Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 9-10/2021

07.06.2021 | ORIGINAL ARTICLE

Investigation of inner-jet electrochemical face grinding of thin-walled rotational parts

verfasst von: Feng Wang, Jianshe Zhao, Min Kang

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 9-10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A shaver cap is a typical thin-walled rotational part, and the processing performance of its torus surface has an important impact on the cutting efficiency, sharpness and working noise of the shaver. Electrochemical face grinding (ECFG) is a promising machining method in the fabrication of difficult-to-cut thin-walled parts. However, the flow field distribution in the interelectrode gap can vary, and the effect of electrochemical levelling can suffer during the electrochemical face grinding of multiple torus surfaces. Moreover, the nonuniform distribution of abrasives and the differences in coequal height can generate severe grinding marks on the torus surfaces. In this work, superimposed linear and circular translational movements were proposed to improve the electrochemical grinding performance of multiple torus surfaces. Based on a simulation of a gas-liquid two-phase flow field, the effects of grinding head rotational speed and superimposed linear and circular translational movements on the flow velocity and void fraction were investigated. Moreover, the variations of machining allowance, flatness and surface roughness on the torus surfaces were experimentally studied. The flow field simulation and experimental results showed that the flow velocity and void fraction were changed periodically in the machining area by superimposing translational movements, which was conducive to eliminating flow field defects and improving the electrochemical levelling performance. Moreover, the fluctuations of electrolyte flow velocity and void fraction in the machining area were small when the circular translational movement was superimposed, and a synergistic effect of dissolution and grinding was noted. The overall flatness of the torus surfaces was only 3.93 μm, the maximum height of the surface roughness profile was 0.797 μm, and there were no obvious grinding marks on the inner and outer torus surfaces under the optimized circular translational parameters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lauwers B, Klocke F, Klink A, Tekkaya A, Neugebauer R, Mcintosh D (2014) Hybrid processes in manufacturing [J]. CIRP Ann Manuf Technol 63(2):561–583CrossRef Lauwers B, Klocke F, Klink A, Tekkaya A, Neugebauer R, Mcintosh D (2014) Hybrid processes in manufacturing [J]. CIRP Ann Manuf Technol 63(2):561–583CrossRef
2.
Zurück zum Zitat Saxena K, Qian J, Reynaerts D (2018) A review on process capabilities of electrochemical micromachining and its hybrid variants [J]. Int J Mach Tools Manuf 127:28–56CrossRef Saxena K, Qian J, Reynaerts D (2018) A review on process capabilities of electrochemical micromachining and its hybrid variants [J]. Int J Mach Tools Manuf 127:28–56CrossRef
3.
Zurück zum Zitat Kozak J, Oczoś K (2001) Selected problems of abrasive hybrid machining [J]. J Mater Process Technol 109(3):360–366CrossRef Kozak J, Oczoś K (2001) Selected problems of abrasive hybrid machining [J]. J Mater Process Technol 109(3):360–366CrossRef
4.
Zurück zum Zitat Rajurkar K, Zhu D, McGeough J, Kozak J, Silva A (1999) New developments in electro-chemical machining [J]. CIRP Ann Manuf Technol 48(2):567–579CrossRef Rajurkar K, Zhu D, McGeough J, Kozak J, Silva A (1999) New developments in electro-chemical machining [J]. CIRP Ann Manuf Technol 48(2):567–579CrossRef
5.
Zurück zum Zitat Li H, Fu S, Niu S, Qu N (2018) Simulation and experimental investigation of electrochemical milling-grinding of GH4169 alloy [J]. Int J Electrochem Sci 13(7):6608–6625CrossRef Li H, Fu S, Niu S, Qu N (2018) Simulation and experimental investigation of electrochemical milling-grinding of GH4169 alloy [J]. Int J Electrochem Sci 13(7):6608–6625CrossRef
6.
