Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2022

09.01.2022 | Technical Article

Investigating Microstructure and Properties of 316L Stainless Steel Produced by Wire-Fed Laser Metal Deposition

verfasst von: Nicholas Brubaker, Hussam Ali, Sandeep Dhakal, Nicolene van Rooyen, Mark L. Jaster, Indrajit Charit, Brian Jaques, Michael R. Maughan

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wire feedstock laser metal deposition (WFLMD) is a metal additive manufacturing (AM) technique that has several advantages over other AM processes, most notably lower feedstock costs, higher deposition rates, and the ability to make large continuous parts. The microstructure and properties of materials produced by this new technique must be studied for comparison to other techniques. This work briefly reviews published properties of 316L stainless steel produced by other processes and compares them to experimentally determined properties of 316L samples produced with WFLMD under reduced atmospheric conditions. Relative densities from WFLMD were greater than 98% and microstructure analysis showed primarily austenite, with some ferrite and carbide phases. Electron backscatter diffraction showed the presence of tilted or twisted grain structures. Strength and hardness were comparable to or better than those resulting from other processes. Fractography indicated ductile tearing with few defects, though some defects were identified with microscopy, which can be attributed to minor contamination.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Hoefer, A. Haelsig and P. Mayr, Arc-Based Additive Manufacturing of Steel Components—Comparison of Wire- and Powder-Based Variants, Weld World, 2018, 62(2), p 243–247. CrossRef K. Hoefer, A. Haelsig and P. Mayr, Arc-Based Additive Manufacturing of Steel Components—Comparison of Wire- and Powder-Based Variants, Weld World, 2018, 62(2), p 243–247. CrossRef
2.
Zurück zum Zitat X. Qin Yang, Y. Liu, J. Wen Ye, R. Quan Wang, T. Chuan Zhou and B. Yang Mao, Enhanced Mechanical Properties and Formability of 316L Stainless Steel Materials 3D-Printed using Selective Laser Melting, Int. J. Miner., Metall. Mater., 2019, 26(11), p 1396–1404. CrossRef X. Qin Yang, Y. Liu, J. Wen Ye, R. Quan Wang, T. Chuan Zhou and B. Yang Mao, Enhanced Mechanical Properties and Formability of 316L Stainless Steel Materials 3D-Printed using Selective Laser Melting, Int. J. Miner., Metall. Mater., 2019, 26(11), p 1396–1404. CrossRef
3.
Zurück zum Zitat L. Wang, J. Xue and Q. Wang, Correlation Between Arc Mode, Microstructure, and Mechanical Properties during Wire Arc Additive Manufacturing of 316L Stainless Steel, Mater. Sci. Eng., A, 2019, 751, p 183–190. CrossRef L. Wang, J. Xue and Q. Wang, Correlation Between Arc Mode, Microstructure, and Mechanical Properties during Wire Arc Additive Manufacturing of 316L Stainless Steel, Mater. Sci. Eng., A, 2019, 751, p 183–190. CrossRef
4.
Zurück zum Zitat T.A. Rodrigues, V. Duarte, R.M. Miranda, T.G. Santos and J.P. Oliveira, Current Status and Perspectives on Wire and Arc Additive Manufacturing (WAAM), Mater. (Basel) MDPI, 2019, 12(7), p 1121. CrossRef T.A. Rodrigues, V. Duarte, R.M. Miranda, T.G. Santos and J.P. Oliveira, Current Status and Perspectives on Wire and Arc Additive Manufacturing (WAAM), Mater. (Basel) MDPI, 2019, 12(7), p 1121. CrossRef
5.
Zurück zum Zitat A. Leicht, M. Fischer, U. Klement, L. Nyborg and E. Hryha, Increasing the Productivity of Laser Powder Bed Fusion for Stainless Steel 316L through Increased Layer Thickness, J. Mater. Eng. Perform., 2021, 30(1), p 575–584. CrossRef A. Leicht, M. Fischer, U. Klement, L. Nyborg and E. Hryha, Increasing the Productivity of Laser Powder Bed Fusion for Stainless Steel 316L through Increased Layer Thickness, J. Mater. Eng. Perform., 2021, 30(1), p 575–584. CrossRef
6.
