Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 7/2012

01.07.2012

Interplay of Kinetics and Microstructure in the Recrystallization of Pure Copper: Comparing Mesoscopic Simulations and Experiments

verfasst von: Eric A. Jägle, Eric J. Mittemeijer

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 7/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The kinetics and microstructure of the static recrystallization of strongly deformed, pure copper were investigated based on a comparison of mesoscopic, cellular automata simulations with experimental data. Physical models for the nucleation rate and the growth rate of recrystallized grains were employed, which required experimentally obtained informations about the deformed state as input. The orientation-distribution function and the misorientation-angle distribution for neighboring grains of deformed specimens were used to set up the microstructure serving as the start configuration for the simulations. The influences of a subgrain-size distribution, of an ongoing nucleation during recrystallization, of an inhomogeneously distributed stored energy in the deformed state, and of a misorientation-dependent interface mobility were investigated. The simulated microstructures after recrystallization exhibit a bimodal grain-size distribution instead of the broad, monomodal grain-size distribution found in the experiments. It is argued that spatially resolved determination of crystal (subgrain) orientation and (deformation) energy is necessary to arrive at realistic descriptions of both the recrystallization kinetics and the microstructure after completed recrystallization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The small features in deformed microstructures with dislocations forming more or less well-defined walls and relatively dislocation-free interiors are referred to as subgrains or dislocation cells in the literature. To avoid confusion between the “cells” in a deformed microstructure and the “cells” in a cellular automaton simulation, the term “subgrains” will be used for the former throughout this article.
 
2
A different model for “discontinuous subgrain coarsening” assumes that the subgrain-size criterion is fulfilled for most subgrains but that they only have immobile, low-angle grain boundaries with their neighbors. Normal subgrain growth then leads to a situation in which individual subgrains can obtain mobile, high-angle grain boundaries with their neighbors, e.g., by continuous merging of low-angle grain boundaries[8,9] and then start to grow, i.e., coarsen discontinuously.[33]
 
3
A range of values from β = 2 to 5 has been observed experimentally.[9] A sensitivity study concerning this parameter has been performed in this work, and it was found that a variation of the value of β in this range does not change the simulation results qualitatively and, thereby, the conclusions drawn.
 
4
Note that this explanation for a decreasing (average) interface velocity during recrystallization applies only if the regions with high and low deformation energy are spatially distributed randomly in the specimen and if the length scale of the stored-energy inhomogeneity is of the same order of magnitude as the size of the recrystallizing grains. If it is (much) smaller, then each recrystallizing grain sweeps through (very) many regions of different stored energy, and thus, the average interface velocity is constant throughout the recrystallization (see also the discussion in Ref. 11)
 
5
It has also been argued that the crystal-lattice orientation with respect to the specimen frame of reference, and not the misorientation between recrystallizing grain and deformed matrix, is responsible for the high growth rate of certain grains,[7] i.e., grains belonging to certain texture components have an inherently higher growth rate.
 
6
Note that the geometrical simulation is used here merely to create a space-filling structure and not to model the development of subgrains physically.
 
7
Not to be confused with the subgrains/cells of the simulated and real microstructures; see footnote in Section I.
 
8
The stored energy, which is the driving force \((-\Updelta G)\) of the recrystallization, can be taken as approximately equal to the enthalpy released \((-\Updelta H)\) during recrystallization.[45]
 
9
Note that the average size of the recrystallization nuclei is larger than the average subgrain size because (only) the large (\(r_i>r^\ast\)) subgrains act as recrystallization nuclei.
 