Zurück zum Zitat Niu S, Qu N, Li H (2018) Investigation of electrochemical mill-grinding using abrasive tools with bottom insulation [J]. Int J Adv Manuf Technol 97(1-4):1371–1382CrossRef Niu S, Qu N, Li H (2018) Investigation of electrochemical mill-grinding using abrasive tools with bottom insulation [J]. Int J Adv Manuf Technol 97(1-4):1371–1382CrossRef
7.
Zurück zum Zitat Li H, Fu S, Zhang Q, Niu S, Qu N (2018) Simulation and experimental investigation of inner-jet electrochemical grinding of GH4169 alloy [J]. Chin J Aeronaut 31(3):608–616CrossRef Li H, Fu S, Zhang Q, Niu S, Qu N (2018) Simulation and experimental investigation of inner-jet electrochemical grinding of GH4169 alloy [J]. Chin J Aeronaut 31(3):608–616CrossRef
8.
Zurück zum Zitat Yehia H, Hakim M, El-Assal A (2020) Effect of the Al2O3 powder addition on the metal removal rate and the surface roughness of the electrochemical grinding machining [J]. Proc Inst Mech Eng B J Eng Manuf 234(12):1538–1548CrossRef Yehia H, Hakim M, El-Assal A (2020) Effect of the Al2O3 powder addition on the metal removal rate and the surface roughness of the electrochemical grinding machining [J]. Proc Inst Mech Eng B J Eng Manuf 234(12):1538–1548CrossRef
9.
Zurück zum Zitat Li S, Wu Y, Mitsuyoshi N (2018) Fundamental machining characteristics of ultrasonic-assisted electrochemical grinding of Ti-6Al-4V [J]. J Manuf Sci Eng 140(7):071009CrossRef Li S, Wu Y, Mitsuyoshi N (2018) Fundamental machining characteristics of ultrasonic-assisted electrochemical grinding of Ti-6Al-4V [J]. J Manuf Sci Eng 140(7):071009CrossRef
10.
Zurück zum Zitat Goswami R, Mitra S, Sarkar S (2009) Experimental investigation on electrochemical grinding (ECG) of alumina-aluminum interpenetrating phase composite [J]. Int J Adv Manuf Technol 40(7-8):729–741CrossRef Goswami R, Mitra S, Sarkar S (2009) Experimental investigation on electrochemical grinding (ECG) of alumina-aluminum interpenetrating phase composite [J]. Int J Adv Manuf Technol 40(7-8):729–741CrossRef
11.
Zurück zum Zitat Roy S, Bhattacharyya A, Banerjee S (2007) Analysis of effect of voltage on surface texture in electrochemical grinding by autocorrelation function [J]. Tribol Int 40(9):1387–1393CrossRef Roy S, Bhattacharyya A, Banerjee S (2007) Analysis of effect of voltage on surface texture in electrochemical grinding by autocorrelation function [J]. Tribol Int 40(9):1387–1393CrossRef
12.
Zurück zum Zitat Hasçalık A, Çaydaş U (2007) A comparative study of surface integrity of Ti-6Al-4V alloy machined by EDM and AECG [J]. J Mater Process Technol 190(1-3):173–180CrossRef Hasçalık A, Çaydaş U (2007) A comparative study of surface integrity of Ti-6Al-4V alloy machined by EDM and AECG [J]. J Mater Process Technol 190(1-3):173–180CrossRef
13.
Zurück zum Zitat Pa P (2008) Design of continuity processes of electrochemical finishing and grinding following turning [J]. J Mech Sci Technol 22(11):2197–2202CrossRef Pa P (2008) Design of continuity processes of electrochemical finishing and grinding following turning [J]. J Mech Sci Technol 22(11):2197–2202CrossRef
14.
Zurück zum Zitat Curtis D, Soo S, Aspinwall D, Sage C (2009) Electrochemical superabrasive machining of a nickel-base aeroengine alloy using mounted grinding points [J]. CIRP Ann Manuf Technol 58(1):173–176CrossRef Curtis D, Soo S, Aspinwall D, Sage C (2009) Electrochemical superabrasive machining of a nickel-base aeroengine alloy using mounted grinding points [J]. CIRP Ann Manuf Technol 58(1):173–176CrossRef
15.
Zurück zum Zitat Zhu D, Zeng Y, Xu Z, Zhang X (2011) Precision machining of small holes by the hybrid process of electrochemical removal and grinding [J]. CIRP Ann Manuf Technol 60(1):247–250CrossRef Zhu D, Zeng Y, Xu Z, Zhang X (2011) Precision machining of small holes by the hybrid process of electrochemical removal and grinding [J]. CIRP Ann Manuf Technol 60(1):247–250CrossRef
16.
Zurück zum Zitat Zhu X, Liu Y, Zhang J, Wang K, Kong H (2020) Ultrasonic-assisted electrochemical drilling-grinding of small holes with high-quality [J]. J Adv Res 23:151–161CrossRef Zhu X, Liu Y, Zhang J, Wang K, Kong H (2020) Ultrasonic-assisted electrochemical drilling-grinding of small holes with high-quality [J]. J Adv Res 23:151–161CrossRef
17.
