Skip to main content
Erschienen in: Meccanica 1/2022

13.08.2021

Investigating internal resonances and 3:1 modal interaction in an electrostatically actuated clamped-hinged microbeam

verfasst von: Praveen Kumar, Dnyanesh N. Pawaskar, Mandar M. Inamdar

Erschienen in: Meccanica | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we investigated the realization of all possible internal resonance conditions between the first three modes of an electrostatically actuated, straight, clamped-hinged microbeam. We first obtained the static displacement and the first three natural frequencies around the deflected shape of the beam by using Galerkin based reduced order model and the finite element method. We then found all six possible commensurable relations between these frequencies as a function of two non-dimensional parameters (\(\alpha _1\) and \(\alpha _2 V_{\mathrm{dc}}^2\)) that depend on beam dimensions, material properties, and external forcing. Furthermore, we also examined the governing equations to check the feasibility of dynamic modal interaction. We found that although dynamical modal coupling was theoretically possible for all resonance conditions upon external excitation, the 3:1 internal resonance between the first two modes seemed to be the most experimentally feasible. Hence, we carried out a detailed forced vibrations analysis corresponding to this condition by solving the governing nonlinear equations using numerical time integration and the method of multiple scales. The system exhibited dynamically rich internal resonance behavior that can be controlled with the two non-dimensional parameters (\(\alpha _1\) and \(\alpha _2 V_{\mathrm{dc}}^2\)) and external damping. Specifically, we observed saddle node bifurcations, jump conditions, and internal loops in the amplitude response curves as a function of excitation frequency and amplitude. Overall, our work provides a systematic methodology and simple rules for in-depth exploration of internal resonance in microbeams. The findings of this paper could also assist in the development of sensors based on internal resonance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wang WL, Hu SJ (2005) Modal response and frequency shift of the cantilever in a noncontact atomic force microscope. Appl Phys Lett 87:183506CrossRef Wang WL, Hu SJ (2005) Modal response and frequency shift of the cantilever in a noncontact atomic force microscope. Appl Phys Lett 87:183506CrossRef
2.
Zurück zum Zitat Han J, Liao X (2014) A 0.1-40 GHz broadband MEMS clamped-clamped beam capacitive power sensor based on GaAs technology. J Micromech Microeng 24(65024):65024CrossRef Han J, Liao X (2014) A 0.1-40 GHz broadband MEMS clamped-clamped beam capacitive power sensor based on GaAs technology. J Micromech Microeng 24(65024):65024CrossRef
3.
Zurück zum Zitat Jaber N, Ilyas S, Shekhah O, Eddaoudi M, Younis MI (2018) Multimode MEMS resonator for simultaneous sensing of vapor concentration and temperature. IEEE Sens J 18:10145–10153CrossRef Jaber N, Ilyas S, Shekhah O, Eddaoudi M, Younis MI (2018) Multimode MEMS resonator for simultaneous sensing of vapor concentration and temperature. IEEE Sens J 18:10145–10153CrossRef
4.
Zurück zum Zitat Hajjaj AZ, Hafiz MA, Younis MI (2017) Mode coupling and nonlinear resonances of MEMS arch resonators for bandpass filters. Sci Rep 7:41820CrossRef Hajjaj AZ, Hafiz MA, Younis MI (2017) Mode coupling and nonlinear resonances of MEMS arch resonators for bandpass filters. Sci Rep 7:41820CrossRef
5.
Zurück zum Zitat Ilyas S, Chappanda KN, Younis MI (2017) Exploiting nonlinearities of micro-machined resonators for filtering applications. Appl Phys Lett 110:253508CrossRef Ilyas S, Chappanda KN, Younis MI (2017) Exploiting nonlinearities of micro-machined resonators for filtering applications. Appl Phys Lett 110:253508CrossRef
6.
