Skip to main content
Erschienen in: Microsystem Technologies 1/2015

01.01.2015 | Technical Paper

Integration method of silicon sensors on SU-8-based microfluidic platforms

verfasst von: Francisco Perdigones, Carmen Aracil, José M. Quero, Manuel Gutiérrez, Cecilia Jiménez, Pablo Giménez

Erschienen in: Microsystem Technologies | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a method of integration of silicon sensors in microfluidic platform is presented. In particular, impedimetric silicon sensors are used to make the proof of concept. These sensors are integrated in a FR4 substrate [component of a printed circuit board (PCB)] where the SU-8 microfluidic circuit is built. In order to generalize the application of this method, standard processes that are typical in the laboratories are used. The material to fabricate those microfluidic circuits is the negative photoresist SU-8. The method of fabrication consists on performing the typical SU-8 process over the silicon chips once they are inserted in the FR4 substrate. This method must provide flatness to avoid irregular microchannels. Also, the proposed process must ensure the insulation of the electric connections to avoid short-circuits when the sample fluid flows through the systems, and bondings robust enough to support a spinning step. In addition, the SU-8 process must be clean enough to keep the capability of measurement of the sensors. This cleanness has been studied using different conductivities of a KCl solution, providing good results. Finally, apart from integrating microfluidic and electronics in the same substrate, this method of integration provides an approach to the optimum between low cost, simplicity and precise measurements thank to the use of inexpensive PCB-based platforms and precise silicon sensors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abgrall P, Conedera V, Camon H, Gue AM, Nguyen NT (2007) SU-8 as a structural material for labs-on-chips and microelectromechanical systems. Electrophoresis (Weinheim, Fed Repub Ger) 28(24):4539CrossRef Abgrall P, Conedera V, Camon H, Gue AM, Nguyen NT (2007) SU-8 as a structural material for labs-on-chips and microelectromechanical systems. Electrophoresis (Weinheim, Fed Repub Ger) 28(24):4539CrossRef
Zurück zum Zitat Bhagat AAS, Jothimuthu P, Papautsky I (2007) Photodefinable polydimethylsiloxane PDMS for rapid lab-on-a-chip prototyping. Lab Chip 7(9):1192CrossRef Bhagat AAS, Jothimuthu P, Papautsky I (2007) Photodefinable polydimethylsiloxane PDMS for rapid lab-on-a-chip prototyping. Lab Chip 7(9):1192CrossRef
Zurück zum Zitat Burdallo I, Jimenez-Jorquera C, Fernández-Sánchez C, Baldi A (2012) Integration of microelectronic chips in microfluidic systems on printed circuit board. J Micromech Microeng 22(10):105022CrossRef Burdallo I, Jimenez-Jorquera C, Fernández-Sánchez C, Baldi A (2012) Integration of microelectronic chips in microfluidic systems on printed circuit board. J Micromech Microeng 22(10):105022CrossRef
Zurück zum Zitat Carlier J, Arscott S, Thomy V, Fourrier JC, Caron F, Camart JC, Druon C, Tabourier P (2004) Integrated microfluidics based on multi-layered SU-8 for mass spectrometry analysis. J Micromech Microeng 14(4):619CrossRef Carlier J, Arscott S, Thomy V, Fourrier JC, Caron F, Camart JC, Druon C, Tabourier P (2004) Integrated microfluidics based on multi-layered SU-8 for mass spectrometry analysis. J Micromech Microeng 14(4):619CrossRef
Zurück zum Zitat Chang-Yen DA, Eich RK, Gale BK (2005) A monolithic PDMS waveguide system fabricated using soft-lithography techniques. J Lightwave Technol 23(6):2088CrossRef Chang-Yen DA, Eich RK, Gale BK (2005) A monolithic PDMS waveguide system fabricated using soft-lithography techniques. J Lightwave Technol 23(6):2088CrossRef
Zurück zum Zitat Charlot S, Gué AM, Tasselli J, Marty A, Abgrall P, Estève D (2007) A low cost and hybrid technology for integrating silicon sensors or actuators in polymer microfluidic systems. J Micromech Microeng 18(1):017003CrossRef Charlot S, Gué AM, Tasselli J, Marty A, Abgrall P, Estève D (2007) A low cost and hybrid technology for integrating silicon sensors or actuators in polymer microfluidic systems. J Micromech Microeng 18(1):017003CrossRef
Zurück zum Zitat Gassmann S, Ibendorf I, Pagel L (2007) (Realization of a flow injection analysis in PCB technology). Sens Actuators A Phys 133(1):231CrossRef Gassmann S, Ibendorf I, Pagel L (2007) (Realization of a flow injection analysis in PCB technology). Sens Actuators A Phys 133(1):231CrossRef
