Skip to main content
Erschienen in: Meccanica 1/2022

28.10.2021 | Overviews & Tutorials

Performance enhancement of straight-bladed vertical axis wind turbines via active flow control strategies: a review

verfasst von: Donghai Zhou, Daming Zhou, Yingqiao Xu, Xiaojing Sun

Erschienen in: Meccanica | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Darrieus-type vertical axis wind turbines (or VAWTs) have the main rotor shaft arranged vertically and the main components can be located at the base of the turbines. Therefore, VAWTs offer a few advantages over traditional horizontal axis wind turbines (or HAWTs) such as omni directionality, low center of gravity, simple structure, low noise and ease of maintenance. However, the VAWT is normally characterized by a complex unsteady aerodynamic flow which results in a poor starting performance and low wind energy conversion efficiency. Nowadays, a variety of active flow control (AFC) strategies have been proposed in order to manipulate the aerodynamic flow field around the VAWT to improve its efficiency. Hence, this paper provides a comprehensive overview of existing studies on the effectiveness of using various AFC techniques on the performance enhancement of fixed pitch straight-bladed VAWTs (also called H-rotor). The underlying mechanism and control effectiveness of different AFC strategies were highlighted. As a result, the challenges, issues and likely directions for future research have been identified and discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Leung DYC, Yang Y (2012) Wind energy development and its environmental impact: a review. Renew Sustain Energy Rev 16(1):1031–1039CrossRef Leung DYC, Yang Y (2012) Wind energy development and its environmental impact: a review. Renew Sustain Energy Rev 16(1):1031–1039CrossRef
2.
3.
Zurück zum Zitat Kumar PM, Sivalingam K, Narasimalu S, Lim TC, Ramakrishna S, Wei H (2019) A review on the evolution of Darrieus vertical axis wind turbine: small wind turbines. J Power Energy Eng 7(4):27–44CrossRef Kumar PM, Sivalingam K, Narasimalu S, Lim TC, Ramakrishna S, Wei H (2019) A review on the evolution of Darrieus vertical axis wind turbine: small wind turbines. J Power Energy Eng 7(4):27–44CrossRef
4.
Zurück zum Zitat Tummala A, Velamati RK, Sinha DK, Indraja V, Krishna VH (2016) A review on small scale wind turbines. Renew Sustain Energy Rev 56:1351–1371CrossRef Tummala A, Velamati RK, Sinha DK, Indraja V, Krishna VH (2016) A review on small scale wind turbines. Renew Sustain Energy Rev 56:1351–1371CrossRef
5.
Zurück zum Zitat Jaohindy P, Ennamiri H, Garde F, Bastide A (2014) Numerical investigation of airflow through a Savonius rotor. Wind Energy 17(6):853–868CrossRef Jaohindy P, Ennamiri H, Garde F, Bastide A (2014) Numerical investigation of airflow through a Savonius rotor. Wind Energy 17(6):853–868CrossRef
6.
Zurück zum Zitat Sun X, Chen Y, Cao Y, Wu G, Zheng Z, Huang D (2016) Research on the aerodynamic characteristics of a lift drag hybrid vertical axis wind turbine. Adv Mech Eng 8(1):1–11CrossRef Sun X, Chen Y, Cao Y, Wu G, Zheng Z, Huang D (2016) Research on the aerodynamic characteristics of a lift drag hybrid vertical axis wind turbine. Adv Mech Eng 8(1):1–11CrossRef
7.
Zurück zum Zitat Timmer WA, Van Rooij RPJOM (2003) Summary of the delft university wind turbine dedicated airfoils. J Sol Energy Eng 125(4):488–496CrossRef Timmer WA, Van Rooij RPJOM (2003) Summary of the delft university wind turbine dedicated airfoils. J Sol Energy Eng 125(4):488–496CrossRef
8.
Zurück zum Zitat Bhutta MMA, Hayat N, Farooq AU, Ali Z, Jamil SR, Hussain Z (2012) Vertical axis wind turbine—a review of various configurations and design techniques. Renew Sustain Energy Rev 16(4):1926–1939CrossRef Bhutta MMA, Hayat N, Farooq AU, Ali Z, Jamil SR, Hussain Z (2012) Vertical axis wind turbine—a review of various configurations and design techniques. Renew Sustain Energy Rev 16(4):1926–1939CrossRef
9.
Zurück zum Zitat Tjiu W, Marnoto T, Mat S, Ruslan MH, Sopian K (2015) Darrieus vertical axis wind turbine for power generation II: challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development. Renew Energy 75:560–571CrossRef Tjiu W, Marnoto T, Mat S, Ruslan MH, Sopian K (2015) Darrieus vertical axis wind turbine for power generation II: challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development. Renew Energy 75:560–571CrossRef
10.
Zurück zum Zitat Mohamad A, Mohd Amin NA, Toh HT, Abdul Majid MS, Daud R (2015) Review of analysis on vertical and horizontal axis wind turbines. Appl Mech Mater 695:801–805CrossRef Mohamad A, Mohd Amin NA, Toh HT, Abdul Majid MS, Daud R (2015) Review of analysis on vertical and horizontal axis wind turbines. Appl Mech Mater 695:801–805CrossRef
11.
Zurück zum Zitat El-Zafry AM, El-Hameed OEA, Hassan MS, Shaheen MM (2019) A review on the types of vertical axis wind turbines and the methods of their performance study. J Multidiscipl Eng Sci Technol 6(9):10633–10643 El-Zafry AM, El-Hameed OEA, Hassan MS, Shaheen MM (2019) A review on the types of vertical axis wind turbines and the methods of their performance study. J Multidiscipl Eng Sci Technol 6(9):10633–10643
12.
Zurück zum Zitat Jaimon C, Sankar A, Krishnakumar P, Radhakrishanan R, Saad M (2019) Vertical axis wind turbines: a review. Adv Mech Eng Technol, 1(2, 3) Jaimon C, Sankar A, Krishnakumar P, Radhakrishanan R, Saad M (2019) Vertical axis wind turbines: a review. Adv Mech Eng Technol, 1(2, 3)
13.