Zurück zum Zitat Prikhodko IP, Trusov AA, Shkel AM (2013) Compensation of drifts in high-Q MEMS gyroscopes using temperature self-sensing. Sens Actuat A 201:517–524CrossRef Prikhodko IP, Trusov AA, Shkel AM (2013) Compensation of drifts in high-Q MEMS gyroscopes using temperature self-sensing. Sens Actuat A 201:517–524CrossRef
7.
Zurück zum Zitat Hou Z, Xiao D, Wu X, Dong P, Chen Z, Niu Z, Zhang X (2011) Effect of axial force on the performance of micromachined vibratory rate gyroscopes. Sensors 11:296–309CrossRef Hou Z, Xiao D, Wu X, Dong P, Chen Z, Niu Z, Zhang X (2011) Effect of axial force on the performance of micromachined vibratory rate gyroscopes. Sensors 11:296–309CrossRef
8.
Zurück zum Zitat Peng JS, Yang L, Luo GB, Yang J (2014) Nonlinear electro-dynamic analysis of micro-actuators: effect of material nonlinearity. Appl Math Model 38:2781–2790MathSciNetMATHCrossRef Peng JS, Yang L, Luo GB, Yang J (2014) Nonlinear electro-dynamic analysis of micro-actuators: effect of material nonlinearity. Appl Math Model 38:2781–2790MathSciNetMATHCrossRef
9.
Zurück zum Zitat Chen LQ, Jiang WA (2015) Internal resonance energy harvesting. J Appl Mech 82:031004CrossRef Chen LQ, Jiang WA (2015) Internal resonance energy harvesting. J Appl Mech 82:031004CrossRef
10.
Zurück zum Zitat Garg A, Dwivedy SK (2019) Nonlinear dynamics of parametrically excited piezoelectric energy harvester with 1: 3 internal resonance. Int J NonLinear Mech 111:82–94CrossRef Garg A, Dwivedy SK (2019) Nonlinear dynamics of parametrically excited piezoelectric energy harvester with 1: 3 internal resonance. Int J NonLinear Mech 111:82–94CrossRef
11.
Zurück zum Zitat Younis MI (2011) MEMS linear and nonlinear statics and dynamics. Springer, BerlinCrossRef Younis MI (2011) MEMS linear and nonlinear statics and dynamics. Springer, BerlinCrossRef
12.
Zurück zum Zitat Hajjaj AZ, Jaber N, Ilyas S, Alfosail FK, Younis MI (2019) Linear and nonlinear dynamics of micro and nano-resonators: review of recent advances. Int J NonLinear Mech 119:103326 Hajjaj AZ, Jaber N, Ilyas S, Alfosail FK, Younis MI (2019) Linear and nonlinear dynamics of micro and nano-resonators: review of recent advances. Int J NonLinear Mech 119:103326
13.
Zurück zum Zitat Asadi K, Yu J, Cho H (2018) Nonlinear couplings and energy transfers in micro-and nano-mechanical resonators: intermodal coupling, internal resonance and synchronization. Philos Trans R Soc A Math Phys Eng Sci 376:20170141CrossRef Asadi K, Yu J, Cho H (2018) Nonlinear couplings and energy transfers in micro-and nano-mechanical resonators: intermodal coupling, internal resonance and synchronization. Philos Trans R Soc A Math Phys Eng Sci 376:20170141CrossRef
14.
Zurück zum Zitat Younis MI, Nayfeh AH (2003) A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn 31:91–117MATHCrossRef Younis MI, Nayfeh AH (2003) A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn 31:91–117MATHCrossRef
15.
Zurück zum Zitat Kumar P, Inamdar MM, Pawaskar DN (2020) Characterisation of the internal resonances of a clamped-clamped beam MEMS resonator. Microsyst Technol 26:1987–2003CrossRef Kumar P, Inamdar MM, Pawaskar DN (2020) Characterisation of the internal resonances of a clamped-clamped beam MEMS resonator. Microsyst Technol 26:1987–2003CrossRef
16.