Zurück zum Zitat M.O. Shaikh, C.-C. Chen, H.-C. Chiang, J.-R. Chen, Y.-C. Chou, T.-Y. Kuo, K. Ameyama and C.-H. Chuang, Additive Manufacturing Using Fine Wire-Based Laser Metal Deposition, Rapid Prototyping J, 2019, 26(3), p 473–483. CrossRef M.O. Shaikh, C.-C. Chen, H.-C. Chiang, J.-R. Chen, Y.-C. Chou, T.-Y. Kuo, K. Ameyama and C.-H. Chuang, Additive Manufacturing Using Fine Wire-Based Laser Metal Deposition, Rapid Prototyping J, 2019, 26(3), p 473–483. CrossRef
7.
Zurück zum Zitat A.G. Demir, Micro Laser Metal Wire Deposition for Additive Manufacturing of Thin-Walled Structures, Opt. Lasers Eng., 2018, 100, p 9–17. CrossRef A.G. Demir, Micro Laser Metal Wire Deposition for Additive Manufacturing of Thin-Walled Structures, Opt. Lasers Eng., 2018, 100, p 9–17. CrossRef
8.
Zurück zum Zitat Z. Sun, X. Tan, S.B. Tor and W.Y. Yeong, Selective Laser Melting of Stainless Steel 316L with Low Porosity and High Build Rates, Mater. Des., 2016, 104, p 197–204. CrossRef Z. Sun, X. Tan, S.B. Tor and W.Y. Yeong, Selective Laser Melting of Stainless Steel 316L with Low Porosity and High Build Rates, Mater. Des., 2016, 104, p 197–204. CrossRef
9.
Zurück zum Zitat B. Xie, J. Xue, X. Ren, W. Wu and Z. Lin, A Comparative Study of the CMT+P Process on 316L Stainless Steel Additive Manufacturing, Appl. Sci., 2020, 10(9), p 3284. CrossRef B. Xie, J. Xue, X. Ren, W. Wu and Z. Lin, A Comparative Study of the CMT+P Process on 316L Stainless Steel Additive Manufacturing, Appl. Sci., 2020, 10(9), p 3284. CrossRef
10.
Zurück zum Zitat D.-G. Ahn, Directed Energy Deposition (DED) Process: State of the Art, Int. J. Precis. Eng. Manuf.-Green Technol., 2021, 8(2), p 703–742. CrossRef D.-G. Ahn, Directed Energy Deposition (DED) Process: State of the Art, Int. J. Precis. Eng. Manuf.-Green Technol., 2021, 8(2), p 703–742. CrossRef
11.
Zurück zum Zitat W. Wu, J. Xue, L. Wang, Z. Zhang, Y. Hu and C. Dong, Forming Process, Microstructure, and Mechanical Properties of Thin-Walled 316L Stainless Steel Using Speed-Cold-Welding Additive Manufacturing, Metals, 2019, 9(1), p 109. CrossRef W. Wu, J. Xue, L. Wang, Z. Zhang, Y. Hu and C. Dong, Forming Process, Microstructure, and Mechanical Properties of Thin-Walled 316L Stainless Steel Using Speed-Cold-Welding Additive Manufacturing, Metals, 2019, 9(1), p 109. CrossRef
12.
Zurück zum Zitat A. Mertens, S. Reginster, Q. Contrepois, T. Dormal, O. Lemaire and J. Lecomte-Beckers, “Microstructures and Mechanical Properties of Stainless Steel AISI 316L Processed by Selective Laser Melting, Mater. Sci. Forum, 2014, 783–786, p 898. CrossRef A. Mertens, S. Reginster, Q. Contrepois, T. Dormal, O. Lemaire and J. Lecomte-Beckers, “Microstructures and Mechanical Properties of Stainless Steel AISI 316L Processed by Selective Laser Melting, Mater. Sci. Forum, 2014, 783–786, p 898. CrossRef
13.