Zurück zum Zitat Ge Y, Zhu Z, Zhu Y (2019) Electrochemical deep grinding of cast nickel-base superalloys [J]. J Manuf Process 47:291–296CrossRef Ge Y, Zhu Z, Zhu Y (2019) Electrochemical deep grinding of cast nickel-base superalloys [J]. J Manuf Process 47:291–296CrossRef
18.
Zurück zum Zitat Ge Y, Zhu Z, Wang D, Ma Z, Zhu D (2019) Study on material removal mechanism of electrochemical deep grinding [J]. J Mater Process Technol 271:510–519CrossRef Ge Y, Zhu Z, Wang D, Ma Z, Zhu D (2019) Study on material removal mechanism of electrochemical deep grinding [J]. J Mater Process Technol 271:510–519CrossRef
19.
Zurück zum Zitat Niu S, Qu N, Yue X, Li H (2019) Effect of tool-sidewall outlet hole design on machining performance in electrochemical mill-grinding of Inconel 718 [J]. J Manuf Process 41:10–22CrossRef Niu S, Qu N, Yue X, Li H (2019) Effect of tool-sidewall outlet hole design on machining performance in electrochemical mill-grinding of Inconel 718 [J]. J Manuf Process 41:10–22CrossRef
20.
Zurück zum Zitat Yue X, Qu N, Niu S, Li H (2020) Improving the machined bottom surface in electrochemical milling-grinding by adjusting the electrolyte flow field [J]. J Mater Process Technol 276:116413CrossRef Yue X, Qu N, Niu S, Li H (2020) Improving the machined bottom surface in electrochemical milling-grinding by adjusting the electrolyte flow field [J]. J Mater Process Technol 276:116413CrossRef
21.
Zurück zum Zitat Hewidy M, Ebeid S, Rajurkar K, El-Safti M (2001) Electrochemical machining under orbital motion conditions [J]. J Mater Process Technol 109(3):339–346CrossRef Hewidy M, Ebeid S, Rajurkar K, El-Safti M (2001) Electrochemical machining under orbital motion conditions [J]. J Mater Process Technol 109(3):339–346CrossRef
22.
Zurück zum Zitat Wang F, Yao J, Kang M (2020) Electrochemical machining of a rhombus hole with synchronization of pulse current and low-frequency oscillations [J]. J Manuf Process 57:91–104CrossRef Wang F, Yao J, Kang M (2020) Electrochemical machining of a rhombus hole with synchronization of pulse current and low-frequency oscillations [J]. J Manuf Process 57:91–104CrossRef
23.
Zurück zum Zitat Wang M, Liu W, Peng W (2014) Multiphysics research in electrochemical machining of internal spiral hole [J]. Int J Adv Manuf Technol 74(5-8):749–756CrossRef Wang M, Liu W, Peng W (2014) Multiphysics research in electrochemical machining of internal spiral hole [J]. Int J Adv Manuf Technol 74(5-8):749–756CrossRef
24.
Zurück zum Zitat Nigam M (2003) Numerical simulation of buoyant mixture flows [J]. Int J Multiphase Flow 29(6):983–1015CrossRef Nigam M (2003) Numerical simulation of buoyant mixture flows [J]. Int J Multiphase Flow 29(6):983–1015CrossRef
25.
Zurück zum Zitat Fang X, Qu N, Zhang Y, Xu Z, Zhu D (2014) Effects of pulsating electrolyte flow in electrochemical machining [J]. J Mater Process Technol 214(1):36–43CrossRef Fang X, Qu N, Zhang Y, Xu Z, Zhu D (2014) Effects of pulsating electrolyte flow in electrochemical machining [J]. J Mater Process Technol 214(1):36–43CrossRef
26.
Zurück zum Zitat Hewidy M, Ebeid S, El-Taweel T, Youssef A (2007) Modelling the performance of ECM assisted by low frequency vibrations [J]. J Mater Process Technol 189(1-3):466–472CrossRef Hewidy M, Ebeid S, El-Taweel T, Youssef A (2007) Modelling the performance of ECM assisted by low frequency vibrations [J]. J Mater Process Technol 189(1-3):466–472CrossRef
27.
Zurück zum Zitat Jain V, Chouksey A (2018) A comprehensive analysis of three-phase electrolyte conductivity during electrochemical macromachining/micromachining [J]. Proc Inst Mech Eng B J Eng Manuf 232(14):2449–2461CrossRef Jain V, Chouksey A (2018) A comprehensive analysis of three-phase electrolyte conductivity during electrochemical macromachining/micromachining [J]. Proc Inst Mech Eng B J Eng Manuf 232(14):2449–2461CrossRef
Metadaten
Titel
Investigation of inner-jet electrochemical face grinding of thin-walled rotational parts
verfasst von
Feng Wang
Jianshe Zhao
Min Kang
Publikationsdatum
07.06.2021
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 9-10/2021
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-021-07356-0

Weitere Artikel der Ausgabe 9-10/2021

The International Journal of Advanced Manufacturing Technology 9-10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.