Skip to main content
Erschienen in: Journal of Materials Science 22/2020

18.02.2020 | Interface Science

Microstructure and grain growth inhomogeneity in austenitic steel produced by wire-feed electron beam melting: the effect of post-building solid-solution treatment

verfasst von: Elena G. Astafurova, Marina Yu. Panchenko, Valentina A. Moskvina, Galina G. Maier, Sergey V. Astafurov, Evgeny V. Melnikov, Anastasia S. Fortuna, Kseniya A. Reunova, Valery E. Rubtsov, Evgeny A. Kolubaev

Erschienen in: Journal of Materials Science | Ausgabe 22/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A billet of an AISI 304-type austenitic stainless steel has been built using a wire-feed electron beam additive manufacturing (EBAM) in a layer-by-layer strategy. A microstructure, grain boundary assemble, phase composition and tensile properties of steel billet have been investigated in as-built specimens and after post-built solid-solution treatment. As-built austenitic stainless steel is a highly anisotropic heterophase material with high fraction of interphase boundaries (austenite/ferrite) and intergranular boundaries (austenite/austenite). A macroscopically inhomogeneous (layered) structure with columnar austenitic grain growth has been produced during EBAM processing. The coarse-grained austenitic structure contains δ-ferrite of dendritic morphology in as-built specimens. Ductility and strength properties of the additively manufactured steel show substantial anisotropy, which is strongly correlated with macro- and microstructural peculiarities of the as-built billet. Post-built solid-solution treatment decreases a volume fraction of ferrite in the microstructure, changes the morphology of ferrite phase and, therefore, varies the distribution of interphase boundaries (ferrite/austenite). The effect of post-built solid-solution treatment on tensile properties of the EBAM manufactured steel is discussed taking into account a change in microstructure and phase composition, grain and phase boundary distribution in the specimens.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23:1917–1928CrossRef Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23:1917–1928CrossRef
2.
Zurück zum Zitat Huang Li N, Zhang S, Qin G et al (2018) Progress in additive manufacturing on new materials. J Mater Sci Technol 35:242–269 Huang Li N, Zhang S, Qin G et al (2018) Progress in additive manufacturing on new materials. J Mater Sci Technol 35:242–269
3.
Zurück zum Zitat Ding D, Pan Z, Cuiuri D et al (2015) Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Technol 81:465–481CrossRef Ding D, Pan Z, Cuiuri D et al (2015) Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Technol 81:465–481CrossRef
4.
Zurück zum Zitat Vayre B, Vignat F, Villeneuve F (2012) Metallic additive manufacturing: state-of-the-art review and prospects. Mech Ind 13:89–96CrossRef Vayre B, Vignat F, Villeneuve F (2012) Metallic additive manufacturing: state-of-the-art review and prospects. Mech Ind 13:89–96CrossRef
5.
Zurück zum Zitat Utela B, Storti D, Anderson R, Ganter M (2008) A review of process development steps for new material systems in three dimensional printing (3DP). J Manuf Processes 10:96–104CrossRef Utela B, Storti D, Anderson R, Ganter M (2008) A review of process development steps for new material systems in three dimensional printing (3DP). J Manuf Processes 10:96–104CrossRef
6.
Zurück zum Zitat Hu R, Chen X, Yang G, Gong S, Pang S (2018) Metal transfer in wire feeding-based electron beam 3D printing: modes, dynamics, and transition criterion. Int J Heat Mass Transf 126:877–887CrossRef Hu R, Chen X, Yang G, Gong S, Pang S (2018) Metal transfer in wire feeding-based electron beam 3D printing: modes, dynamics, and transition criterion. Int J Heat Mass Transf 126:877–887CrossRef
7.
Zurück zum Zitat Cunningham CR, Flynn JM, Shokrani A, Dhokia V, Newman ST (2018) Invited review article: strategies and processes for high quality wire arc additive manufacturing. Addit Manuf 22:672–686CrossRef Cunningham CR, Flynn JM, Shokrani A, Dhokia V, Newman ST (2018) Invited review article: strategies and processes for high quality wire arc additive manufacturing. Addit Manuf 22:672–686CrossRef