Zurück zum Zitat Hongbin Y, Guangya Z, Siong CF, Shouhua W, Feiwen L (2009) Novel polydimethylsiloxane PDMS based microchannel fabrication method for lab-on-a-chip application. Sens Actuators B Chem 137(2):754CrossRef Hongbin Y, Guangya Z, Siong CF, Shouhua W, Feiwen L (2009) Novel polydimethylsiloxane PDMS based microchannel fabrication method for lab-on-a-chip application. Sens Actuators B Chem 137(2):754CrossRef
Zurück zum Zitat Irawan R, Tjin SC, Fang X, Fu CY (2007) Integration of optical fiber light guide, fluorescence detection system, and multichannel disposable microfluidic chip. Biomed Microdevices 9(3):413CrossRef Irawan R, Tjin SC, Fang X, Fu CY (2007) Integration of optical fiber light guide, fluorescence detection system, and multichannel disposable microfluidic chip. Biomed Microdevices 9(3):413CrossRef
Zurück zum Zitat Kamei T, Paegel BM, Scherer JR, Skelley AM, Street RA, Mathies RA (2004) Fusion of a-Si:H sensor technology with microfluidic bioanalytical devices. J Non-Cryst Solids 338(340):715CrossRef Kamei T, Paegel BM, Scherer JR, Skelley AM, Street RA, Mathies RA (2004) Fusion of a-Si:H sensor technology with microfluidic bioanalytical devices. J Non-Cryst Solids 338(340):715CrossRef
Zurück zum Zitat Kontakis K, Petropoulos A, Kaltsas G, Speliotis T, Gogolides E (2009) A novel microfluidic integration technology for PCB-based devices: application to microflow sensing. Microelectron Eng 86(4):1382CrossRef Kontakis K, Petropoulos A, Kaltsas G, Speliotis T, Gogolides E (2009) A novel microfluidic integration technology for PCB-based devices: application to microflow sensing. Microelectron Eng 86(4):1382CrossRef
Zurück zum Zitat Kuswandi B, Nuriman, Huskens J, Verboom W (2007) Optical sensingsystems for microfluidic devices: a review. Anal Chim Acta 601(2):141CrossRef Kuswandi B, Nuriman, Huskens J, Verboom W (2007) Optical sensingsystems for microfluidic devices: a review. Anal Chim Acta 601(2):141CrossRef
Zurück zum Zitat Läritz C, Pagel L (2000) A microfluidic pH-regulation system based on printed circuit board technology. Sens Actuators A Phys 84(3):230CrossRef Läritz C, Pagel L (2000) A microfluidic pH-regulation system based on printed circuit board technology. Sens Actuators A Phys 84(3):230CrossRef
Zurück zum Zitat Leeds A, Keuren EV, Durst M, Schneider T, Currie J, Paranjape M (2004) Integration of microfluidic and microoptical elements using a single-mask photolithographic step. Sens Actuators A Phys 115(2-3):571CrossRef Leeds A, Keuren EV, Durst M, Schneider T, Currie J, Paranjape M (2004) Integration of microfluidic and microoptical elements using a single-mask photolithographic step. Sens Actuators A Phys 115(2-3):571CrossRef
Zurück zum Zitat Lorenz H, Despont M, Fahrni N, LaBianca N, Renaud P, Vettiger P (1997) SU-8: a low-cost negative resist for MEMS. J Micromech Microeng 7(3):121CrossRef Lorenz H, Despont M, Fahrni N, LaBianca N, Renaud P, Vettiger P (1997) SU-8: a low-cost negative resist for MEMS. J Micromech Microeng 7(3):121CrossRef
Zurück zum Zitat Luan L, Evans RD, Jokerst NM, Fair RB (2008) Integrated optical sensor in a digital microfluidic platform. Sens J IEEE 8(5):628CrossRef Luan L, Evans RD, Jokerst NM, Fair RB (2008) Integrated optical sensor in a digital microfluidic platform. Sens J IEEE 8(5):628CrossRef
Zurück zum Zitat McDonald JC, Whitesides GM (2002) Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35(7):491CrossRef McDonald JC, Whitesides GM (2002) Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35(7):491CrossRef
Zurück zum Zitat Meckes A, Behrens J, Kayser O, Benecke W, Becker, Thand Müller G (1999) Microfluidic system for the integration and cyclic operation of gas sensors. Sens Actuators A Phys 76(1):478 Meckes A, Behrens J, Kayser O, Benecke W, Becker, Thand Müller G (1999) Microfluidic system for the integration and cyclic operation of gas sensors. Sens Actuators A Phys 76(1):478
Zurück zum Zitat Mitsakakis K, Tserepi A, Gizeli E (2008) Integration of microfluidics with a Love wave sensor for the fabrication of a multisample analytical microdevice. J Microelectromech Syst 17(4):1010CrossRef Mitsakakis K, Tserepi A, Gizeli E (2008) Integration of microfluidics with a Love wave sensor for the fabrication of a multisample analytical microdevice. J Microelectromech Syst 17(4):1010CrossRef