Zurück zum Zitat A.-H. Puichaud, C. Flament, A. Chniouel, F. Lomello, E. Rouesne, P.-F. Giroux, H. Maskrot, F. Schuster and J.-L. Béchade, Microstructure and Mechanical Properties Relationship of Additively Manufactured 316L Stainless Steel by Selective Laser Melting, EPJ Nuclear Sci. Technol, 2019, 5, p 23. CrossRef A.-H. Puichaud, C. Flament, A. Chniouel, F. Lomello, E. Rouesne, P.-F. Giroux, H. Maskrot, F. Schuster and J.-L. Béchade, Microstructure and Mechanical Properties Relationship of Additively Manufactured 316L Stainless Steel by Selective Laser Melting, EPJ Nuclear Sci. Technol, 2019, 5, p 23. CrossRef
14.
Zurück zum Zitat Z. Sun, X. Tan, S.B. Tor and C.K. Chua, Simultaneously Enhanced Strength and Ductility for 3D-Printed Stainless Steel 316L by Selective Laser Melting, NPG Asia Mater, 2018, 10(4), p 127–136. CrossRef Z. Sun, X. Tan, S.B. Tor and C.K. Chua, Simultaneously Enhanced Strength and Ductility for 3D-Printed Stainless Steel 316L by Selective Laser Melting, NPG Asia Mater, 2018, 10(4), p 127–136. CrossRef
16.
Zurück zum Zitat X. Chen, J. Li, X. Cheng, B. He, H. Wang and Z. Huang, Microstructure and Mechanical Properties of the Austenitic Stainless Steel 316L Fabricated by Gas Metal Arc Additive Manufacturing, Mater. Sci. Eng., A, 2017, 703, p 567–577. CrossRef X. Chen, J. Li, X. Cheng, B. He, H. Wang and Z. Huang, Microstructure and Mechanical Properties of the Austenitic Stainless Steel 316L Fabricated by Gas Metal Arc Additive Manufacturing, Mater. Sci. Eng., A, 2017, 703, p 567–577. CrossRef
17.
Zurück zum Zitat F. Bartolomeu, M. Buciumeanu, E. Pinto, N. Alves, O. Carvalho, F.S. Silva and G. Miranda, 316L Stainless Steel Mechanical and Tribological Behavior—A Comparison between Selective Laser Melting Hot Pressing and Conventional Casting, Addit. Manuf., 2017, 16, p 81–89. F. Bartolomeu, M. Buciumeanu, E. Pinto, N. Alves, O. Carvalho, F.S. Silva and G. Miranda, 316L Stainless Steel Mechanical and Tribological Behavior—A Comparison between Selective Laser Melting Hot Pressing and Conventional Casting, Addit. Manuf., 2017, 16, p 81–89.
18.
Zurück zum Zitat S. Schroeder, J. Frankel, and A. Abbate, The Relationship between Residual Stress and Hardness and the Onset of Plastic Deformation, 1995, p 35. S. Schroeder, J. Frankel, and A. Abbate, The Relationship between Residual Stress and Hardness and the Onset of Plastic Deformation, 1995, p 35.
19.
Zurück zum Zitat M. Ghasri-Khouzani, H. Peng, R. Attardo, P. Ostiguy, J. Neidig, R. Billo, D. Hoelzle and M.R. Shankar, Direct Metal Laser-Sintered Stainless Steel: Comparison of Microstructure and Hardness between Different Planes, Int. J. Adv. Manuf. Technol., 2018, 95(9–12), p 4031–4037. CrossRef M. Ghasri-Khouzani, H. Peng, R. Attardo, P. Ostiguy, J. Neidig, R. Billo, D. Hoelzle and M.R. Shankar, Direct Metal Laser-Sintered Stainless Steel: Comparison of Microstructure and Hardness between Different Planes, Int. J. Adv. Manuf. Technol., 2018, 95(9–12), p 4031–4037. CrossRef
20.
