(1):1–8CrossRef
5.
Zurück zum Zitat Ali ME (1995) On thermal boundary layer on a power-law stretched surface with suction or injection. Int J Heat Fluid Flow 16(4):280–290CrossRef Ali ME (1995) On thermal boundary layer on a power-law stretched surface with suction or injection. Int J Heat Fluid Flow 16(4):280–290CrossRef
6.
Zurück zum Zitat Denier JP, Dabrowski PP (2004) On the boundary-layer equations for power-law fluids. Proc R Soc Lond Ser A Math Phys Eng Sci 460(2051):3143–3158MathSciNetCrossRef Denier JP, Dabrowski PP (2004) On the boundary-layer equations for power-law fluids. Proc R Soc Lond Ser A Math Phys Eng Sci 460(2051):3143–3158MathSciNetCrossRef
7.
Zurück zum Zitat Ishak A, Nazar R, Pop I (2011) Moving wedge and flat plate in a power-law fluid. Int J Non-Linear Mech 46(8):1017–1021CrossRef Ishak A, Nazar R, Pop I (2011) Moving wedge and flat plate in a power-law fluid. Int J Non-Linear Mech 46(8):1017–1021CrossRef
8.
Zurück zum Zitat Andersson HI, Bech KH, Dandapat BS (1992) Magnetohydrodynamic flow of a power-law fluid over a stretching sheet. Int J Non-Linear Mech 27(6):929–936CrossRef Andersson HI, Bech KH, Dandapat BS (1992) Magnetohydrodynamic flow of a power-law fluid over a stretching sheet. Int J Non-Linear Mech 27(6):929–936CrossRef
9.
Zurück zum Zitat Liao SJ (2003) On the analytic solution of magnetohydrodynamic flows of non-newtonian fluids over a stretching sheet. J Fluid Mech 488:189–212MathSciNetCrossRef Liao SJ (2003) On the analytic solution of magnetohydrodynamic flows of non-newtonian fluids over a stretching sheet. J Fluid Mech 488:189–212MathSciNetCrossRef
10.
Zurück zum Zitat Cortell R (2005) A note on magnetohydrodynamic flow of a power-law fluid over a stretching sheet. Appl Math Comput 168(1):557–566MathSciNetMATH Cortell R (2005) A note on magnetohydrodynamic flow of a power-law fluid over a stretching sheet. Appl Math Comput 168(1):557–566MathSciNetMATH
11.
Zurück zum Zitat Xu H, Liao S-J, Pop I (2006) Series solution of unsteady boundary layer flows of non-newtonian fluids near a forward stagnation point. J Non-Newtonian Fluid Mech 139(1–2):31–43CrossRef Xu H, Liao S-J, Pop I (2006) Series solution of unsteady boundary layer flows of non-newtonian fluids near a forward stagnation point. J Non-Newtonian Fluid Mech 139(1–2):31–43CrossRef
12.
Zurück zum Zitat Mahmoud MAA, Mahmoud MAE (2006) Analytical solution of hydromagnetic boundary-layer flow of a non-newtonian power-law fluid past a continuously moving surface. Acta Mech 181:83–89CrossRef Mahmoud MAA, Mahmoud MAE (2006) Analytical solution of hydromagnetic boundary-layer flow of a non-newtonian power-law fluid past a continuously moving surface. Acta Mech 181:83–89CrossRef
13.
Zurück zum Zitat Amaouche M, Nait-Bouda F, Sadat H (2007) Oblique axisymmetric stagnation flows in magnetohydrodynamics. Phys Fluids 19(11):114106CrossRef Amaouche M, Nait-Bouda F, Sadat H (2007) Oblique axisymmetric stagnation flows in magnetohydrodynamics. Phys Fluids 19(11):114106CrossRef
14.
Zurück zum Zitat Reddy BS, Kishan N, Rajasekhar MN (2012) MHD boundary layer flow of non- Newtonian power-law fluid on a moving flat plate. Adv Appl Sci Res 3(3):1472–1481 Reddy BS, Kishan N, Rajasekhar MN (2012) MHD boundary layer flow of non- Newtonian power-law fluid on a moving flat plate. Adv Appl Sci Res 3(3):1472–1481
15.