Zurück zum Zitat Askari AR, Tahani M (2016) Stability analysis of electrostatically actuated nano/micro-beams under the effect of van der Waals force, a semi-analytical approach. Commun Nonlinear Sci Numer Simul 34:130–141MathSciNetMATHCrossRef Askari AR, Tahani M (2016) Stability analysis of electrostatically actuated nano/micro-beams under the effect of van der Waals force, a semi-analytical approach. Commun Nonlinear Sci Numer Simul 34:130–141MathSciNetMATHCrossRef
17.
Zurück zum Zitat Bhushan A, Inamdar MM, Pawaskar DN (2011) Investigation of the internal stress effects on static and dynamic characteristics of an electrostatically actuated beam for MEMS and NEMS application. Microsyst Technol 17:1779–1789CrossRef Bhushan A, Inamdar MM, Pawaskar DN (2011) Investigation of the internal stress effects on static and dynamic characteristics of an electrostatically actuated beam for MEMS and NEMS application. Microsyst Technol 17:1779–1789CrossRef
18.
Zurück zum Zitat Bhushan A, Inamdar MM, Pawaskar DN (2014) Simultaneous planar free and forced vibrations analysis of an electrostatically actuated beam oscillator. Int J Mech Sci 82:90–99CrossRef Bhushan A, Inamdar MM, Pawaskar DN (2014) Simultaneous planar free and forced vibrations analysis of an electrostatically actuated beam oscillator. Int J Mech Sci 82:90–99CrossRef
19.
Zurück zum Zitat Younis MI, Abdel-Rahman EM, Nayfeh AH (2003) A reduced-order model for electrically actuated microbeam-based MEMS. J Microelectromech Syst 12:672–680CrossRef Younis MI, Abdel-Rahman EM, Nayfeh AH (2003) A reduced-order model for electrically actuated microbeam-based MEMS. J Microelectromech Syst 12:672–680CrossRef
20.
Zurück zum Zitat Ding N, Xu X, Zheng Z, Li E (2017) Size-dependent nonlinear dynamics of a microbeam based on the modified couple stress theory. Acta Mech 228:3561–3579MathSciNetMATHCrossRef Ding N, Xu X, Zheng Z, Li E (2017) Size-dependent nonlinear dynamics of a microbeam based on the modified couple stress theory. Acta Mech 228:3561–3579MathSciNetMATHCrossRef
21.
Zurück zum Zitat Rojas EF, Faroughi S, Abdelkefi A, Park YH (2019) Nonlinear size dependent modeling and performance analysis of flexoelectric energy harvesters. Microsyst Technol 25:3899–3921CrossRef Rojas EF, Faroughi S, Abdelkefi A, Park YH (2019) Nonlinear size dependent modeling and performance analysis of flexoelectric energy harvesters. Microsyst Technol 25:3899–3921CrossRef
22.
Zurück zum Zitat Yamaguchi H (2017) GaAs-based micro/nanomechanical resonators. Semicond Sci Technol 32:103003CrossRef Yamaguchi H (2017) GaAs-based micro/nanomechanical resonators. Semicond Sci Technol 32:103003CrossRef
23.
Zurück zum Zitat Nayfeh AH, Mook DT (2008) Nonlinear oscillations. Wiley, New YorkMATH Nayfeh AH, Mook DT (2008) Nonlinear oscillations. Wiley, New YorkMATH
24.
Zurück zum Zitat Nayfeh AH, Mook DT, Sridhar S (1974) Nonlinear analysis of the forced response of structural elements. J Acoust Soc Am 55:281–291CrossRef Nayfeh AH, Mook DT, Sridhar S (1974) Nonlinear analysis of the forced response of structural elements. J Acoust Soc Am 55:281–291CrossRef
26.
Zurück zum Zitat Chen LQ, Jiang WA, Panyam M, Daqaq MF (2016) A broadband internally resonant vibratory energy harvester. J Vib Acoust 138:061007CrossRef Chen LQ, Jiang WA, Panyam M, Daqaq MF (2016) A broadband internally resonant vibratory energy harvester. J Vib Acoust 138:061007CrossRef
27.