Zurück zum Zitat M.K. Alam, M. Mehdi, R.J. Urbanic and A. Edrisy, Electron Backscatter Diffraction (EBSD) Analysis of Laser-Cladded AISI 420 Martensitic Stainless Steel, Mater. Charact., 2020, 161, p 110138. CrossRef M.K. Alam, M. Mehdi, R.J. Urbanic and A. Edrisy, Electron Backscatter Diffraction (EBSD) Analysis of Laser-Cladded AISI 420 Martensitic Stainless Steel, Mater. Charact., 2020, 161, p 110138. CrossRef
21.
Zurück zum Zitat T. Maitland and S. Sitzman, “Electron Backscatter Diffraction (EBSD) Technique and materials characterization examples,” 2015. T. Maitland and S. Sitzman, “Electron Backscatter Diffraction (EBSD) Technique and materials characterization examples,” 2015.
22.
Zurück zum Zitat C. Kamath, B. El-dasher, G.F. Gallegos, W.E. King and A. Sisto, Density of Additively-Manufactured, 316L SS Parts Using Laser Powder-Bed Fusion at Powers up to 400 W, Int J Adv Manuf Technol, 2014, 74(1), p 65–78. CrossRef C. Kamath, B. El-dasher, G.F. Gallegos, W.E. King and A. Sisto, Density of Additively-Manufactured, 316L SS Parts Using Laser Powder-Bed Fusion at Powers up to 400 W, Int J Adv Manuf Technol, 2014, 74(1), p 65–78. CrossRef
24.
Zurück zum Zitat B. Dureu, “Raw and finished materials: a concise guide to properties and applications,” Momentum Press, 2011. B. Dureu, “Raw and finished materials: a concise guide to properties and applications,” Momentum Press, 2011.
25.
Zurück zum Zitat A.L. Schaeffler, Constitution Diagram for Stainless Steel Weld Metal, Metal Prog., 1949, 56(11), p 680. A.L. Schaeffler, Constitution Diagram for Stainless Steel Weld Metal, Metal Prog., 1949, 56(11), p 680.
27.
Zurück zum Zitat E. Vandersluis, Comparison of Measurement Methods for Secondary Dendrite Arm Spacing, Metallogr., Microstruct., Anal., 2017, 6, p 89. CrossRef E. Vandersluis, Comparison of Measurement Methods for Secondary Dendrite Arm Spacing, Metallogr., Microstruct., Anal., 2017, 6, p 89. CrossRef
29.
Zurück zum Zitat Y. Yang, Y. Gong, S. Qu, H. Xie, M. Cai and Y. Xu, Densification, Mechanical Behaviors, and Machining Characteristics of 316L Stainless Steel in Hybrid Additive/Subtractive Manufacturing, Int. J. Adv. Manuf. Technol., 2020, 107(1), p 177–189. CrossRef Y. Yang, Y. Gong, S. Qu, H. Xie, M. Cai and Y. Xu, Densification, Mechanical Behaviors, and Machining Characteristics of 316L Stainless Steel in Hybrid Additive/Subtractive Manufacturing, Int. J. Adv. Manuf. Technol., 2020, 107(1), p 177–189. CrossRef
30.
Zurück zum Zitat T.R. Smith, J.D. Sugar, C. San Marchi and J.M. Schoenung, Microstructural Development in DED Stainless Steels: Applying Welding Models to Elucidate the Impact of Processing and Alloy Composition, J. Mater. Sci., 2021, 56(1), p 762–780. CrossRef T.R. Smith, J.D. Sugar, C. San Marchi and J.M. Schoenung, Microstructural Development in DED Stainless Steels: Applying Welding Models to Elucidate the Impact of Processing and Alloy Composition, J. Mater. Sci., 2021, 56(1), p 762–780. CrossRef
31.
Zurück zum Zitat S.M. Yusuf, Y. Chen, R. Boardman, S. Yang and N. Gao, Investigation on Porosity and Microhardness of 316L Stainless Steel Fabricated by Selective Laser Melting, Metals, 2017, 7(2), p 64. CrossRef S.M. Yusuf, Y. Chen, R. Boardman, S. Yang and N. Gao, Investigation on Porosity and Microhardness of 316L Stainless Steel Fabricated by Selective Laser Melting, Metals, 2017, 7(2), p 64. CrossRef
32.