Zurück zum Zitat De Tavernier D, Ferreira C, van Bussel G (2019) Airfoil optimisation for vertical-axis wind turbines with variable pitch. Wind Energy 22(4):547–562CrossRef De Tavernier D, Ferreira C, van Bussel G (2019) Airfoil optimisation for vertical-axis wind turbines with variable pitch. Wind Energy 22(4):547–562CrossRef
14.
Zurück zum Zitat Xin J, Zhao G, Gao KJ, Ju W (2015) Darrieus vertical axis wind turbine: basic research methods. Renew Sustain Energy Rev 42:212–225CrossRef Xin J, Zhao G, Gao KJ, Ju W (2015) Darrieus vertical axis wind turbine: basic research methods. Renew Sustain Energy Rev 42:212–225CrossRef
15.
Zurück zum Zitat Roy S, Saha UK (2013) Review on the numerical investigations into the design and development of Savonius wind rotors. Renew Sustain Energy Rev 24:73–83CrossRef Roy S, Saha UK (2013) Review on the numerical investigations into the design and development of Savonius wind rotors. Renew Sustain Energy Rev 24:73–83CrossRef
16.
Zurück zum Zitat Kumar R, Raahemifar K, Fung AS (2018) A critical review of vertical axis wind turbines for urban applications. Renew Sustain Energy Rev 89:281–291CrossRef Kumar R, Raahemifar K, Fung AS (2018) A critical review of vertical axis wind turbines for urban applications. Renew Sustain Energy Rev 89:281–291CrossRef
17.
Zurück zum Zitat Mohamed MH (2013) Impacts of solidity and hybrid system in small wind turbines performance. Energy 57:495–504CrossRef Mohamed MH (2013) Impacts of solidity and hybrid system in small wind turbines performance. Energy 57:495–504CrossRef
18.
Zurück zum Zitat Roy S, Ducoin A (2016) Unsteady analysis on the instantaneous forces and moment arms acting on a novel Savonius-style wind turbine. Energy Convers Manage 121:281–296CrossRef Roy S, Ducoin A (2016) Unsteady analysis on the instantaneous forces and moment arms acting on a novel Savonius-style wind turbine. Energy Convers Manage 121:281–296CrossRef
19.
Zurück zum Zitat Patel V, Bhat G, Eldho TI, Prabhu SV (2017) Influence of overlap ratio and aspect ratio on the performance of Savonius hydrokinetic turbine: Performance of Savonius hydrokinetic turbine. Int J Energy Res 41(6):829–844CrossRef Patel V, Bhat G, Eldho TI, Prabhu SV (2017) Influence of overlap ratio and aspect ratio on the performance of Savonius hydrokinetic turbine: Performance of Savonius hydrokinetic turbine. Int J Energy Res 41(6):829–844CrossRef
20.
Zurück zum Zitat Lee Y-T, Lim H-C (2015) Numerical study of the aerodynamic performance of a 500 W Darrieus-type vertical-axis wind turbine. Renew Energy 83:407–415CrossRef Lee Y-T, Lim H-C (2015) Numerical study of the aerodynamic performance of a 500 W Darrieus-type vertical-axis wind turbine. Renew Energy 83:407–415CrossRef
21.
Zurück zum Zitat Sabaeifard P, Razzaghi H, Forouzandeh A (2012) Determination of vertical axis wind turbines optimal configuration through CFD simulations. Int Conf Future Environ Energy 28:109–113 Sabaeifard P, Razzaghi H, Forouzandeh A (2012) Determination of vertical axis wind turbines optimal configuration through CFD simulations. Int Conf Future Environ Energy 28:109–113
22.
Zurück zum Zitat Emejeamara F, Tomlin A (2020) A method for estimating the potential power available to building mounted wind turbines within turbulent urban air flows. Renew Energy 153:787–800CrossRef Emejeamara F, Tomlin A (2020) A method for estimating the potential power available to building mounted wind turbines within turbulent urban air flows. Renew Energy 153:787–800CrossRef
23.
Zurück zum Zitat Yang Y, Guo Z, Zhang Y, Jinyama H, Li Q (2017) Numerical investigation of the tip vortex of a straight-bladed vertical axis wind turbine with double-blades. Energies 10(11):1721CrossRef Yang Y, Guo Z, Zhang Y, Jinyama H, Li Q (2017) Numerical investigation of the tip vortex of a straight-bladed vertical axis wind turbine with double-blades. Energies 10(11):1721CrossRef
24.
Zurück zum Zitat Hand B, Cashman A, Kelly G (2016) A Low-Order Model for Offshore Floating Vertical Axis Wind Turbine Aerodynamics. IEEE Trans Ind Appl 53:512–520CrossRef Hand B, Cashman A, Kelly G (2016) A Low-Order Model for Offshore Floating Vertical Axis Wind Turbine Aerodynamics. IEEE Trans Ind Appl 53:512–520CrossRef
25.
Zurück zum Zitat Mannion B, Leen S, Nash S (2020) Development and assessment of a blade element momentum theory model for high solidity vertical axis tidal turbines. Ocean Eng 197:106918CrossRef Mannion B, Leen S, Nash S (2020) Development and assessment of a blade element momentum theory model for high solidity vertical axis tidal turbines. Ocean Eng 197:106918CrossRef
26.
Zurück zum Zitat Chen J, Yang H, Yang M, Xu H, Hu Z (2015) A comprehensive review of the theoretical approaches for the airfoil design of lift-type vertical axis wind turbine. Renew Sustain Energy Rev 51:1709–1720CrossRef Chen J, Yang H, Yang M, Xu H, Hu Z (2015) A comprehensive review of the theoretical approaches for the airfoil design of lift-type vertical axis wind turbine. Renew Sustain Energy Rev 51:1709–1720CrossRef
27.