Zurück zum Zitat Tang YQ, Zhang DB, Gao JM (2016) Parametric and internal resonance of axially accelerating viscoelastic beams with the recognition of longitudinally varying tensions. Nonlinear Dyn 83:401–418MathSciNetMATHCrossRef Tang YQ, Zhang DB, Gao JM (2016) Parametric and internal resonance of axially accelerating viscoelastic beams with the recognition of longitudinally varying tensions. Nonlinear Dyn 83:401–418MathSciNetMATHCrossRef
28.
Zurück zum Zitat Wang YQ, Yang Z (2017) Nonlinear vibrations of moving functionally graded plates containing porosities and contacting with liquid: internal resonance. Nonlinear Dyn 90:1461–1480CrossRef Wang YQ, Yang Z (2017) Nonlinear vibrations of moving functionally graded plates containing porosities and contacting with liquid: internal resonance. Nonlinear Dyn 90:1461–1480CrossRef
29.
Zurück zum Zitat Sahoo B (2019) Bifurcations and chaotic dynamics of an axially accelerating Hinged-Clamped viscoelastic beam. Iran J Sci Technol Trans Mech Engi 45:23–41CrossRef Sahoo B (2019) Bifurcations and chaotic dynamics of an axially accelerating Hinged-Clamped viscoelastic beam. Iran J Sci Technol Trans Mech Engi 45:23–41CrossRef
30.
Zurück zum Zitat Ouakad Hassen M, Sedighi Hamid M, Younis Mohammad I (2017) One-to-one and three-to-one internal resonances in MEMS shallow arches. J Comput Nonlinear Dyn 12:051025CrossRef Ouakad Hassen M, Sedighi Hamid M, Younis Mohammad I (2017) One-to-one and three-to-one internal resonances in MEMS shallow arches. J Comput Nonlinear Dyn 12:051025CrossRef
31.
Zurück zum Zitat Czaplewski David A, Scott S, Oriel S, Steven S, Daniel WL (2019) Bifurcation diagram and dynamic response of a MEMS resonator with a 1:3 internal resonance. Appl Phys Lett 114:051025 Czaplewski David A, Scott S, Oriel S, Steven S, Daniel WL (2019) Bifurcation diagram and dynamic response of a MEMS resonator with a 1:3 internal resonance. Appl Phys Lett 114:051025
32.
Zurück zum Zitat Guillot V, Givois A, Colin M, Thomas O, Savadkoohi AT, Lamarque C-H (2020) Theoretical and experimental investigation of a 1: 3 internal resonance in a beam with piezoelectric patches. J Vib Control 26:1119–1132MathSciNetCrossRef Guillot V, Givois A, Colin M, Thomas O, Savadkoohi AT, Lamarque C-H (2020) Theoretical and experimental investigation of a 1: 3 internal resonance in a beam with piezoelectric patches. J Vib Control 26:1119–1132MathSciNetCrossRef
33.
Zurück zum Zitat Farokhi H, Ghayesh MH (2016) Nonlinear size-dependent dynamics of microarches with modal interactions. J Vib Control 22:3679–3689MathSciNetCrossRef Farokhi H, Ghayesh MH (2016) Nonlinear size-dependent dynamics of microarches with modal interactions. J Vib Control 22:3679–3689MathSciNetCrossRef
34.
Zurück zum Zitat Ghayesh MH, Farokhi H (2018) Size-dependent internal resonances and modal interactions in nonlinear dynamics of microcantilevers. Int J Mech Mater Des 14:127–140MATHCrossRef Ghayesh MH, Farokhi H (2018) Size-dependent internal resonances and modal interactions in nonlinear dynamics of microcantilevers. Int J Mech Mater Des 14:127–140MATHCrossRef
35.