Zurück zum Zitat W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff and S.S. Babu, The Metallurgy and Processing Science of Metal Additive Manufacturing, Int. Mater. Rev., 2016, 61(5), p 315–360. CrossRef W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff and S.S. Babu, The Metallurgy and Processing Science of Metal Additive Manufacturing, Int. Mater. Rev., 2016, 61(5), p 315–360. CrossRef
33.
Zurück zum Zitat P. Szalva and I.N. Orbulov, The Effect of Vacuum on the Mechanical Properties of Die Cast Aluminum AlSi9Cu3(Fe) Alloy, Inter Metalcast, 2019, 13(4), p 853–864. CrossRef P. Szalva and I.N. Orbulov, The Effect of Vacuum on the Mechanical Properties of Die Cast Aluminum AlSi9Cu3(Fe) Alloy, Inter Metalcast, 2019, 13(4), p 853–864. CrossRef
34.
Zurück zum Zitat C. Hu, H. Zhao, X. Wang and J. Fu, Microstructure and Properties of AlSi12Fe Alloy High Pressure Die-Castings under Different Vacuum Levels, Vacuum, 2020, 180, p 109561. CrossRef C. Hu, H. Zhao, X. Wang and J. Fu, Microstructure and Properties of AlSi12Fe Alloy High Pressure Die-Castings under Different Vacuum Levels, Vacuum, 2020, 180, p 109561. CrossRef
35.
Zurück zum Zitat H. Cao, Q. Sun, Q. Pu, L. Wang, M. Huang, Z. Luo and J. Che, Effect of Vacuum Degree and T6 Treatment on the Microstructure and Mechanical Properties of Al–Si–Cu Alloy Die Castings, Vacuum, 2020, 172, p 109063. CrossRef H. Cao, Q. Sun, Q. Pu, L. Wang, M. Huang, Z. Luo and J. Che, Effect of Vacuum Degree and T6 Treatment on the Microstructure and Mechanical Properties of Al–Si–Cu Alloy Die Castings, Vacuum, 2020, 172, p 109063. CrossRef
36.
Zurück zum Zitat H.J. Kang, P.H. Yoon, G.H. Lee, J.Y. Park, B.J. Jung, J.Y. Lee, C.U. Lee, E.S. Kim and Y.S. Choi, Evaluation of the Gas Porosity and Mechanical Properties of Vacuum Assisted Pore-Free Die-Cast Al-Si-Cu Alloy, Vacuum, 2021, 184, p 109917. CrossRef H.J. Kang, P.H. Yoon, G.H. Lee, J.Y. Park, B.J. Jung, J.Y. Lee, C.U. Lee, E.S. Kim and Y.S. Choi, Evaluation of the Gas Porosity and Mechanical Properties of Vacuum Assisted Pore-Free Die-Cast Al-Si-Cu Alloy, Vacuum, 2021, 184, p 109917. CrossRef
38.
Zurück zum Zitat W. Jin, C. Zhang, S. Jin, Y. Tian, D. Wellmann and W. Liu, Wire Arc Additive Manufacturing of Stainless Steels: A Review, Appl. Sci., 2020, 10(5), p 1563. CrossRef W. Jin, C. Zhang, S. Jin, Y. Tian, D. Wellmann and W. Liu, Wire Arc Additive Manufacturing of Stainless Steels: A Review, Appl. Sci., 2020, 10(5), p 1563. CrossRef
39.
Zurück zum Zitat R. Biswal, X. Zhang, M. Shamir, A. Al Mamun, M. Awd, F. Walther and A. Khadar Syed, Interrupted Fatigue Testing with Periodic Tomography to Monitor Porosity Defects in Wire + Arc Additive Manufactured Ti-6Al-4V, Addit. Manuf., 2019, 28, p 517–527. R. Biswal, X. Zhang, M. Shamir, A. Al Mamun, M. Awd, F. Walther and A. Khadar Syed, Interrupted Fatigue Testing with Periodic Tomography to Monitor Porosity Defects in Wire + Arc Additive Manufactured Ti-6Al-4V, Addit. Manuf., 2019, 28, p 517–527.