Zurück zum Zitat Namasivayam V, Lin R, Johnson B, Brahmasandra S, Razzacki Z, Burke DT, Burns MA (2003) Advances in on-chip photodetection for applications in miniaturized genetic analysis systems. J Micromech Microeng 14(1):81CrossRef Namasivayam V, Lin R, Johnson B, Brahmasandra S, Razzacki Z, Burke DT, Burns MA (2003) Advances in on-chip photodetection for applications in miniaturized genetic analysis systems. J Micromech Microeng 14(1):81CrossRef
Zurück zum Zitat Satyanarayana S, McCormick DT, Majumdar A (2006) Parylene micro membrane capacitive sensor array for chemical and biological sensing. Sens Actuators B Chem 115(1):494CrossRef Satyanarayana S, McCormick DT, Majumdar A (2006) Parylene micro membrane capacitive sensor array for chemical and biological sensing. Sens Actuators B Chem 115(1):494CrossRef
Zurück zum Zitat Sharma S et al (2011) An integrated silicon sensor with microfluidic chip for monitoring potassium and pH. Microfluid Nanofluid 10(5):1119CrossRef Sharma S et al (2011) An integrated silicon sensor with microfluidic chip for monitoring potassium and pH. Microfluid Nanofluid 10(5):1119CrossRef
Zurück zum Zitat Sharma S, Buchholz K, Luber SM, Rant U, Tornow M, Abstreiter G (2006) Silicon-on-insulator microfluidic device with monolithic sensor integration for μTAS applications. J Microelectromech Syst 15(2):308CrossRef Sharma S, Buchholz K, Luber SM, Rant U, Tornow M, Abstreiter G (2006) Silicon-on-insulator microfluidic device with monolithic sensor integration for μTAS applications. J Microelectromech Syst 15(2):308CrossRef
Zurück zum Zitat Stefano LD, Malecki K, Rossi A, Rotiroti L, Corte FD, Moretti L, Rendina I (2006) Integrated silicon-glass opto-chemical sensors for lab-on-chip applications. Sens Actuators B Chem 114(2):625CrossRef Stefano LD, Malecki K, Rossi A, Rotiroti L, Corte FD, Moretti L, Rendina I (2006) Integrated silicon-glass opto-chemical sensors for lab-on-chip applications. Sens Actuators B Chem 114(2):625CrossRef
Zurück zum Zitat Steigert J, Haeberle S, Brenner T, Müller C, Steinert CP, Koltay P, Gottschlich N, Reinecke H, Rühe J, Zengerle R, Ducrée J (2007) Rapid prototyping of microfluidic chips in COC. J Micromech Microeng 17(2):333CrossRef Steigert J, Haeberle S, Brenner T, Müller C, Steinert CP, Koltay P, Gottschlich N, Reinecke H, Rühe J, Zengerle R, Ducrée J (2007) Rapid prototyping of microfluidic chips in COC. J Micromech Microeng 17(2):333CrossRef
Zurück zum Zitat Tanyanyiwa J et al (2003) High-voltage contactless conductivity-detection for lab-on-chip devices using external electrodes on the holder. Analyst (Cambridge, UK) 128(8):1019CrossRef Tanyanyiwa J et al (2003) High-voltage contactless conductivity-detection for lab-on-chip devices using external electrodes on the holder. Analyst (Cambridge, UK) 128(8):1019CrossRef
Zurück zum Zitat Thrush E, Levi O, Cook LJ, Deich J, Kurtz A, Smith SJ, Moerner W, Harris JS Jr (2005) Monolithically integrated semiconductor fluorescence sensor for microfluidic applications. Sens Actuators B Chem 105(2):393CrossRef Thrush E, Levi O, Cook LJ, Deich J, Kurtz A, Smith SJ, Moerner W, Harris JS Jr (2005) Monolithically integrated semiconductor fluorescence sensor for microfluidic applications. Sens Actuators B Chem 105(2):393CrossRef
Zurück zum Zitat Wego A, Pagel L (2001) A self-filling micropump based on PCB technology. Sens Actuators A Phys 88(3):220CrossRef Wego A, Pagel L (2001) A self-filling micropump based on PCB technology. Sens Actuators A Phys 88(3):220CrossRef
Zurück zum Zitat Yu H, Balogun O, Li B, Murray T, Zhang X (2006) Fabrication of three-dimensional microstructures based on singled-layered SU-8 for lab-on-chip applications. Sens Actuators A Phys 127(2):228CrossRef Yu H, Balogun O, Li B, Murray T, Zhang X (2006) Fabrication of three-dimensional microstructures based on singled-layered SU-8 for lab-on-chip applications. Sens Actuators A Phys 127(2):228CrossRef
Metadaten
Titel
Integration method of silicon sensors on SU-8-based microfluidic platforms
verfasst von
Francisco Perdigones
Carmen Aracil
José M. Quero
Manuel Gutiérrez
Cecilia Jiménez
Pablo Giménez
Publikationsdatum
01.01.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 1/2015
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-014-2082-2

Weitere Artikel der Ausgabe 1/2015

Microsystem Technologies 1/2015 Zur Ausgabe

Neuer Inhalt