Zurück zum Zitat Paraschivoiu I (2002) Wind turbine design: with emphasis on Darrieus concept, 1st edn. Polytechnic International Press, Montreal, PQ, Canada Paraschivoiu I (2002) Wind turbine design: with emphasis on Darrieus concept, 1st edn. Polytechnic International Press, Montreal, PQ, Canada
28.
Zurück zum Zitat Bedon G, Castelli MR, Benini E (2013) Optimization of a Darrieus vertical-axis wind turbine using blade element—momentum theory and evolutionary algorithm. Renew Energy 59(11):184–192CrossRef Bedon G, Castelli MR, Benini E (2013) Optimization of a Darrieus vertical-axis wind turbine using blade element—momentum theory and evolutionary algorithm. Renew Energy 59(11):184–192CrossRef
29.
Zurück zum Zitat Sørensen J, Shen WZ (1999) Computation of wind turbine wakes using combined navier-stokes/actuator-line methodology Sørensen J, Shen WZ (1999) Computation of wind turbine wakes using combined navier-stokes/actuator-line methodology
30.
Zurück zum Zitat Mendoza V, Goude A (2019) Improving farm efficiency of interacting vertical-axis wind turbines through wake deflection using pitched struts. Wind Energy 22(4):538–546CrossRef Mendoza V, Goude A (2019) Improving farm efficiency of interacting vertical-axis wind turbines through wake deflection using pitched struts. Wind Energy 22(4):538–546CrossRef
31.
Zurück zum Zitat Guo J, Qu T, Lei L (2021) Effect of pitch parameters on aerodynamic forces of a straight-bladed vertical axis wind turbine with inclined pitch axes. Appl Sci 11:1033CrossRef Guo J, Qu T, Lei L (2021) Effect of pitch parameters on aerodynamic forces of a straight-bladed vertical axis wind turbine with inclined pitch axes. Appl Sci 11:1033CrossRef
32.
Zurück zum Zitat Madsen H (1982) The actuator cylinder—a flow model for vertical axis wind turbines Madsen H (1982) The actuator cylinder—a flow model for vertical axis wind turbines
33.
Zurück zum Zitat Rocchio B, Chicchiero C, Salvetti M, Zanforlin S (2020) A simple model for deep dynamic stall conditions. Wind Energy 23:915–938CrossRef Rocchio B, Chicchiero C, Salvetti M, Zanforlin S (2020) A simple model for deep dynamic stall conditions. Wind Energy 23:915–938CrossRef
34.
Zurück zum Zitat Cheng Z, Madsen HA, Gao Z, Moan T (2016) Aerodynamic modeling of floating vertical axis wind turbines using the actuator cylinder flow method. Energy Procedia 94:531–543CrossRef Cheng Z, Madsen HA, Gao Z, Moan T (2016) Aerodynamic modeling of floating vertical axis wind turbines using the actuator cylinder flow method. Energy Procedia 94:531–543CrossRef
35.
Zurück zum Zitat Bianchini A, Balduzzi F, Ferrara G, Ferrari L (2016) Critical analysis of dynamic stall models in low-order simulation models for vertical-axis wind turbines. Energy Procedia 101:488–495CrossRef Bianchini A, Balduzzi F, Ferrara G, Ferrari L (2016) Critical analysis of dynamic stall models in low-order simulation models for vertical-axis wind turbines. Energy Procedia 101:488–495CrossRef
36.
Zurück zum Zitat Bedon G, Betta SD, Benini E (2016) Performance-optimized airfoil for Darrieus wind turbines. Renew Energy 94:328–340CrossRef Bedon G, Betta SD, Benini E (2016) Performance-optimized airfoil for Darrieus wind turbines. Renew Energy 94:328–340CrossRef
37.
Zurück zum Zitat Sumner J, Watters SC, Masson C (2010) CFD in wind energy: the virtual, multiscale wind tunnel. Energies 3:989–1013CrossRef Sumner J, Watters SC, Masson C (2010) CFD in wind energy: the virtual, multiscale wind tunnel. Energies 3:989–1013CrossRef
38.
Zurück zum Zitat Petrova R, Lemu H, Larion I (2013) Study of horizontal axis wind turbine blade in virtual wind tunnel simulator. In: ASME 2013 International mechanical engineering congress and exposition. San Diego, CA, USA Petrova R, Lemu H, Larion I (2013) Study of horizontal axis wind turbine blade in virtual wind tunnel simulator. In: ASME 2013 International mechanical engineering congress and exposition. San Diego, CA, USA
39.
Zurück zum Zitat Li Y, Calisal SM (2010) Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine. Renew Energy 35(10):2325–2334CrossRef Li Y, Calisal SM (2010) Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine. Renew Energy 35(10):2325–2334CrossRef
40.
Zurück zum Zitat Gosselin R, Dumas G, Boudreau M (2016) Parametric study of H-Darrieus vertical-axis turbines using CFD simulations. J Renew Sustain Energy 8(5):053301CrossRef Gosselin R, Dumas G, Boudreau M (2016) Parametric study of H-Darrieus vertical-axis turbines using CFD simulations. J Renew Sustain Energy 8(5):053301CrossRef
41.
Zurück zum Zitat Almohammadi KM, Ingham DB, Ma L, Pourkashan M (2013) Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine. Energy 58:483–493CrossRef Almohammadi KM, Ingham DB, Ma L, Pourkashan M (2013) Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine. Energy 58:483–493CrossRef
42.
Zurück zum Zitat Balduzzi F, Bianchini A, Maleci R, Ferrara G, Ferrari L (2016) Critical issues in the CFD simulation of Darrieus wind turbines. Renew Energy 85:419–435CrossRef Balduzzi F, Bianchini A, Maleci R, Ferrara G, Ferrari L (2016) Critical issues in the CFD simulation of Darrieus wind turbines. Renew Energy 85:419–435CrossRef
43.
Zurück zum Zitat Lam HF, Peng HY (2016) Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations. Renew Energy 90:386–398CrossRef Lam HF, Peng HY (2016) Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations. Renew Energy 90:386–398CrossRef
44.