40.
Zurück zum Zitat A. Adebayo, J. Mehnen and X. Tonnellier, Effects of Solid Lubricants on Wire and Arc Additive Manufactured Structures, Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf., 2014, 228(4), p 563–571. CrossRef A. Adebayo, J. Mehnen and X. Tonnellier, Effects of Solid Lubricants on Wire and Arc Additive Manufactured Structures, Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf., 2014, 228(4), p 563–571. CrossRef
41.
Zurück zum Zitat F. Wang, S. Williams, P. Colegrove and A.A. Antonysamy, Microstructure and Mechanical Properties of Wire and Arc Additive Manufactured Ti-6Al-4V, Metall Mat Trans A, 2013, 44(2), p 968–977. CrossRef F. Wang, S. Williams, P. Colegrove and A.A. Antonysamy, Microstructure and Mechanical Properties of Wire and Arc Additive Manufactured Ti-6Al-4V, Metall Mat Trans A, 2013, 44(2), p 968–977. CrossRef
42.
Zurück zum Zitat R. Biswal, X. Zhang, A.K. Syed, M. Awd, J. Ding, F. Walther and S. Williams, Criticality of Porosity Defects on the Fatigue Performance of Wire + arc Additive Manufactured Titanium Alloy, Int. J. Fatigue, 2019, 122, p 208–217. CrossRef R. Biswal, X. Zhang, A.K. Syed, M. Awd, J. Ding, F. Walther and S. Williams, Criticality of Porosity Defects on the Fatigue Performance of Wire + arc Additive Manufactured Titanium Alloy, Int. J. Fatigue, 2019, 122, p 208–217. CrossRef
44.
Zurück zum Zitat B. Chen, Y. Su, Z. Xie, C. Tan and J. Feng, Development and Characterization of 316L/Inconel625 Functionally Graded Material Fabricated by Laser Direct Metal Deposition, Opt. Laser Technol., 2020, 123, p 105916. CrossRef B. Chen, Y. Su, Z. Xie, C. Tan and J. Feng, Development and Characterization of 316L/Inconel625 Functionally Graded Material Fabricated by Laser Direct Metal Deposition, Opt. Laser Technol., 2020, 123, p 105916. CrossRef
45.
Zurück zum Zitat A. Saboori, A. Aversa, G. Marchese, S. Biamino, M. Lombardi and P. Fino, Microstructure and Mechanical Properties of AISI 316L Produced by Directed Energy Deposition-Based Additive Manufacturing: A Review, Appl. Sci., 2020, 10(9), p 3310. CrossRef A. Saboori, A. Aversa, G. Marchese, S. Biamino, M. Lombardi and P. Fino, Microstructure and Mechanical Properties of AISI 316L Produced by Directed Energy Deposition-Based Additive Manufacturing: A Review, Appl. Sci., 2020, 10(9), p 3310. CrossRef
46.
Zurück zum Zitat M. Dadfar, M.H. Fathi, F. Karimzadeh, M.R. Dadfar and A. Saatchi, Effect of TIG Welding on Corrosion Behavior of 316L Stainless Steel, Mater. Lett., 2007, 61(11), p 2343–2346. CrossRef M. Dadfar, M.H. Fathi, F. Karimzadeh, M.R. Dadfar and A. Saatchi, Effect of TIG Welding on Corrosion Behavior of 316L Stainless Steel, Mater. Lett., 2007, 61(11), p 2343–2346. CrossRef
47.
Zurück zum Zitat C. Wu, S. Li, C. Zhang and X. Wang, Microstructural Evolution in 316LN Austenitic Stainless Steel during Solidification Process under Different Cooling Rates, J. Mater. Sci., 2016, 51(5), p 2529–2539. CrossRef C. Wu, S. Li, C. Zhang and X. Wang, Microstructural Evolution in 316LN Austenitic Stainless Steel during Solidification Process under Different Cooling Rates, J. Mater. Sci., 2016, 51(5), p 2529–2539. CrossRef
48.