Zurück zum Zitat Griffiths PT, Stephen SO, Basson AP, Garrett SJ (2014) Stability of the boundary layer on a rotating disk for the power-law fluids. J Non-Newtonian Fluid Mech 207:1–6CrossRef Griffiths PT, Stephen SO, Basson AP, Garrett SJ (2014) Stability of the boundary layer on a rotating disk for the power-law fluids. J Non-Newtonian Fluid Mech 207:1–6CrossRef
16.
Zurück zum Zitat Griffiths PT (2015) Flow of a generalized newtonian fluid due to a rotating disk. J Non-Newtonian Fluid Mech 221:09–17MathSciNetCrossRef Griffiths PT (2015) Flow of a generalized newtonian fluid due to a rotating disk. J Non-Newtonian Fluid Mech 221:09–17MathSciNetCrossRef
17.
Zurück zum Zitat Riley N, Wiedman PD (1989) Multiple solutions of the Falkner-Skan equation for a flow past a stretching boundary. SIAM J Appl Math 49(5):1350–1358MathSciNetCrossRef Riley N, Wiedman PD (1989) Multiple solutions of the Falkner-Skan equation for a flow past a stretching boundary. SIAM J Appl Math 49(5):1350–1358MathSciNetCrossRef
18.
Zurück zum Zitat Sachdev PL, Kudenatti RB, Bujurke NM (2008) Exact analytic solution of a boundary value problem for the falkner-skan equation. Stud Appl Math 120(1):1–16MathSciNetCrossRef Sachdev PL, Kudenatti RB, Bujurke NM (2008) Exact analytic solution of a boundary value problem for the falkner-skan equation. Stud Appl Math 120(1):1–16MathSciNetCrossRef
19.
Zurück zum Zitat Kudenatti RB, Noor-E-Misbah G, Bharathi MC (2020) Boundary-layer flow of the power-law fluid over a moving wedge: a linear stability analysis. Eng Comput 2020:1–14 Kudenatti RB, Noor-E-Misbah G, Bharathi MC (2020) Boundary-layer flow of the power-law fluid over a moving wedge: a linear stability analysis. Eng Comput 2020:1–14
20.
Zurück zum Zitat Yuan SW (1988) Foundations of fluid mechanics. Prentice-Hall of India, New-Delhi Yuan SW (1988) Foundations of fluid mechanics. Prentice-Hall of India, New-Delhi
21.
Zurück zum Zitat Weidman PD, Kubitschek DG, Davis AMJ (2006) The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int J Eng Sci 44(11–12):730–737CrossRef Weidman PD, Kubitschek DG, Davis AMJ (2006) The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int J Eng Sci 44(11–12):730–737CrossRef
22.
Zurück zum Zitat Sezer M, Kaynak M (1996) Chebyshev polynomial solutions of linear differential equations. Int J Math Educ Sci Technol 27(4):607–618CrossRef Sezer M, Kaynak M (1996) Chebyshev polynomial solutions of linear differential equations. Int J Math Educ Sci Technol 27(4):607–618CrossRef
23.
Zurück zum Zitat Akyüz-Daşcıoğlu Ayşegül, Çerdi Handan et al (2011) The solution of high-order nonlinear ordinary differential equations by chebyshev series. Appl Math Comput 217(12):5658–5666MathSciNetMATH Akyüz-Daşcıoğlu Ayşegül, Çerdi Handan et al (2011) The solution of high-order nonlinear ordinary differential equations by chebyshev series. Appl Math Comput 217(12):5658–5666MathSciNetMATH
24.
Zurück zum Zitat Burden R, Faires JD (2004) Numerical analysis. Cengage Learning, CanadaMATH Burden R, Faires JD (2004) Numerical analysis. Cengage Learning, CanadaMATH
25.