Zurück zum Zitat Siddiqui MS, Durrani N, Akhtar I (2015) Quantification of the effects of geometric approximations on the performance of a vertical axis wind turbine. Renew Energy 74:661–670CrossRef Siddiqui MS, Durrani N, Akhtar I (2015) Quantification of the effects of geometric approximations on the performance of a vertical axis wind turbine. Renew Energy 74:661–670CrossRef
45.
Zurück zum Zitat Orlandi A, Collu M, Zanforlin S, Shires A (2015) 3D URANS analysis of a vertical axis wind turbine in skewed flows. J Wind Eng Ind Aerodyn 147:77–84CrossRef Orlandi A, Collu M, Zanforlin S, Shires A (2015) 3D URANS analysis of a vertical axis wind turbine in skewed flows. J Wind Eng Ind Aerodyn 147:77–84CrossRef
46.
Zurück zum Zitat Nobile R, Vahdati M, Barlow JF, Mewburn-Crook A (2014) Unsteady flow simulation of a vertical axis augmented wind turbine: A two-dimensional study. J Wind Eng Ind Aerodyn 125:168–179CrossRef Nobile R, Vahdati M, Barlow JF, Mewburn-Crook A (2014) Unsteady flow simulation of a vertical axis augmented wind turbine: A two-dimensional study. J Wind Eng Ind Aerodyn 125:168–179CrossRef
47.
Zurück zum Zitat Balduzzi F, Bianchini A, Ferrara G, Ferrari L (2016) Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines. Energy 97:246–261CrossRef Balduzzi F, Bianchini A, Ferrara G, Ferrari L (2016) Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines. Energy 97:246–261CrossRef
48.
Zurück zum Zitat Almohammadi KM, Ingham DB, Ma L, Pourkashan M (2013) Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine. Energy 58:483–493CrossRef Almohammadi KM, Ingham DB, Ma L, Pourkashan M (2013) Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine. Energy 58:483–493CrossRef
49.
Zurück zum Zitat Poguluri SK, Lee H, Bae YH (2021) An investigation on the aerodynamic performance of a co-axial contra-rotating vertical-axis wind turbine. Energy 219:119547CrossRef Poguluri SK, Lee H, Bae YH (2021) An investigation on the aerodynamic performance of a co-axial contra-rotating vertical-axis wind turbine. Energy 219:119547CrossRef
50.
51.
Zurück zum Zitat Villeneuve T, Boudreau M, Dumas G (2020) Improving the efficiency and the wake recovery rate of vertical-axis turbines using detached end-plates. Renew Energy 150:31–45CrossRef Villeneuve T, Boudreau M, Dumas G (2020) Improving the efficiency and the wake recovery rate of vertical-axis turbines using detached end-plates. Renew Energy 150:31–45CrossRef
52.
Zurück zum Zitat Sharma A, Ananthan S, Sitaraman J, Thomas S, Sprague MA (2021) Overset meshes for incompressible flows: On preserving accuracy of underlying discretizations. J Comput Phys 428:29MathSciNetCrossRef Sharma A, Ananthan S, Sitaraman J, Thomas S, Sprague MA (2021) Overset meshes for incompressible flows: On preserving accuracy of underlying discretizations. J Comput Phys 428:29MathSciNetCrossRef
53.
Zurück zum Zitat Xu W, Li G, Zheng X, Li Y, Li S, Zhang C, Wang F (2021) High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part I, wind turbines on the side of single building. Renew Energy 177:461–474CrossRef Xu W, Li G, Zheng X, Li Y, Li S, Zhang C, Wang F (2021) High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part I, wind turbines on the side of single building. Renew Energy 177:461–474CrossRef
54.
Zurück zum Zitat Elsakka MM, Ingham DB, Ma L, Pourkashanian M (2019) CFD analysis of the angle of attack for a vertical axis wind turbine blade. Energy Convers Manage 182:154–165CrossRef Elsakka MM, Ingham DB, Ma L, Pourkashanian M (2019) CFD analysis of the angle of attack for a vertical axis wind turbine blade. Energy Convers Manage 182:154–165CrossRef
55.
Zurück zum Zitat Daroczy L, Janiga G, Petrasch K, Webner M, Thevenin D (2015) Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors. Energy 90:680–690CrossRef Daroczy L, Janiga G, Petrasch K, Webner M, Thevenin D (2015) Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors. Energy 90:680–690CrossRef
56.
Zurück zum Zitat Kjellin J, Bülow F, Eriksson S, Deglaire P, Leijon M, Bernhoff H (2011) Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine. Renew Energy 36(11):3050–3053CrossRef Kjellin J, Bülow F, Eriksson S, Deglaire P, Leijon M, Bernhoff H (2011) Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine. Renew Energy 36(11):3050–3053CrossRef
57.
Zurück zum Zitat Kooiman S, Tullis S (2010) Response of a vertical axis wind turbine to time varying wind conditions found within the urban environment. Wind Eng 34(4):389–401CrossRef Kooiman S, Tullis S (2010) Response of a vertical axis wind turbine to time varying wind conditions found within the urban environment. Wind Eng 34(4):389–401CrossRef
58.
Zurück zum Zitat Bianchini A, Balduzzi F, Bachant P, Ferrara G, Ferrari L (2017) Effectiveness of two-dimensional CFD simulations for Darrieus VAWTs: a combined numerical and experimental assessment. Energy Convers Manage 136:318–328CrossRef Bianchini A, Balduzzi F, Bachant P, Ferrara G, Ferrari L (2017) Effectiveness of two-dimensional CFD simulations for Darrieus VAWTs: a combined numerical and experimental assessment. Energy Convers Manage 136:318–328CrossRef
59.
Zurück zum Zitat Lanzafame R, Mauro S, Messina M (2014) 2D CFD modeling of H-Darrieus wind turbines using a transition turbulence model. Energy Procedia 45:131–140CrossRef Lanzafame R, Mauro S, Messina M (2014) 2D CFD modeling of H-Darrieus wind turbines using a transition turbulence model. Energy Procedia 45:131–140CrossRef
60.