Zurück zum Zitat E.G. Astafurova, MYu. Panchenko, V.A. Moskvina, G.G. Maier, S.V. Astafurov, E.V. Melnikov, A.S. Fortuna, K.A. Reunova, V.E. Rubtsov and E.A. Kolubaev, Microstructure and Grain Growth Inhomogeneity in Austenitic Steel Produced by Wire-Feed Electron Beam Melting: The Effect of Post-Building Solid-Solution Treatment, J. Mater. Sci., 2020, 55(22), p 9211–9224. CrossRef E.G. Astafurova, MYu. Panchenko, V.A. Moskvina, G.G. Maier, S.V. Astafurov, E.V. Melnikov, A.S. Fortuna, K.A. Reunova, V.E. Rubtsov and E.A. Kolubaev, Microstructure and Grain Growth Inhomogeneity in Austenitic Steel Produced by Wire-Feed Electron Beam Melting: The Effect of Post-Building Solid-Solution Treatment, J. Mater. Sci., 2020, 55(22), p 9211–9224. CrossRef
49.
Zurück zum Zitat N.S. Rossini, M. Dassisti, K.Y. Benyounis and A.G. Olabi, Methods of Measuring Residual Stresses in Components, Mater. Des., 2012, 35, p 572–588. CrossRef N.S. Rossini, M. Dassisti, K.Y. Benyounis and A.G. Olabi, Methods of Measuring Residual Stresses in Components, Mater. Des., 2012, 35, p 572–588. CrossRef
50.
Zurück zum Zitat M.N. Gussev and K.J. Leonard, In Situ SEM-EBSD Analysis of Plastic Deformation Mechanisms in Neutron-Irradiated Austenitic Steel, J. Nucl. Mater., 2019, 517, p 45–56. CrossRef M.N. Gussev and K.J. Leonard, In Situ SEM-EBSD Analysis of Plastic Deformation Mechanisms in Neutron-Irradiated Austenitic Steel, J. Nucl. Mater., 2019, 517, p 45–56. CrossRef
51.
Zurück zum Zitat S. Kobayashi, C. Zambaldi and D. Raabe, Orientation Dependence of Local Lattice Rotations at Precipitates: Example of κ-Fe3AlC Carbides in a Fe3Al-Based Alloy, Acta Mater., 2010, 58(20), p 6672–6684. CrossRef S. Kobayashi, C. Zambaldi and D. Raabe, Orientation Dependence of Local Lattice Rotations at Precipitates: Example of κ-Fe3AlC Carbides in a Fe3Al-Based Alloy, Acta Mater., 2010, 58(20), p 6672–6684. CrossRef
52.
Zurück zum Zitat N. Bibhanshu, M.N. Gussev and T.M. Rosseel, Complexity of Deformation Mechanism in Neutron-Irradiated 304L Austenitic Stainless Steel at Microstructural Scale, Mater. Charact., 2021, 178, p 111218. CrossRef N. Bibhanshu, M.N. Gussev and T.M. Rosseel, Complexity of Deformation Mechanism in Neutron-Irradiated 304L Austenitic Stainless Steel at Microstructural Scale, Mater. Charact., 2021, 178, p 111218. CrossRef
54.
Zurück zum Zitat X. Tan, Y. Kok, Y.J. Tan, G. Vastola, Q.X. Pei, G. Zhang, Y.-W. Zhang, S.B. Tor, K.F. Leong and C.K. Chua, An Experimental and Simulation Study on Build Thickness Dependent Microstructure for Electron Beam Melted Ti–6Al–4V, J. Alloy. Compd., 2015, 646, p 303–309. CrossRef X. Tan, Y. Kok, Y.J. Tan, G. Vastola, Q.X. Pei, G. Zhang, Y.-W. Zhang, S.B. Tor, K.F. Leong and C.K. Chua, An Experimental and Simulation Study on Build Thickness Dependent Microstructure for Electron Beam Melted Ti–6Al–4V, J. Alloy. Compd., 2015, 646, p 303–309. CrossRef
55.