Literatur
1.
Zurück zum Zitat K.W. Mahin, K. Hanson, J.W. Morris, Acta Metall., 28, 443–53 (1980)CrossRef K.W. Mahin, K. Hanson, J.W. Morris, Acta Metall., 28, 443–53 (1980)CrossRef
2.
3.
Zurück zum Zitat D.J. Srolovitz, G. Grest, M.P. Anderson, Acta Metall., 34, 1833 (1986)CrossRef D.J. Srolovitz, G. Grest, M.P. Anderson, Acta Metall., 34, 1833 (1986)CrossRef
4.
Zurück zum Zitat W.A. Johnson, R.F. Mehl, Trans. Am. Inst. Min. Metal. Eng., 135, 416–42 (1939) W.A. Johnson, R.F. Mehl, Trans. Am. Inst. Min. Metal. Eng., 135, 416–42 (1939)
6.
Zurück zum Zitat A.N. Kolmogorov, Izv. Akad. Nauk SSSR Ser. Mat., 1, 355–59 (1937) A.N. Kolmogorov, Izv. Akad. Nauk SSSR Ser. Mat., 1, 355–59 (1937)
7.
Zurück zum Zitat D. Juul Jensen, Acta Metall. Mater., 11, 4117–29 (1995) D. Juul Jensen, Acta Metall. Mater., 11, 4117–29 (1995)
8.
Zurück zum Zitat E.J. Mittemeijer, Fundamentals of Materials Science. (Springer Verlag, Berlin, Germany, 2010) E.J. Mittemeijer, Fundamentals of Materials Science. (Springer Verlag, Berlin, Germany, 2010)
9.
Zurück zum Zitat F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena. 2nd ed. (Elsevier, Amsterdam, The Netherlands, 2004) F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena. 2nd ed. (Elsevier, Amsterdam, The Netherlands, 2004)
11.
Zurück zum Zitat T. Furu, K. Marthinsen, E. Nes, Mater. Sci. Tech., 6, 1093–1102 (1990)CrossRef T. Furu, K. Marthinsen, E. Nes, Mater. Sci. Tech., 6, 1093–1102 (1990)CrossRef
12.
13.
14.
Zurück zum Zitat H.S. Zurob, Y. Bréchet, J. Dunlop, Acta Mater., 54, 3983–90 (2006)CrossRef H.S. Zurob, Y. Bréchet, J. Dunlop, Acta Mater., 54, 3983–90 (2006)CrossRef
15.
Zurück zum Zitat R.D. Doherty, Solid-to-Solid Phase Transformations in Inorganic Materials, J.M. Howe, D.E. Laughlin, J.K. Lee, U. Dahmen, and W.A. Soffa, eds., vol. 1, TMS, Warrendale, PA, 2005. R.D. Doherty, Solid-to-Solid Phase Transformations in Inorganic Materials, J.M. Howe, D.E. Laughlin, J.K. Lee, U. Dahmen, and W.A. Soffa, eds., vol. 1, TMS, Warrendale, PA, 2005.
16.
Zurück zum Zitat A. Brahme, J.M. Fridy, H. Weiland, A.D. Rollett, Model. Simul. Mater. Sci. Eng., 17, 015005 (2009)CrossRef A. Brahme, J.M. Fridy, H. Weiland, A.D. Rollett, Model. Simul. Mater. Sci. Eng., 17, 015005 (2009)CrossRef
17.
18.
Zurück zum Zitat Y. Suwa, Y. Saito, H. Onodera, Comp. Mater. Sci., 44, 286–95 (2008)CrossRef Y. Suwa, Y. Saito, H. Onodera, Comp. Mater. Sci., 44, 286–95 (2008)CrossRef
19.
20.
Zurück zum Zitat B. Radhakrishnan, G. Sarma, T. Zacharia, Acta Mater., 46, 4415–33 (1998)CrossRef B. Radhakrishnan, G. Sarma, T. Zacharia, Acta Mater., 46, 4415–33 (1998)CrossRef
22.
Zurück zum Zitat E.A. Jägle and E.J. Mittemeijer, Metall. Mater. Trans. A, 43A, 1117–31 (2012)CrossRef E.A. Jägle and E.J. Mittemeijer, Metall. Mater. Trans. A, 43A, 1117–31 (2012)CrossRef
23.
Zurück zum Zitat Y.B. Chun, S.L. Semiatin, S.K. Hwang, Acta Mater., 54, 3673–89 (2006)CrossRef Y.B. Chun, S.L. Semiatin, S.K. Hwang, Acta Mater., 54, 3673–89 (2006)CrossRef
24.
25.
26.
Zurück zum Zitat A.D. Rollett, D.J. Srolovitz, R.D. Doherty, M.P. Anderson, Acta Metall., 37, 627–39 (1989)CrossRef A.D. Rollett, D.J. Srolovitz, R.D. Doherty, M.P. Anderson, Acta Metall., 37, 627–39 (1989)CrossRef