Zurück zum Zitat Kudenatti RB, Kirsur SR, Achala LN, Bujurke NM (2013) MHD boundary layer flow over a non-linear stretching boundary with suction and injection. Int J Non-Linear Mech 50:58–67CrossRef Kudenatti RB, Kirsur SR, Achala LN, Bujurke NM (2013) MHD boundary layer flow over a non-linear stretching boundary with suction and injection. Int J Non-Linear Mech 50:58–67CrossRef
26.
Zurück zum Zitat Crane LJ (1970) Flow past a stretching plate. Zeitschrift für Angew Math Phys ZAMP 21(4):645–647CrossRef Crane LJ (1970) Flow past a stretching plate. Zeitschrift für Angew Math Phys ZAMP 21(4):645–647CrossRef
27.
Zurück zum Zitat Kudenatti RB, Awati VB, Bujurke NM (2011) Approximate analytical solutions of a class of boundary layer equations over nonlinear stretching surface. Appl Math Comput 218(6):2952–2959MathSciNetMATH Kudenatti RB, Awati VB, Bujurke NM (2011) Approximate analytical solutions of a class of boundary layer equations over nonlinear stretching surface. Appl Math Comput 218(6):2952–2959MathSciNetMATH
28.
Zurück zum Zitat Ishak A, Jafar K, Nazar R, Pop I (2009) MHD stagnation point flow towards a stretching sheet. Phys A Stat Mech Appl 388(17):3377–3383CrossRef Ishak A, Jafar K, Nazar R, Pop I (2009) MHD stagnation point flow towards a stretching sheet. Phys A Stat Mech Appl 388(17):3377–3383CrossRef
29.
Zurück zum Zitat Yao C, Li B, Wei H-R, Junjie L (2019) Power-law fluids over a viscous sheet with mass suction/blowing: multiple solutions. AIP Adv 9(11):115121CrossRef Yao C, Li B, Wei H-R, Junjie L (2019) Power-law fluids over a viscous sheet with mass suction/blowing: multiple solutions. AIP Adv 9(11):115121CrossRef
30.
Zurück zum Zitat Makinde OD, Khan ZH, Ahmad R, Khan WA (2018) Numerical study of unsteady hydromagnetic radiating fluid flow past a slippery stretching sheet embedded in a porous medium. Phys Fluids 30(8):083601CrossRef Makinde OD, Khan ZH, Ahmad R, Khan WA (2018) Numerical study of unsteady hydromagnetic radiating fluid flow past a slippery stretching sheet embedded in a porous medium. Phys Fluids 30(8):083601CrossRef
31.
Zurück zum Zitat Sharma R, Ishak A, Pop I (2014) Stability analysis of magnetohydrodynamic stagnation-point flow toward a stretching/shrinking sheet. Comput Fluids 102:94–98CrossRef Sharma R, Ishak A, Pop I (2014) Stability analysis of magnetohydrodynamic stagnation-point flow toward a stretching/shrinking sheet. Comput Fluids 102:94–98CrossRef
32.
Zurück zum Zitat Awaludin IS, Ishak A, Pop I (2018) On the stability of mhd boundary layer flow over a stretching/shrinking wedge. Sci Rep 8(1):1–8CrossRef Awaludin IS, Ishak A, Pop I (2018) On the stability of mhd boundary layer flow over a stretching/shrinking wedge. Sci Rep 8(1):1–8CrossRef
33.
Zurück zum Zitat Turkyilmazoglu M (2009) Primary instability mechanisms on the magnetohydrodynamic boundary layer flow over a rotating disk subject to a uniform radial flow. Phys Fluids 21(7):074103CrossRef Turkyilmazoglu M (2009) Primary instability mechanisms on the magnetohydrodynamic boundary layer flow over a rotating disk subject to a uniform radial flow. Phys Fluids 21(7):074103CrossRef
Metadaten
Titel
Stability of hydromagnetic boundary layer flow of non-Newtonian power-law fluid flow over a moving wedge
verfasst von
Ramesh B. Kudenatti
Noor- E- Misbah
M. C. Bharathi
Publikationsdatum
07.07.2020
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 2/2022
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-020-01094-9

Weitere Artikel der Ausgabe 2/2022

Engineering with Computers 2/2022 Zur Ausgabe

Neuer Inhalt