Zurück zum Zitat X. Tan, Y. Kok, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, K.F. Leong and C.K. Chua, Graded Microstructure and Mechanical Properties of Additive Manufactured Ti–6Al–4V via Electron Beam Melting, Acta Mater., 2015, 97, p 1–16. CrossRef X. Tan, Y. Kok, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, K.F. Leong and C.K. Chua, Graded Microstructure and Mechanical Properties of Additive Manufactured Ti–6Al–4V via Electron Beam Melting, Acta Mater., 2015, 97, p 1–16. CrossRef
56.
Zurück zum Zitat N. Hrabe and T. Quinn, Effects of Processing on Microstructure and Mechanical Properties of a Titanium Alloy (Ti–6Al–4V) Fabricated Using Electron Beam Melting (EBM), Part 1: Distance from Build Plate and Part Size, Mater. Sci. Eng., A, 2013, 573, p 264–270. CrossRef N. Hrabe and T. Quinn, Effects of Processing on Microstructure and Mechanical Properties of a Titanium Alloy (Ti–6Al–4V) Fabricated Using Electron Beam Melting (EBM), Part 1: Distance from Build Plate and Part Size, Mater. Sci. Eng., A, 2013, 573, p 264–270. CrossRef
57.
Zurück zum Zitat P. Wang, X. Tan, M.L.S. Nai, S.B. Tor and J. Wei, Spatial and Geometrical-Based Characterization of Microstructure and Microhardness for an Electron Beam Melted Ti–6Al–4V Component, Mater. Des., 2016, 95, p 287–295. CrossRef P. Wang, X. Tan, M.L.S. Nai, S.B. Tor and J. Wei, Spatial and Geometrical-Based Characterization of Microstructure and Microhardness for an Electron Beam Melted Ti–6Al–4V Component, Mater. Des., 2016, 95, p 287–295. CrossRef
58.
Zurück zum Zitat Y.H. Kok, X.P. Tan, N.H. Loh, S.B. Tor and C.K. Chua, Geometry Dependence of Microstructure and Microhardness for Selective Electron Beam-Melted Ti–6Al–4V Parts, Virtual Phys. Prototyp., 2016, 11(3), p 183–191. CrossRef Y.H. Kok, X.P. Tan, N.H. Loh, S.B. Tor and C.K. Chua, Geometry Dependence of Microstructure and Microhardness for Selective Electron Beam-Melted Ti–6Al–4V Parts, Virtual Phys. Prototyp., 2016, 11(3), p 183–191. CrossRef
59.
Zurück zum Zitat Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu and S.B. Tor, Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review, Mater. Des., 2018, 139, p 565–586. CrossRef Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu and S.B. Tor, Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review, Mater. Des., 2018, 139, p 565–586. CrossRef
60.
Zurück zum Zitat M.C. Mataya, E.R. Nilsson, E.L. Brown and G. Krauss, Hot Working and Recrystallization of As-Cast 316L, Metall. and Mater. Trans. A., 2003, 34(8), p 1683–1703. CrossRef M.C. Mataya, E.R. Nilsson, E.L. Brown and G. Krauss, Hot Working and Recrystallization of As-Cast 316L, Metall. and Mater. Trans. A., 2003, 34(8), p 1683–1703. CrossRef
61.
Zurück zum Zitat M. Sugavaneswaran and A. Kulkarni, Effect of Cryogenic Treatment on the Wear Behavior of Additive Manufactured 316L Stainless Steel, Tribol. Ind., 2019, 41(1), p 33–42. CrossRef M. Sugavaneswaran and A. Kulkarni, Effect of Cryogenic Treatment on the Wear Behavior of Additive Manufactured 316L Stainless Steel, Tribol. Ind., 2019, 41(1), p 33–42. CrossRef
Metadaten
Titel
Investigating Microstructure and Properties of 316L Stainless Steel Produced by Wire-Fed Laser Metal Deposition
verfasst von
Nicholas Brubaker
Hussam Ali
Sandeep Dhakal
Nicolene van Rooyen
Mark L. Jaster
Indrajit Charit
Brian Jaques
Michael R. Maughan
Publikationsdatum
09.01.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06477-7

Weitere Artikel der Ausgabe 5/2022

Journal of Materials Engineering and Performance 5/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.