Zurück zum Zitat Li Z, He Y, Zhang B, Lei J, Guo S, Liu D (2019) On the internal resonances of size-dependent clamped-hinged microbeams: continuum modeling and numerical simulations. Int J Appl Mech 11:1950022CrossRef Li Z, He Y, Zhang B, Lei J, Guo S, Liu D (2019) On the internal resonances of size-dependent clamped-hinged microbeams: continuum modeling and numerical simulations. Int J Appl Mech 11:1950022CrossRef
36.
Zurück zum Zitat Wang Z, Ren J (2019) Nonlinear coupled vibration of electrically actuated arch with flexible supports. Micromachines 10:729CrossRef Wang Z, Ren J (2019) Nonlinear coupled vibration of electrically actuated arch with flexible supports. Micromachines 10:729CrossRef
37.
Zurück zum Zitat Kumar P, Inamdar MM, and Pawaskar DN (2020) Investigation of 3:1 internal resonance of electrostatically actuated microbeams with flexible supports. In: International design engineering technical conferences and computers and information in engineering conference, vol 83907, pp V001T01A006 Kumar P, Inamdar MM, and Pawaskar DN (2020) Investigation of 3:1 internal resonance of electrostatically actuated microbeams with flexible supports. In: International design engineering technical conferences and computers and information in engineering conference, vol 83907, pp V001T01A006
39.
40.
Zurück zum Zitat Abdel-Rahman EM, Younis Mohammad I, Nayfeh AH (2002) Characterization of the mechanical behavior of an electrically actuated microbeam. J Micromech Microeng 12:759CrossRef Abdel-Rahman EM, Younis Mohammad I, Nayfeh AH (2002) Characterization of the mechanical behavior of an electrically actuated microbeam. J Micromech Microeng 12:759CrossRef
41.
Zurück zum Zitat Hajjaj Amal Z, Nouha A, Abdallah R, Abdullah AHM, Younis Mohammad I (2016) Highly tunable electrothermally and electrostatically actuated resonators. J Microelectromech Syst 25:440–449CrossRef Hajjaj Amal Z, Nouha A, Abdallah R, Abdullah AHM, Younis Mohammad I (2016) Highly tunable electrothermally and electrostatically actuated resonators. J Microelectromech Syst 25:440–449CrossRef
42.
Zurück zum Zitat MATLAB (2018) 9.4.0.813654 (R2018a) The MathWorks Inc., Natick, Massachusetts MATLAB (2018) 9.4.0.813654 (R2018a) The MathWorks Inc., Natick, Massachusetts
43.
Zurück zum Zitat Ermentrout B (2002) Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. SIAM, New DelhiMATHCrossRef Ermentrout B (2002) Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. SIAM, New DelhiMATHCrossRef
44.
Zurück zum Zitat Elliott AJ, Cammarano A, Neild SA, Hill TL, Wagg DJ (2018) Comparing the direct normal form and multiple scales methods through frequency detuning. Nonlinear Dyn 94:2919–2935MATHCrossRef Elliott AJ, Cammarano A, Neild SA, Hill TL, Wagg DJ (2018) Comparing the direct normal form and multiple scales methods through frequency detuning. Nonlinear Dyn 94:2919–2935MATHCrossRef
45.
Zurück zum Zitat Mahboob I, Nishiguchi K, Fujiwara A, Yamaguchi H (2013) Phonon lasing in an electromechanical resonator. Phys Rev Lett 110:127202CrossRef Mahboob I, Nishiguchi K, Fujiwara A, Yamaguchi H (2013) Phonon lasing in an electromechanical resonator. Phys Rev Lett 110:127202CrossRef
Metadaten
Titel
Investigating internal resonances and 3:1 modal interaction in an electrostatically actuated clamped-hinged microbeam
verfasst von
Praveen Kumar
Dnyanesh N. Pawaskar
Mandar M. Inamdar
Publikationsdatum
13.08.2021
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 1/2022
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-021-01416-1

Weitere Artikel der Ausgabe 1/2022

Meccanica 1/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.