Zurück zum Zitat Castelli MR, Englaro A, Benini E (2011) The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD. Energy 36(8):4919–4934CrossRef Castelli MR, Englaro A, Benini E (2011) The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD. Energy 36(8):4919–4934CrossRef
61.
Zurück zum Zitat Möllerström E, Ottermo F, Goude A, Eriksson S, Hylander J, Bernhoff H (2016) Turbulence influence on wind energy extraction for a medium size vertical axis wind turbine. Wind Energy 19(11):1963–1973CrossRef Möllerström E, Ottermo F, Goude A, Eriksson S, Hylander J, Bernhoff H (2016) Turbulence influence on wind energy extraction for a medium size vertical axis wind turbine. Wind Energy 19(11):1963–1973CrossRef
62.
Zurück zum Zitat Ferreira CS, Kuik GV, Bussel GV, Scarano F (2009) Visualization by PIV of dynamic stall on a vertical axis wind turbine. Exp Fluids 46(1):97–108CrossRef Ferreira CS, Kuik GV, Bussel GV, Scarano F (2009) Visualization by PIV of dynamic stall on a vertical axis wind turbine. Exp Fluids 46(1):97–108CrossRef
63.
Zurück zum Zitat Eboibi O, Edwards J, Howell R, Danao LA (2014) Development of velocity flow field measurement method around a vertical axis wind turbine blade using particle image velocimetry. Proc World Congress Eng 2:1184–1189 Eboibi O, Edwards J, Howell R, Danao LA (2014) Development of velocity flow field measurement method around a vertical axis wind turbine blade using particle image velocimetry. Proc World Congress Eng 2:1184–1189
64.
Zurück zum Zitat Posa A, Parker CM, Leftwich MC, Balaras E (2016) Wake structure of a single vertical axis wind turbine. Int J Heat Fluid Flow 61:75–84CrossRef Posa A, Parker CM, Leftwich MC, Balaras E (2016) Wake structure of a single vertical axis wind turbine. Int J Heat Fluid Flow 61:75–84CrossRef
65.
Zurück zum Zitat Tescione G, Ragni D, He C, Ferreira CJS, Bussel GJWV (2014) Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry. Renew Energy 70(5):47–61CrossRef Tescione G, Ragni D, He C, Ferreira CJS, Bussel GJWV (2014) Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry. Renew Energy 70(5):47–61CrossRef
66.
Zurück zum Zitat Argent M, McDonald A, Leithead W, Giles A (2019) Optimisation of design and operation of generators for offshore vertical axis wind turbines. Wind Energy 22(10):1324–1342CrossRef Argent M, McDonald A, Leithead W, Giles A (2019) Optimisation of design and operation of generators for offshore vertical axis wind turbines. Wind Energy 22(10):1324–1342CrossRef
67.
Zurück zum Zitat Aubrun S, Leroy A, Devinant P (2017) A review of wind turbine-oriented active flow control strategies. Exp Fluids 58(10):134CrossRef Aubrun S, Leroy A, Devinant P (2017) A review of wind turbine-oriented active flow control strategies. Exp Fluids 58(10):134CrossRef
68.
Zurück zum Zitat Lumley JL (2000) Flow control: passive, active and reactive flow management by Mohamed Gad-el-Hak. Mech Eng 43(4):726–727 Lumley JL (2000) Flow control: passive, active and reactive flow management by Mohamed Gad-el-Hak. Mech Eng 43(4):726–727
69.
Zurück zum Zitat Zhu H, Hao W, Li C, Ding Q, Wu B (2018) A critical study on passive flow control techniques for straight-bladed vertical axis wind turbine. Energy 165:12–25CrossRef Zhu H, Hao W, Li C, Ding Q, Wu B (2018) A critical study on passive flow control techniques for straight-bladed vertical axis wind turbine. Energy 165:12–25CrossRef
70.
Zurück zum Zitat Wong KH, Chong WT, Sukiman NL, Poh SC, Shiah YC, Wang CT (2017) Performance enhancements on vertical axis wind turbines using flow augmentation systems: a review. Renew Sustain Energy Rev 73:904–921CrossRef Wong KH, Chong WT, Sukiman NL, Poh SC, Shiah YC, Wang CT (2017) Performance enhancements on vertical axis wind turbines using flow augmentation systems: a review. Renew Sustain Energy Rev 73:904–921CrossRef
71.
Zurück zum Zitat Zhu H, Hao W, Li C, Ding Q (2018) Simulation on flow control strategy of synthetic jet in an vertical axis wind turbine. Aerosp Sci Technol 77:439–448CrossRef Zhu H, Hao W, Li C, Ding Q (2018) Simulation on flow control strategy of synthetic jet in an vertical axis wind turbine. Aerosp Sci Technol 77:439–448CrossRef
72.
Zurück zum Zitat Johnson SJ, Baker JP, van Dam CP, Berg D (2010) An overview of active load control techniques for wind turbines with an emphasis on microtabs. Wind Energy 13(2–3):239–253CrossRef Johnson SJ, Baker JP, van Dam CP, Berg D (2010) An overview of active load control techniques for wind turbines with an emphasis on microtabs. Wind Energy 13(2–3):239–253CrossRef
73.
Zurück zum Zitat Morgulis N, Seifert A (2016) Fluidic flow control applied for improved performance of Darrieus wind turbines. Wind Energy 19(9):1585–1602CrossRef Morgulis N, Seifert A (2016) Fluidic flow control applied for improved performance of Darrieus wind turbines. Wind Energy 19(9):1585–1602CrossRef
74.
Zurück zum Zitat Li C, Xiao Y, Xu YL, Peng YX, Gang H, Zhu S (2018) Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations. Appl Energy 212:1107–1125CrossRef Li C, Xiao Y, Xu YL, Peng YX, Gang H, Zhu S (2018) Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations. Appl Energy 212:1107–1125CrossRef
75.
Zurück zum Zitat Rezaeiha A, Kalkman I, Blocken B (2017) Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Appl Energy 197:132–150CrossRef Rezaeiha A, Kalkman I, Blocken B (2017) Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Appl Energy 197:132–150CrossRef
76.
