Skip to main content
Erschienen in: Experimental Mechanics 8/2022

01.09.2022 | Sp Iss: Advances in Residual Stress Technology

Internal Contact Mechanics of 61-Wire Cable Strands

verfasst von: A. Brügger, S.-Y. Lee, J. Robinson, M. Morgantini, R. Betti, I. C. Noyan

Erschienen in: Experimental Mechanics | Ausgabe 8/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Background

We provide an insight into the internal mechanics of parallel wire strands, as found in suspension bridges ranging from the historic Brooklyn to the state-of-the-art Akashi Kaikyō Bridges. The confinement stresses of wires in a bridge cable are critical in generating sufficient friction for load transfer in the case of wire fracture or creep/relaxation due to fire damage.

Objective

We aim to non-destructively probe the internal stress distribution of the constituent wires of a 61-wire bridge cable strand model. These internal contact forces will, in turn, inform numerical models with realistic boundary conditions.

Methods

A parallel 61-wire strand is measured in the VULCAN Engineering Materials Diffractometer under various clamping loads. During the experiment, each of the 5 mm diameter constituent wires is interrogated using a neutron beam to measure four independent strain components, including in-plane shear strain, ultimately providing a full in-plane stress tensor.

Results

The measured strains show that confinement stresses vary significantly among the wires of the cross section. Under standard clamping loads, only half of the wires in the cross section carry significant compression load while the remainder of the wires are largely unstressed with respect to clamping.

Conclusions

We show that this heterogeneity is caused by micron-scale dimensional variations of the constituent wires due to manufacturing tolerances during wire production, resulting in a stochastic stress field among the various wires. Finally, we present a genetic algorithm optimization code that is capable of back-solving the inter-wire stiffnesses of strands for various loading scenarios and boundary conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The 4 μm quoted here includes a correction to the Gjelsvik proof presented by Raoof and Huang in their article.
 
2
Mituyoto Precision Electronic Inside & Tubular Micrometer 0.0010 mm resolution and 0.0050 mm accuracy.
 
3
The Young’s modulus, yield point, and plastic yield stress piecewise linear curves (see Appendix) were derived from ASTM A370/E8 tests performed at the Carleton Laboratory. The tests were performed on a sample of material that was used to fabricate the test specimen. The Poisson’s ratio was taken from the ABAQUS materials library.
 
4
CPU threads: 24 @ 2.4 GHz; RAM: 128 GB; Operating System: Windows Server.
 
Literatur
7.
Zurück zum Zitat Talbot M, Laflamme JF, Glišić B (2007) Stress measurements in the main cable of a suspension bridge under dead and traffic loads. Proc EVACES Porto, Portugal, p 138 Talbot M, Laflamme JF, Glišić B (2007) Stress measurements in the main cable of a suspension bridge under dead and traffic loads. Proc EVACES Porto, Portugal, p 138
15.
Zurück zum Zitat Brugger A (2017) On the Boundary Conditions and Internal Mechanics of Parallel Wire Strands. Ann ArborProQuest Brugger A (2017) On the Boundary Conditions and Internal Mechanics of Parallel Wire Strands. Ann ArborProQuest
Metadaten
Titel
Internal Contact Mechanics of 61-Wire Cable Strands
verfasst von
A. Brügger
S.-Y. Lee
J. Robinson
M. Morgantini
R. Betti
I. C. Noyan
Publikationsdatum
01.09.2022
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 8/2022
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-022-00896-w

Weitere Artikel der Ausgabe 8/2022

Experimental Mechanics 8/2022 Zur Ausgabe

Sp Iss: Advances in Residual Stress Technology

Near Surface Residual Stress Measurement Using Slotting

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.