27.
Zurück zum Zitat H.W. Hesselbarth, I.R. Göbel, Acta Metall. Mater., 39, 2135–43 (1991)CrossRef H.W. Hesselbarth, I.R. Göbel, Acta Metall. Mater., 39, 2135–43 (1991)CrossRef
28.
30.
Zurück zum Zitat C. Bos, M. Mecozzi, J. Sietsma, Comp. Mater. Sci., 48, 692–99 (2010)CrossRef C. Bos, M. Mecozzi, J. Sietsma, Comp. Mater. Sci., 48, 692–99 (2010)CrossRef
31.
32.
Zurück zum Zitat F. Liu, F. Sommer, C. Bos, E.J. Mittemeijer, Int. Mater. Rev., 52, 193–212 (2007)CrossRef F. Liu, F. Sommer, C. Bos, E.J. Mittemeijer, Int. Mater. Rev., 52, 193–212 (2007)CrossRef
33.
Zurück zum Zitat E.A. Holm, M.A. Miodownik, A.D. Rollett, Acta Mater., 51, 2701–16 (2003)CrossRef E.A. Holm, M.A. Miodownik, A.D. Rollett, Acta Mater., 51, 2701–16 (2003)CrossRef
34.
Zurück zum Zitat E. Woldt, D. Juul Jensen, Metall. Mater. Trans. A, 26A, 1717–24 (1995)CrossRef E. Woldt, D. Juul Jensen, Metall. Mater. Trans. A, 26A, 1717–24 (1995)CrossRef
36.
Zurück zum Zitat R.A. Vandermeer, D. Juul Jensen, Mater. Sci. Forum, 467–470, 193–96 (2004)CrossRef R.A. Vandermeer, D. Juul Jensen, Mater. Sci. Forum, 467–470, 193–96 (2004)CrossRef
37.
Zurück zum Zitat E.A. Jägle, E.J. Mittemeijer, Solid State Phenom., 172–174, 1128–33 (2011)CrossRef E.A. Jägle, E.J. Mittemeijer, Solid State Phenom., 172–174, 1128–33 (2011)CrossRef
38.
39.
40.
Zurück zum Zitat R.A. Vandermeer, D. Juul Jensen, Metall. Mater. Trans. A, 26A, 2227–35 (1995)CrossRef R.A. Vandermeer, D. Juul Jensen, Metall. Mater. Trans. A, 26A, 2227–35 (1995)CrossRef
41.
Zurück zum Zitat E.A. Jägle, E.J. Mittemeijer, Model. Simul. Mater. Sci. Eng., 18, 065010 (2010)CrossRef E.A. Jägle, E.J. Mittemeijer, Model. Simul. Mater. Sci. Eng., 18, 065010 (2010)CrossRef
42.
Zurück zum Zitat A. Getis, B. Boots, Models of Spatial Processes. (Cambridge University Press, Cambridge, U.K., 1978) A. Getis, B. Boots, Models of Spatial Processes. (Cambridge University Press, Cambridge, U.K., 1978)
43.
Zurück zum Zitat M. Miodownik, A.W. Godfrey, E.A. Holm, D.A. Hughes, Acta Mater., 47, 2661 (1999)CrossRef M. Miodownik, A.W. Godfrey, E.A. Holm, D.A. Hughes, Acta Mater., 47, 2661 (1999)CrossRef
44.
Zurück zum Zitat W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes. (Cambridge University Press, Cambridge, U.K., 1986) W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes. (Cambridge University Press, Cambridge, U.K., 1986)
45.
Zurück zum Zitat J.W. Christian, The Theory of Transformations in Metals and Alloys. 3rd ed. (Pergamon, Oxford, U.K, 2002) J.W. Christian, The Theory of Transformations in Metals and Alloys. 3rd ed. (Pergamon, Oxford, U.K, 2002)
46.
47.
Zurück zum Zitat J.K. Mackenzie, Biometrika, 45, 229–40 (1958) J.K. Mackenzie, Biometrika, 45, 229–40 (1958)
Metadaten
Titel
Interplay of Kinetics and Microstructure in the Recrystallization of Pure Copper: Comparing Mesoscopic Simulations and Experiments
verfasst von
Eric A. Jägle
Eric J. Mittemeijer
Publikationsdatum
01.07.2012
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 7/2012
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-012-1094-8

Weitere Artikel der Ausgabe 7/2012

Metallurgical and Materials Transactions A 7/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.