8.
Zurück zum Zitat Lo KH, Shek CH, Lai JKL (2009) Recent developments in stainless steels. Mater Sci Eng R 65:39–104CrossRef Lo KH, Shek CH, Lai JKL (2009) Recent developments in stainless steels. Mater Sci Eng R 65:39–104CrossRef
9.
Zurück zum Zitat Suriawanshi J, Prashanth KG, Ramamurty U (2017) Mechanical behavior of selective laser melting 316L stainless steel. Mater Sci Eng A 696:113–121CrossRef Suriawanshi J, Prashanth KG, Ramamurty U (2017) Mechanical behavior of selective laser melting 316L stainless steel. Mater Sci Eng A 696:113–121CrossRef
10.
Zurück zum Zitat Casati R, Lemke J, Vedani M (2016) Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting. J Mater Sci Technol 32:738–744CrossRef Casati R, Lemke J, Vedani M (2016) Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting. J Mater Sci Technol 32:738–744CrossRef
11.
Zurück zum Zitat Yadollahi A, Shamsaei N, Thompson SM, Seely DW (2015) Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Mater Sci Eng A 644:171–183CrossRef Yadollahi A, Shamsaei N, Thompson SM, Seely DW (2015) Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Mater Sci Eng A 644:171–183CrossRef
12.
Zurück zum Zitat Chen X, Li J, Cheng X, He B, Wang H, Huang Zh (2017) Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing. Mater Sci Eng A 703:567–677CrossRef Chen X, Li J, Cheng X, He B, Wang H, Huang Zh (2017) Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing. Mater Sci Eng A 703:567–677CrossRef
13.
Zurück zum Zitat Tarasov SYu, Filippov AV, Shamarin NN et al (2019) Microstructural evolution and chemical corrosion of electron beam wire-feed additively manufactured AISI 304 stainless steel. J Alloys Compd 803:364–370CrossRef Tarasov SYu, Filippov AV, Shamarin NN et al (2019) Microstructural evolution and chemical corrosion of electron beam wire-feed additively manufactured AISI 304 stainless steel. J Alloys Compd 803:364–370CrossRef
14.
Zurück zum Zitat Wang L, Felicelli SD, Coleman J, Johnson R, Taminger KMB, Lett RL (2011) Microstructure and mechanical properties of electron beam deposits of AISI 316L stainless steel. In: Proceedings of the ASME 211 international mechanical engineering congress and exposition. https://doi.org/10.1115/imece2011-62445 Wang L, Felicelli SD, Coleman J, Johnson R, Taminger KMB, Lett RL (2011) Microstructure and mechanical properties of electron beam deposits of AISI 316L stainless steel. In: Proceedings of the ASME 211 international mechanical engineering congress and exposition. https://​doi.​org/​10.​1115/​imece2011-62445
15.
Zurück zum Zitat Wang Zh, Palmer TA, Beese AM (2016) Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Mater 110:226–235CrossRef Wang Zh, Palmer TA, Beese AM (2016) Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Mater 110:226–235CrossRef
16.
Zurück zum Zitat Skiba T, Baufeld B, van der Bieast O (2009) Microstructure and mechanical properties of stainless steel component manufactured by shaped metal deposition. ISIJ Int 49:1588–1591CrossRef Skiba T, Baufeld B, van der Bieast O (2009) Microstructure and mechanical properties of stainless steel component manufactured by shaped metal deposition. ISIJ Int 49:1588–1591CrossRef
17.
Zurück zum Zitat Chen X, Li J, Cheng X, Wang H, Huang Zh (2018) Effect of heat treatment on microstructure, mechanical and corrosion properties of austenitic stainless steel 316L using arc additive manufacturing. Mater Sci Eng A 715:307–314CrossRef Chen X, Li J, Cheng X, Wang H, Huang Zh (2018) Effect of heat treatment on microstructure, mechanical and corrosion properties of austenitic stainless steel 316L using arc additive manufacturing. Mater Sci Eng A 715:307–314CrossRef
18.
Zurück zum Zitat Elmer W, Allen SM, Eagar TW (1989) Microstructural development during solidification of stainless steel alloys. Metall Trans A 20:2117–2131CrossRef Elmer W, Allen SM, Eagar TW (1989) Microstructural development during solidification of stainless steel alloys. Metall Trans A 20:2117–2131CrossRef
19.
Zurück zum Zitat Inoue H, Koseki T, Ohkita S, Fuji M (2000) Formation mechanism of vermicular and lacy ferrite in austenitic stainless steel weld metals. Sci Technol Weld Join 5:385–396CrossRef Inoue H, Koseki T, Ohkita S, Fuji M (2000) Formation mechanism of vermicular and lacy ferrite in austenitic stainless steel weld metals. Sci Technol Weld Join 5:385–396CrossRef