Zurück zum Zitat Kirke BK, Lazauskas L (2011) Limitations of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch. Renew Energy 36(3):893–897CrossRef Kirke BK, Lazauskas L (2011) Limitations of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch. Renew Energy 36(3):893–897CrossRef
77.
Zurück zum Zitat Jain P, Abhishek A (2016) Performance prediction and fundamental understanding of small scale vertical axis wind turbine with variable amplitude blade pitching. Renew Energy 97:97–113CrossRef Jain P, Abhishek A (2016) Performance prediction and fundamental understanding of small scale vertical axis wind turbine with variable amplitude blade pitching. Renew Energy 97:97–113CrossRef
78.
Zurück zum Zitat Kavade RK, Ghanegaonkar PM (2018) Effect of best position blade pitching on power coefficient of VAWT at different tip speed ratio by SST & DMST model. FME Trans 46:560–566CrossRef Kavade RK, Ghanegaonkar PM (2018) Effect of best position blade pitching on power coefficient of VAWT at different tip speed ratio by SST & DMST model. FME Trans 46:560–566CrossRef
79.
Zurück zum Zitat Yang Y, Guo Z, Song Q, Zhang Y, Li Q (2018) Effect of blade pitch angle on the aerodynamic characteristics of a straight-bladed vertical axis wind turbine based on experiments and simulations. Energies 11(6):1514CrossRef Yang Y, Guo Z, Song Q, Zhang Y, Li Q (2018) Effect of blade pitch angle on the aerodynamic characteristics of a straight-bladed vertical axis wind turbine based on experiments and simulations. Energies 11(6):1514CrossRef
80.
Zurück zum Zitat Chen B, Su S, Viola IM, Greated CA (2018) Numerical investigation of vertical-axis tidal turbines with sinusoidal pitching blades. Ocean Eng 155:75–87CrossRef Chen B, Su S, Viola IM, Greated CA (2018) Numerical investigation of vertical-axis tidal turbines with sinusoidal pitching blades. Ocean Eng 155:75–87CrossRef
81.
Zurück zum Zitat Elkhoury M, Kiwata T, Aoun E (2015) Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch. J Wind Eng Ind Aerodyn 139:111–123CrossRef Elkhoury M, Kiwata T, Aoun E (2015) Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch. J Wind Eng Ind Aerodyn 139:111–123CrossRef
82.
Zurück zum Zitat Jakubowski M, Starosta R, Fritzkowski P (2018) Kinematics of a vertical axis wind turbine with a variable pitch angle. AIP Conf Proc 1922(1):110012CrossRef Jakubowski M, Starosta R, Fritzkowski P (2018) Kinematics of a vertical axis wind turbine with a variable pitch angle. AIP Conf Proc 1922(1):110012CrossRef
83.
Zurück zum Zitat Chen LJ, Yang YZ, Gao Y, Gao ZM, Guo YH, Sun LX (2019) A novel real-time feedback pitch angle control system for vertical-axis wind turbines. J Wind Eng Ind Aerodyn 195:13CrossRef Chen LJ, Yang YZ, Gao Y, Gao ZM, Guo YH, Sun LX (2019) A novel real-time feedback pitch angle control system for vertical-axis wind turbines. J Wind Eng Ind Aerodyn 195:13CrossRef
84.
Zurück zum Zitat Xu YL, Peng YX, Zhan S (2019) Optimal blade pitch function and control device for high-solidity straight-bladed vertical axis wind turbines. Appl Energy 242:1613–1625CrossRef Xu YL, Peng YX, Zhan S (2019) Optimal blade pitch function and control device for high-solidity straight-bladed vertical axis wind turbines. Appl Energy 242:1613–1625CrossRef
85.
Zurück zum Zitat Hand B, Kelly G, Cashman A (2021) Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: a comprehensive review. Renew Sustain Energy Rev 139:30CrossRef Hand B, Kelly G, Cashman A (2021) Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: a comprehensive review. Renew Sustain Energy Rev 139:30CrossRef
86.
Zurück zum Zitat Jankee GK, Ganapathisubramani B (2019) Influence of internal orifice geometry on synthetic jet performance. Exp Fluids 60(4):51CrossRef Jankee GK, Ganapathisubramani B (2019) Influence of internal orifice geometry on synthetic jet performance. Exp Fluids 60(4):51CrossRef
87.
Zurück zum Zitat Kumar A, Saha AK, Panigrahi PK, Karn A (2019) On the flow physics and vortex behavior of rectangular orifice synthetic jets. Exp Thermal Fluid Sci 103:163–181CrossRef Kumar A, Saha AK, Panigrahi PK, Karn A (2019) On the flow physics and vortex behavior of rectangular orifice synthetic jets. Exp Thermal Fluid Sci 103:163–181CrossRef
88.
Zurück zum Zitat Ali B, Ouahiba G, Hamid O, Ahmed B (2018) Aerodynamic optimization of active flow control over S809 airfoil using synthetic jet. In: 2018 International conference on wind energy and applications in Algeria. Algiers, Algeria, pp. 1–6 Ali B, Ouahiba G, Hamid O, Ahmed B (2018) Aerodynamic optimization of active flow control over S809 airfoil using synthetic jet. In: 2018 International conference on wind energy and applications in Algeria. Algiers, Algeria, pp. 1–6
89.
Zurück zum Zitat Rice TT, Taylor K, Amitay M (2019) Wind tunnel quantification of dynamic stall on an S817 airfoil and its control using synthetic jet actuators. Wind Energy 22(1):21–33CrossRef Rice TT, Taylor K, Amitay M (2019) Wind tunnel quantification of dynamic stall on an S817 airfoil and its control using synthetic jet actuators. Wind Energy 22(1):21–33CrossRef
90.
Zurück zum Zitat Yen J, Ahmed NA (2013) Enhancing vertical axis wind turbine by dynamic stall control using synthetic jets. J Wind Eng Ind Aerodyn 114(114):12–17CrossRef Yen J, Ahmed NA (2013) Enhancing vertical axis wind turbine by dynamic stall control using synthetic jets. J Wind Eng Ind Aerodyn 114(114):12–17CrossRef
91.
Zurück zum Zitat Zhu H, Hao W, Li C, Ding Q, Wu B (2019) Application of flow control strategy of blowing, synthetic and plasma jet actuators in vertical axis wind turbines. Aerosp Sci Technol 88:468–480CrossRef Zhu H, Hao W, Li C, Ding Q, Wu B (2019) Application of flow control strategy of blowing, synthetic and plasma jet actuators in vertical axis wind turbines. Aerosp Sci Technol 88:468–480CrossRef
92.
Zurück zum Zitat Menon A (2014) Numerical investigation of synthetic jet based flow control for vertical axis wind turbine. Rensselaer Polytechnic Institute, Troy, New York, USA; Rensselaer Polytechnic Institute Menon A (2014) Numerical investigation of synthetic jet based flow control for vertical axis wind turbine. Rensselaer Polytechnic Institute, Troy, New York, USA; Rensselaer Polytechnic Institute
93.
Zurück zum Zitat Velasco D, López O, Laín S (2017) Numerical simulations of active flow control with synthetic jets in a Darrieus turbine. Renew Energy 113:129–140CrossRef Velasco D, López O, Laín S (2017) Numerical simulations of active flow control with synthetic jets in a Darrieus turbine. Renew Energy 113:129–140CrossRef
94.
Zurück zum Zitat Dano BPE, Gecheng Z, Castillo M (2011) Experimental study of co-flow jet airfoil performance enhancement using discrete jets. In: 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, pp. 23 Dano BPE, Gecheng Z, Castillo M (2011) Experimental study of co-flow jet airfoil performance enhancement using discrete jets. In: 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, pp. 23
95.
Zurück zum Zitat Sun X, Xu Y, Huang D (2019) Numerical simulation and research on improving aerodynamic performance of vertical axis wind turbine by co-flow jet. J Renew Sustain Energy 11(1):0133CrossRef Sun X, Xu Y, Huang D (2019) Numerical simulation and research on improving aerodynamic performance of vertical axis wind turbine by co-flow jet. J Renew Sustain Energy 11(1):0133CrossRef
96.
Zurück zum Zitat Jones GS, Joslin RD (2015) Applications of circulation control technology. American Institute of Aeronautics and Astronautics Inc, Reston, Virginia, USA Jones GS, Joslin RD (2015) Applications of circulation control technology. American Institute of Aeronautics and Astronautics Inc, Reston, Virginia, USA
97.
Zurück zum Zitat Frunzulica F, Dumitrescu H, Dumitrache A (2014) Numerical investigations of dynamic stall control. INCAS Bull 6(1):67–80 Frunzulica F, Dumitrescu H, Dumitrache A (2014) Numerical investigations of dynamic stall control. INCAS Bull 6(1):67–80
98.
Zurück zum Zitat Graham IVHZ, Hubbell M, Panther C, Wilhelm J, Angle IIGM, Smith JE (2009) Circulation controlled airfoil analysis through 360 degrees angle of attack. In: ASME 2009 3rd international conference on energy sustainability collocated with the heat transfer and InterPACK09 conferences. San Francisco, California, USA. 2009, pp. 571–577 Graham IVHZ, Hubbell M, Panther C, Wilhelm J, Angle IIGM, Smith JE (2009) Circulation controlled airfoil analysis through 360 degrees angle of attack. In: ASME 2009 3rd international conference on energy sustainability collocated with the heat transfer and InterPACK09 conferences. San Francisco, California, USA. 2009, pp. 571–577
99.
Zurück zum Zitat Mcgrain D, Angle GM, Wilhelm JP, Pertl ED, Smith JE (2009) Circulation control applied to wind turbines. In: ASME 2009 3rd International conference on energy sustainability collocated with the heat transfer and interPACK09 conferences. San Francisco, California, USA Mcgrain D, Angle GM, Wilhelm JP, Pertl ED, Smith JE (2009) Circulation control applied to wind turbines. In: ASME 2009 3rd International conference on energy sustainability collocated with the heat transfer and interPACK09 conferences. San Francisco, California, USA
100.
Zurück zum Zitat Shires A, Kourkoulis V (2013) Application of circulation controlled blades for vertical axis wind turbines. Energies 6(8):3744–3763CrossRef Shires A, Kourkoulis V (2013) Application of circulation controlled blades for vertical axis wind turbines. Energies 6(8):3744–3763CrossRef
101.
Zurück zum Zitat Wilhelm JP, Nix AC, Panther CC, Huebsch WW, Smith JE (2017) Dynamic circulation control for a vertical axis wind turbine using virtual solidity matching. Smart Grid Renew Energy 8(04):99CrossRef Wilhelm JP, Nix AC, Panther CC, Huebsch WW, Smith JE (2017) Dynamic circulation control for a vertical axis wind turbine using virtual solidity matching. Smart Grid Renew Energy 8(04):99CrossRef
102.
Zurück zum Zitat Johnson SC, Dam CPV, Berg DE (2008) SAND2008-4809 [R]. Sandia National Laboratories, USA Johnson SC, Dam CPV, Berg DE (2008) SAND2008-4809 [R]. Sandia National Laboratories, USA
103.
Zurück zum Zitat Jukes TN (2015) Smart control of a horizontal axis wind turbine using dielectric barrier discharge plasma actuators. Renew Energy 80:644–654CrossRef Jukes TN (2015) Smart control of a horizontal axis wind turbine using dielectric barrier discharge plasma actuators. Renew Energy 80:644–654CrossRef
104.
Zurück zum Zitat Greenblatt D, Schulman M, Ben-Harav A (2012) Vertical axis wind turbine performance enhancement using plasma actuators. Renew Energy 37(1):345–354CrossRef Greenblatt D, Schulman M, Ben-Harav A (2012) Vertical axis wind turbine performance enhancement using plasma actuators. Renew Energy 37(1):345–354CrossRef
105.