20.
Zurück zum Zitat Brooks JA, Yang NCY, Krafcik JS (2001) Clarification on development of skeletal and lathy ferrite morphologies in stainless steel welds. Sci Technol Weld Join 6:412–414CrossRef Brooks JA, Yang NCY, Krafcik JS (2001) Clarification on development of skeletal and lathy ferrite morphologies in stainless steel welds. Sci Technol Weld Join 6:412–414CrossRef
21.
Zurück zum Zitat Suuatala N, Takalo T, Moisio T (1979) Relationship between solidification and microstructure in austenitic and austenitic-ferritic stainless steel welds. Metall Trans A 10:512–514CrossRef Suuatala N, Takalo T, Moisio T (1979) Relationship between solidification and microstructure in austenitic and austenitic-ferritic stainless steel welds. Metall Trans A 10:512–514CrossRef
22.
Zurück zum Zitat Saluja R, Moeed KM (2015) Formation, quantification and significance of delta ferrite for 300 series stainless steel weldments. Int J Eng Technol Manage Appl Sci 3:23–36 Saluja R, Moeed KM (2015) Formation, quantification and significance of delta ferrite for 300 series stainless steel weldments. Int J Eng Technol Manage Appl Sci 3:23–36
23.
Zurück zum Zitat Suresh G, Nandakumar T, Viswanath A (2018) Effect of low-temperature sensitization on the corrosion behavior of AISI type 304L SS weld metal in simulated groundwater. J Mater Eng Perform 27:2484–2491CrossRef Suresh G, Nandakumar T, Viswanath A (2018) Effect of low-temperature sensitization on the corrosion behavior of AISI type 304L SS weld metal in simulated groundwater. J Mater Eng Perform 27:2484–2491CrossRef
24.
Zurück zum Zitat Bansod AV, Patil AP, Moon AP, Shukla S (2017) Microstructural and electrochemical evaluation of fusion welded low nickel and 304 ASS at different heat input. J Mater Eng Perform 26:5847–5863CrossRef Bansod AV, Patil AP, Moon AP, Shukla S (2017) Microstructural and electrochemical evaluation of fusion welded low nickel and 304 ASS at different heat input. J Mater Eng Perform 26:5847–5863CrossRef
25.
Zurück zum Zitat Wang C, Tan X, Liu E, Tor SB (2018) Process parameter optimization and mechanical properties for additively manufactured stainless steel 316L parts by selective electron beam melting. Mater Des 147:157–166CrossRef Wang C, Tan X, Liu E, Tor SB (2018) Process parameter optimization and mechanical properties for additively manufactured stainless steel 316L parts by selective electron beam melting. Mater Des 147:157–166CrossRef
26.
Zurück zum Zitat Alvarez-Armas I, Degallaix-Moreuil S (2009) Duplex stainless steels. Wiley, Hoboken Alvarez-Armas I, Degallaix-Moreuil S (2009) Duplex stainless steels. Wiley, Hoboken
27.
Zurück zum Zitat Straumal BB, Kucheev YO, Efron LI et al (2012) Complete and incomplete wetting of ferrite grain boundaries by austenite in the low-alloyed ferritic steel. J Mater Eng Perform 21:667–670CrossRef Straumal BB, Kucheev YO, Efron LI et al (2012) Complete and incomplete wetting of ferrite grain boundaries by austenite in the low-alloyed ferritic steel. J Mater Eng Perform 21:667–670CrossRef
28.
Zurück zum Zitat Straumal BB, Dobatkin SV, Rodin AO et al (2011) Structure and properties of nanograined Fe–C alloys after severe plastic deformation. Adv Eng Mater 13:463–469CrossRef Straumal BB, Dobatkin SV, Rodin AO et al (2011) Structure and properties of nanograined Fe–C alloys after severe plastic deformation. Adv Eng Mater 13:463–469CrossRef
Metadaten
Titel
Microstructure and grain growth inhomogeneity in austenitic steel produced by wire-feed electron beam melting: the effect of post-building solid-solution treatment
verfasst von
Elena G. Astafurova
Marina Yu. Panchenko
Valentina A. Moskvina
Galina G. Maier
Sergey V. Astafurov
Evgeny V. Melnikov
Anastasia S. Fortuna
Kseniya A. Reunova
Valery E. Rubtsov
Evgeny A. Kolubaev
Publikationsdatum
18.02.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 22/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04424-w

Weitere Artikel der Ausgabe 22/2020

Journal of Materials Science 22/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.