Zurück zum Zitat Greenblatt D, Lautman R (2015) Inboard/outboard plasma actuation on a vertical-axis wind turbine. Renew Energy 83:1147–1156CrossRef Greenblatt D, Lautman R (2015) Inboard/outboard plasma actuation on a vertical-axis wind turbine. Renew Energy 83:1147–1156CrossRef
106.
Zurück zum Zitat Ben-Harav A, Greenblatt D (2016) Plasma-based feed-forward dynamic stall control on a vertical axis wind turbine. Wind Energy 19(1):3–16CrossRef Ben-Harav A, Greenblatt D (2016) Plasma-based feed-forward dynamic stall control on a vertical axis wind turbine. Wind Energy 19(1):3–16CrossRef
107.
Zurück zum Zitat Ma L, Wang X, Zhu J, Kang S (2019) Dynamic stall of a vertical-axis wind turbine and its control using plasma actuation. Energies 12(19):3738CrossRef Ma L, Wang X, Zhu J, Kang S (2019) Dynamic stall of a vertical-axis wind turbine and its control using plasma actuation. Energies 12(19):3738CrossRef
108.
Zurück zum Zitat Aubrun S, Leroy A, Devinant P (2017) A review of wind turbine-oriented active flow control strategies. Exp Fluids 58(10):21CrossRef Aubrun S, Leroy A, Devinant P (2017) A review of wind turbine-oriented active flow control strategies. Exp Fluids 58(10):21CrossRef
109.
Zurück zum Zitat Bouzaher MT, Hadid M (2015) Active control of the vertical axis wind turbine by the association of flapping wings to their blades. Procedia Comput Sci 52(1):714–722CrossRef Bouzaher MT, Hadid M (2015) Active control of the vertical axis wind turbine by the association of flapping wings to their blades. Procedia Comput Sci 52(1):714–722CrossRef
110.
Zurück zum Zitat Hoerner S, Bonamy C, Cleynen O, Maitre T, Thevenin D (2020) Darrieus vertical-axis water turbines: deformation and force measurements on bioinspired highly flexible blade profiles. Exp Fluids 61(6):17CrossRef Hoerner S, Bonamy C, Cleynen O, Maitre T, Thevenin D (2020) Darrieus vertical-axis water turbines: deformation and force measurements on bioinspired highly flexible blade profiles. Exp Fluids 61(6):17CrossRef
111.
Zurück zum Zitat Bouzaher MT, Hadid M, Semch-Eddine D (2016) Flow control for the vertical axis wind turbine by means of flapping flexible foils. J Braz Soc Mech Sci Eng 39(2):1–14 Bouzaher MT, Hadid M, Semch-Eddine D (2016) Flow control for the vertical axis wind turbine by means of flapping flexible foils. J Braz Soc Mech Sci Eng 39(2):1–14
112.
Zurück zum Zitat Baghdadi M, Elkoush S, Akle B, Elkhoury M (2020) Dynamic shape optimization of a vertical-axis wind turbine via blade morphing technique. Renewable Energy 154:239–251CrossRef Baghdadi M, Elkoush S, Akle B, Elkhoury M (2020) Dynamic shape optimization of a vertical-axis wind turbine via blade morphing technique. Renewable Energy 154:239–251CrossRef
113.
Zurück zum Zitat Minetto RAL, Paraschivoiu M (2020) Simulation based analysis of morphing blades applied to a vertical axis wind turbine. Energy 202:19 Minetto RAL, Paraschivoiu M (2020) Simulation based analysis of morphing blades applied to a vertical axis wind turbine. Energy 202:19
114.
Zurück zum Zitat Lee T, Su YY (2011) Unsteady airfoil with a harmonically deflected trailing-edge flap. J Fluids Struct 27(8):1411–1424CrossRef Lee T, Su YY (2011) Unsteady airfoil with a harmonically deflected trailing-edge flap. J Fluids Struct 27(8):1411–1424CrossRef
115.
Zurück zum Zitat Xiao Q, Liu W, Incecik A (2013) Flow control for VATT by fixed and oscillating flap. Renew Energy 51(51):141–152CrossRef Xiao Q, Liu W, Incecik A (2013) Flow control for VATT by fixed and oscillating flap. Renew Energy 51(51):141–152CrossRef
116.
Zurück zum Zitat Yang Y, Li C, Zhang W, Guo X, Yuan Q (2017) Investigation on aerodynamics and active flow control of a vertical axis wind turbine with flapped airfoil. J Mech Sci Technol 31(4):1645–1655CrossRef Yang Y, Li C, Zhang W, Guo X, Yuan Q (2017) Investigation on aerodynamics and active flow control of a vertical axis wind turbine with flapped airfoil. J Mech Sci Technol 31(4):1645–1655CrossRef
117.
Zurück zum Zitat Simao Ferreira C, Hofemann C, Dixon K, Van Kuik G, Van Bussel G (2010) 3-D wake dynamics of the VAWT: experimental and numerical investigation. In: 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition Simao Ferreira C, Hofemann C, Dixon K, Van Kuik G, Van Bussel G (2010) 3-D wake dynamics of the VAWT: experimental and numerical investigation. In: 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition
118.
Zurück zum Zitat Schuerich F, Brown RE (2011) Effect of dynamic stall on the aerodynamics of vertical-axis wind turbines. AIAA J 49(11):2511–2521CrossRef Schuerich F, Brown RE (2011) Effect of dynamic stall on the aerodynamics of vertical-axis wind turbines. AIAA J 49(11):2511–2521CrossRef
Metadaten
Titel
Performance enhancement of straight-bladed vertical axis wind turbines via active flow control strategies: a review
verfasst von
Donghai Zhou
Daming Zhou
Yingqiao Xu
Xiaojing Sun
Publikationsdatum
28.10.2021
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 1/2022
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-021-01445-w

Weitere Artikel der Ausgabe 1/2022

Meccanica 1/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.